1
|
Dai CL, Bian XW, Yao XH. Identification of Six Cerebrospinal Fluid Metabolites Causally Associated with Anorexia Nervosa Risk: A Mendelian Randomization Analysis. Int J Mol Sci 2025; 26:3248. [PMID: 40244111 PMCID: PMC11989412 DOI: 10.3390/ijms26073248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Anorexia nervosa (AN) is a severe psychiatric disorder characterized by substantial heritability and a high mortality rate among psychiatric disorders. While cerebrospinal fluid (CSF) metabolomics has emerged as a novel approach to investigating central nervous system pathologies, its specific causal relationship with anorexia nervosa remains to be fully elucidated. Using genome-wide association study (GWAS) summary statistics for human CSF metabolites and AN information from publicly available datasets, we performed a two-sample Mendelian randomization (MR) analysis using the inverse-variance weighted (IVW) method as the primary approach, complemented by sensitivity analyses. Through a comprehensive analysis of 338 CSF metabolites, we identified six metabolites with significant causal relationships with AN risk. 1-stearoyl-2-linoleoyl-gpc (18:0/18:2) (OR = 1.09, 95% CI 1.00-1.18) and alpha-tocopherol (OR = 1.36, 95% CI 1.00-1.83) showed positive associations, increasing AN risk. Conversely, sphingomyelin (d18:1/20:0, d16:1/22:0) (OR = 0.86, 95% CI 0.77-0.95), 2,3-dihydroxy-2-methylbutyrate (OR = 0.92, 95% CI 0.86-0.98), N-acetylhistidine (OR = 0.92, 95% CI 0.86-0.98), and oxalate (ethanedioate) (OR = 0.83, 95% CI 0.73-0.94) had protective effects, reducing AN risk. Sensitivity analyses showed no evidence of horizontal pleiotropy or heterogeneity in the MR results. An MR directionality test and a Steiger filtering test confirmed the absence of reverse causality, thereby substantiating the robustness of our findings. These findings suggest that these CSF metabolites could serve as potential biomarkers for early AN detection and highlight novel therapeutic targets, potentially improving diagnosis and intervention strategies for this challenging disorder.
Collapse
Affiliation(s)
- Cheng-Liang Dai
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiu-Wu Bian
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Hong Yao
- Institute of Pathology, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| |
Collapse
|
2
|
Pelczarski M, Wolaniuk S, Zaborska M, Sadowski J, Sztangreciak-Lehun A, Bułdak RJ. The role of α-tocopherol in the prevention and treatment of Alzheimer's disease. Mol Cell Biochem 2025:10.1007/s11010-025-05214-1. [PMID: 39832109 DOI: 10.1007/s11010-025-05214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Scientific reports from various areas of the world indicate the potential role of tocopherols (vitamin E) in particular α-tocopherol in the prevention and therapy of Alzheimer's disease. The current phenomenon is related to the growing global awareness of eating habits and is also determined by the need to develop the prevention, management and therapy of Alzheimer's disease. This article is a review of current research on the action of the active form of vitamin E-α-tocopherol and its impact on the development and course of Alzheimer's disease. Additionally, to contrast this information, selected primary research on this topic was included. The aim of this article is to analyze and summarize the available scientific information on the effects of the active form of vitamin E, α-tocopherol, on the development and course of Alzheimer's disease. In the structure of the review, particular attention was paid to the analysis of the pathophysiological processes of the disease and the biochemical features of the action of α-tocopherol. To discuss the relationship between the effect of α-tocopherol and the occurrence of Alzheimer's disease, a literature review was conducted using the following databases: PubMed, Google Scholar, and Elsevier. During the search process, the following keywords were used: "tocopherols", "vitamin E", "α-tocopherol", "Alzheimer's disease" in various combinations. The process was conducted in accordance with the adopted search strategy taking into account the inclusion and exclusion criteria. Alzheimer's disease (AD) is the most common, irreversible neurodegenerative disease, so many scientists are actively looking for substances and/or strategies to prevent its development and to slow down its course in patients. Alpha-tocopherols (ATF) are a factor that inhibits the pathophysiological processes associated with the development of AD by reducing the formation of atherogenic amyloid B (AB). Additionally, this type of tocopherols has antioxidant and anti-inflammatory properties and has a positive effect on the metabolic functioning of mitochondria. It has been shown that a higher intake of α-tocopherol (ATF) was associated with a reduced risk of developing dementia and the occurrence of mild types of cognitive impairment (MCI). Various sources indicate an insufficient supply of ATF in the diet. ATF supplementation may potentially help to slow down the course of Alzheimer's disease, which is why this substance may be popularized in the treatment of this disease in the future. However, there is a need for further research on this issue.
Collapse
Affiliation(s)
- Michał Pelczarski
- Student Scientific Society of Clinical Biochemistry and Regenerative Medicine, Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Szymon Wolaniuk
- Student Scientific Society of Clinical Biochemistry and Regenerative Medicine, Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Monika Zaborska
- Student Scientific Society of Clinical Biochemistry and Regenerative Medicine, Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Jakub Sadowski
- Student Scientific Society of Clinical Biochemistry and Regenerative Medicine, Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland.
| | - Anna Sztangreciak-Lehun
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Rafał Jakub Bułdak
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland
| |
Collapse
|
3
|
Mori Cortés N, Scioli Montoto S, Ruiz ME, Califano AN, Zaritzky N, Lorenzo G. Rheological properties and microstructure of thermodynamically stable microemulsions as factors influencing the release rate of liposoluble vitamins. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Huang Q, Lu L, Xu Y, Tu M, Chen X, Jiang L. Genotypic variation of tocopherol content in a representative genetic population and genome-wide association study on tocopherol in rapeseed ( Brassica napus). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:50. [PMID: 37313221 PMCID: PMC10248655 DOI: 10.1007/s11032-023-01394-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/10/2023] [Indexed: 06/15/2023]
Abstract
Tocopherols (Tocs) are a kind of lipid-soluble substance required for the normal physiological function of mammals, particularly their antioxidant capacity. Rapeseed (Brassica napus) oil is an important source of exogenous Tocs. However, the genotypic differences in the total Toc contents, the Toc composition in the seeds, and the molecular markers associated with the seed Toc remain largely unknown. Here, we selected 290 rapeseed accessions based on the resequencing of 991 genomes in a worldwide collection of rapeseed germplasm. The contents of the four Toc isoforms, namely, α-, β-, γ-, and δ-Tocs, were also measured. Results show that the total Toc content and the γ-/α-Toc ratio varied greatly across the accessions from 85.34 to 387.00 mg/mg and 0.65 to 5.03, respectively. Furthermore, we conducted genome-wide association studies on the Tocs, which identified 28 and 73 single nucleotide polymorphisms significantly associated with the variation of total Toc content and γ-/α-Toc ratio, respectively. Bna.C02.VTE4, a putative orthologue of Arabidopsis VITAMIN E DEFICIENT 4, was tightly associated with the γ-/α-Toc ratio. This study recommends specific genetic materials with particularly high total Toc and/or low γ-/α-Toc ratio and the molecular markers and haplotypes associated with these quality traits for rapeseed breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01394-0.
Collapse
Affiliation(s)
- Qi Huang
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou, 310058 China
| | - Lingzhi Lu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou, 310058 China
| | - Ying Xu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou, 310058 China
| | - Mengxin Tu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou, 310058 China
| | - Xiaoyang Chen
- Institute of Crop Science, Jinhua Academy of Agricultural Sciences, Shuang-Long Street 828, Jinhua, 321017 China
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou, 310058 China
| |
Collapse
|
5
|
Babazadeh A, Vahed FM, Liu Q, Siddiqui SA, Kharazmi MS, Jafari SM. Natural Bioactive Molecules as Neuromedicines for the Treatment/Prevention of Neurodegenerative Diseases. ACS OMEGA 2023; 8:3667-3683. [PMID: 36743024 PMCID: PMC9893457 DOI: 10.1021/acsomega.2c06098] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
The brain is vulnerable to different types of stresses, particularly oxidative stress as a result of oxygen requirements/utilization in the body. Large amounts of unsaturated fatty acids present in the brain increase this vulnerability. Neurodegenerative diseases (NDDs) are brain disorders that are characterized by the gradual loss of specific neurons and are attributed to broad evidence of cell-level oxidative stress. The accurate characterization of neurological disorders relies on several parameters along with genetics and environmental risk factors, making therapies less efficient to fight NDDs. On the way to tackle oxidative damage and discover efficient and safe therapies, bioactives are at the edge of NDD science. Naturally occurring bioactive compounds such as polyphenols, carotenoids, essential fatty acids, phytosterols, essential oils, etc. are particularly of interest owing to their potent antioxidant and anti-inflammatory activities, and they offer lots of brain-health-promoting features. This Review focuses on probing the neuroefficacy and bioefficacy of bioactives and their role in supporting relatively low antioxidative and low regenerative capacities of the brain, neurogenesis, neuroprotection, and ameliorating/treating NDDs.
Collapse
Affiliation(s)
- Afshin Babazadeh
- Center
for Motor Neuron Disease Research, Macquarie Medical School, Faculty
of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Fereshteh Mohammadi Vahed
- Center
for Motor Neuron Disease Research, Macquarie Medical School, Faculty
of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Qi Liu
- Institute
of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China
- Jiangsu
Key Laboratory of Integrated Traditional Chinese and Western Medicine
for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Shahida Anusha Siddiqui
- Technical
University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany
- German
Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straße 7, 49610 D Quakenbrück, Germany
| | | | - Seid Mahdi Jafari
- Department
of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran
- Nutrition
and Bromatology Group, Department of Analytical Chemistry and Food
Science, Faculty of Science, Universidade
de Vigo, E-32004 Ourense, Spain
- College
of Food Science and Technology, Hebei Agricultural
University, Baoding 071001, China
| |
Collapse
|
6
|
Chakrovorty A, Bhattacharjee B, Saxena A, Samadder A, Nandi S. Current Naturopathy to Combat Alzheimer's Disease. Curr Neuropharmacol 2023; 21:808-841. [PMID: 36173068 PMCID: PMC10227918 DOI: 10.2174/1570159x20666220927121022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/13/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegeneration is the progressive loss of structure or function of neurons, which may ultimately involve cell death. The most common neurodegenerative disorder in the brain happens with Alzheimer's disease (AD), the most common cause of dementia. It ultimately leads to neuronal death, thereby impairing the normal functionality of the central or peripheral nervous system. The onset and prevalence of AD involve heterogeneous etiology, either in terms of genetic predisposition, neurometabolomic malfunctioning, or lifestyle. The worldwide relevancies are estimated to be over 45 million people. The rapid increase in AD has led to a concomitant increase in the research work directed towards discovering a lucrative cure for AD. The neuropathology of AD comprises the deficiency in the availability of neurotransmitters and important neurotrophic factors in the brain, extracellular betaamyloid plaque depositions, and intracellular neurofibrillary tangles of hyperphosphorylated tau protein. Current pharmaceutical interventions utilizing synthetic drugs have manifested resistance and toxicity problems. This has led to the quest for new pharmacotherapeutic candidates naturally prevalent in phytochemicals. This review aims to provide an elaborative description of promising Phyto component entities having activities against various potential AD targets. Therefore, naturopathy may combine with synthetic chemotherapeutics to longer the survival of the patients.
Collapse
Affiliation(s)
- Arnob Chakrovorty
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, 741235, India
| | - Banani Bhattacharjee
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, 741235, India
| | - Aaruni Saxena
- Department of Cardiovascular Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Asmita Samadder
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, 244713, India
| |
Collapse
|
7
|
Wang X, Jiang M, Li D, Xu L. Analyzing the Therapeutic Mechanism of Mongolian Medicine Zhonglun-5 in Rheumatoid Arthritis Using a Bagging Algorithm with Serum Metabonomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5997562. [PMID: 36532854 PMCID: PMC9750765 DOI: 10.1155/2022/5997562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 10/07/2023]
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune disorder. Zhonglun-5 (ZL), a traditional Mongolian medicine, exhibits an excellent clinical effect on RA; however, its molecular mechanism remains unclear. In this study, rat serum metabolomic analysis was performed to identify potential biomarkers for RA and investigate its treatment mechanism. A Dionex Ultimate 3000 ultrahigh-performance liquid chromatography system coupled with a Q-Exactive Focus Orbitrap mass spectrometer was used for metabonomics analysis. Bootstrap aggregation (bagging) classification algorithm was applied to process data from control (CG), model (MG), and treatment administration groups. The classification accuracy was 100.00% (6/6) in the decision tree model and 83.33% (5/6) in the K-nearest neighbor (KNN) model, accompanied by 18 training samples and 6 testing samples. Using volcanic map analysis, 24 biomarkers were identified between CG and MG, including those related to glycosphingolipid biosynthesis, arachidonic acid, fatty acids, amino acids, bile acids, vitamins, and sphingolipids. A set diagram of the heatmap and drug-biomarker network of potential biomarkers was constructed. After ZL administration, the levels of these biomarkers returned to normal, indicating that ZL had a therapeutic effect in rats with RA. This study established a solid theoretical foundation to promote further research on the clinical applicability of ZL.
Collapse
Affiliation(s)
- Xiye Wang
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
- Inner Mongolia Key Laboratory of Chemistry for Natural Products Chemistry and Synthesis for Functional Molecules, Tongliao 028000, China
| | - Mingyang Jiang
- College of Computer Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Dan Li
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
- Inner Mongolia Key Laboratory of Chemistry for Natural Products Chemistry and Synthesis for Functional Molecules, Tongliao 028000, China
| | - Liang Xu
- Inner Mongolia Key Laboratory of Chemistry for Natural Products Chemistry and Synthesis for Functional Molecules, Tongliao 028000, China
| |
Collapse
|
8
|
Chemosensitization Effect of Seabuckthorn ( Hippophae rhamnoides L.) Pulp Oil via Autophagy and Senescence in NSCLC Cells. Foods 2022; 11:foods11101517. [PMID: 35627086 PMCID: PMC9140501 DOI: 10.3390/foods11101517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
The research has demonstrated a synergistic anticancer effect of Seabuckthorn pulp oil (SBO) and the standard chemotherapy regimen Docetaxel (DTX) against two non-small cell lung cancer (NSCLC) cell lines: A549 and H23. The synergizing effect of an SBO and DTX combination was detected utilizing SRB assay and combination index (CI) approaches. Flow cytometry was carried out using fluorescent probes to measure cell cycle analysis by DNA content and reactive oxygen species (ROS) generation. Further, we demonstrated that the synergistic anticancer activity of SBO merged with DTX was achieved by caspase-independent autophagy and senescence induction. These changes were concomitant with increased generation of ROS production and microtubule-associated protein 1 light chain 3 (LC3) protein expression, G1-phase arrest, and enhanced senescence-associated β-galactosidase staining activity. Our data also demonstrated that SBO or DTX treatment groups solely upregulated the phosphorylation of ERK, which coincided with the induction of autophagy vacuoles and was functionally associated with ROS activation. Moreover, endogenous LC3 puncta staining was performed and monitored by confocal microscopy. Overall, these results suggest new mechanisms for the antitumor activity of SBO co-treated with DTX through triggering autophagic cell death and senescence against cancer cells as a result of sustained ERK phosphorylation and intracellular ROS production in NSCLC. In addition, we also highlight SBO as an alternative therapeutic option or adjunct therapeutic strategy in combination with chemotherapeutic agents in lung cancer therapy management.
Collapse
|
9
|
Shea TB. Improvement of cognitive performance by a nutraceutical formulation: Underlying mechanisms revealed by laboratory studies. Free Radic Biol Med 2021; 174:281-304. [PMID: 34352370 DOI: 10.1016/j.freeradbiomed.2021.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/28/2022]
Abstract
Cognitive decline, decrease in neuronal function and neuronal loss that accompany normal aging and dementia are the result of multiple mechanisms, many of which involve oxidative stress. Herein, we review these various mechanisms and identify pharmacological and non-pharmacological approaches, including modification of diet, that may reduce the risk and progression of cognitive decline. The optimal degree of neuronal protection is derived by combinations of, rather than individual, compounds. Compounds that provide antioxidant protection are particularly effective at delaying or improving cognitive performance in the early stages of Mild Cognitive Impairment and Alzheimer's disease. Laboratory studies confirm alleviation of oxidative damage in brain tissue. Lifestyle modifications show a degree of efficacy and may augment pharmacological approaches. Unfortunately, oxidative damage and resultant accumulation of biomarkers of neuronal damage can precede cognitive decline by years to decades. This underscores the importance of optimization of dietary enrichment, antioxidant supplementation and other lifestyle modifications during aging even for individuals who are cognitively intact.
Collapse
Affiliation(s)
- Thomas B Shea
- Laboratory for Neuroscience, Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
10
|
Sharma S, Advani D, Das A, Malhotra N, Khosla A, Arora V, Jha A, Yadav M, Ambasta RK, Kumar P. Pharmacological intervention in oxidative stress as a therapeutic target in neurological disorders. J Pharm Pharmacol 2021; 74:461-484. [PMID: 34050648 DOI: 10.1093/jpp/rgab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Oxidative stress is a major cellular burden that triggers reactive oxygen species (ROS) and antioxidants that modulate signalling mechanisms. Byproducts generated from this process govern the brain pathology and functions in various neurological diseases. As oxidative stress remains the key therapeutic target in neurological disease, it is necessary to explore the multiple routes that can significantly repair the damage caused due to ROS and consequently, neurodegenerative disorders (NDDs). Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is the critical player of oxidative stress that can also be used as a therapeutic target to combat NDDs. KEY FINDINGS Several antioxidants signalling pathways are found to be associated with oxidative stress and show a protective effect against stressors by increasing the release of various cytoprotective enzymes and also exert anti-inflammatory response against this oxidative damage. These pathways along with antioxidants and reactive species can be the defined targets to eliminate or reduce the harmful effects of neurological diseases. SUMMARY Herein, we discussed the underlying mechanism and crucial role of antioxidants in therapeutics together with natural compounds as a pharmacological tool to combat the cellular deformities cascades caused due to oxidative stress.
Collapse
Affiliation(s)
- Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Nishtha Malhotra
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Vanshika Arora
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Ankita Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Megha Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
11
|
Babazadeh A, Mohammadi Vahed F, Jafari SM. Nanocarrier-mediated brain delivery of bioactives for treatment/prevention of neurodegenerative diseases. J Control Release 2020; 321:211-221. [DOI: 10.1016/j.jconrel.2020.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/31/2022]
|
12
|
Livny A, Schnaider Beeri M, Heymann A, Moshier E, Berman Y, Mamistalov M, Shahar DR, Tsarfaty G, Leroith D, Preiss R, Soleimani L, Silverman JM, Bendlin BB, Levy A, Ravona-Springer R. Vitamin E Intake Is Associated with Lower Brain Volume in Haptoglobin 1-1 Elderly with Type 2 Diabetes. J Alzheimers Dis 2020; 74:649-658. [PMID: 32065799 DOI: 10.3233/jad-191294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUNDS The efficacy of vitamin E in prevention of diabetes-related complications differs by Haptoglobin (Hp) genotype. OBJECTIVE To examine the role of Hp genotype in the relationship of vitamin E intake with brain volume in cognitively normal elderly patients with type 2 diabetes. METHODS Brain volumes for the superior, middle, and inferior frontal gyri and for the middle temporal gyrus were generated from structural T1 MRI in 181 study participants (Hp 1-1: n = 24, Hp 2-1: n = 77, Hp 2-2: n = 80). Daily vitamin E intake was assessed using the Food Frequency Questionnaire. Analyses of covariance, controlling for demographic and cardiovascular variables was used to evaluate whether the association of daily vitamin E intake with brain volume was modified by Hp genotype. RESULTS Average age was 70.8 (SD = 4.2) with 40% females, and mean Mini-Mental State Examination score of 28.17 (SD = 1.90). A significant interaction was found between vitamin E intake and Hp genotype in inferior frontal gyrus' volume; p = 0.0108. For every 1 microgram increase in vitamin E intake, the volume of the inferior frontal gyrus decreased by 0.955% for Hp 1-1 (p = 0.0348), increased by 0.429% for Hp 2-1 (p = 0.0457), and by 0.077% for Hp 2-2 (p = 0.6318). There were no significant interactions between vitamin E intake and Hp genotype for the middle (p = 0.6011) and superior (p = 0.2025) frontal gyri or for the middle temporal gyrus (p = 0.503). CONCLUSIONS The effect of dietary vitamin E on the brain may differ by Hp genotype. Studies examining the impact of vitamin E on brain-related outcomes should consider Hp genotype.
Collapse
Affiliation(s)
- Abigail Livny
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,The Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Baruch Ivcher School of Psychology, Interdisciplinary Center, Herzliya, Israel
| | - Anthony Heymann
- Department of Family Medicine, Tel Aviv University, Tel Aviv, Israel.,Maccabi Health Services, Israel
| | - Erin Moshier
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuval Berman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Mary Mamistalov
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | | | - Galia Tsarfaty
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Derek Leroith
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Laili Soleimani
- The Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremy M Silverman
- The Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew Levy
- Rambam Medical Center, Technion, Haifa, Israel
| | - Ramit Ravona-Springer
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Psychiatric Division, Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
13
|
High-throughput determination of vitamin E in extra virgin olive oil by paper spray tandem mass spectrometry. Anal Bioanal Chem 2019; 411:2885-2890. [PMID: 30899998 DOI: 10.1007/s00216-019-01727-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/18/2019] [Accepted: 02/27/2019] [Indexed: 01/03/2023]
Abstract
Extra virgin olive oil provides an important intake of α-tocopherol, which is part of vitamin E complex. A fast analytical method for its quantification, based on paper spray mass spectrometry, has been developed. The methodology possesses the ability to record mass spectra without sample preparation or preseparation steps. The experiments were performed in Multiple Reaction Monitoring scan mode; in particular, the transitions m/z 429 → m/z 163 for α-tocopherol and m/z 435 → m/z 169 for the labeled internal standard were monitored, in order to obtain the greatest specificity and the best sensitivity. The accuracy of the method was tested analyzing spiked samples prepared at concentrations within the dynamic range of the calibration curve, which returned values near 100%. Furthermore, good values of LOQ and LOD were obtained, demonstrating that this approach can be applied for a rapid screening of tocopherols in different vegetable oils. The results were compared with analyses performed by traditional chromatographic methods. Graphical abstract.
Collapse
|
14
|
Strobbe S, De Lepeleire J, Van Der Straeten D. From in planta Function to Vitamin-Rich Food Crops: The ACE of Biofortification. FRONTIERS IN PLANT SCIENCE 2018; 9:1862. [PMID: 30619424 PMCID: PMC6305313 DOI: 10.3389/fpls.2018.01862] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/03/2018] [Indexed: 05/11/2023]
Abstract
Humans are highly dependent on plants to reach their dietary requirements, as plant products contribute both to energy and essential nutrients. For many decades, plant breeders have been able to gradually increase yields of several staple crops, thereby alleviating nutritional needs with varying degrees of success. However, many staple crops such as rice, wheat and corn, although delivering sufficient calories, fail to satisfy micronutrient demands, causing the so called 'hidden hunger.' Biofortification, the process of augmenting nutritional quality of food through the use of agricultural methodologies, is a pivotal asset in the fight against micronutrient malnutrition, mainly due to vitamin and mineral deficiencies. Several technical advances have led to recent breakthroughs. Nutritional genomics has come to fruition based on marker-assisted breeding enabling rapid identification of micronutrient related quantitative trait loci (QTL) in the germplasm of interest. As a complement to these breeding techniques, metabolic engineering approaches, relying on a continuously growing fundamental knowledge of plant metabolism, are able to overcome some of the inevitable pitfalls of breeding. Alteration of micronutrient levels does also require fundamental knowledge about their role and influence on plant growth and development. This review focuses on our knowledge about provitamin A (beta-carotene), vitamin C (ascorbate) and the vitamin E group (tocochromanols). We begin by providing an overview of the functions of these vitamins in planta, followed by highlighting some of the achievements in the nutritional enhancement of food crops via conventional breeding and genetic modification, concluding with an evaluation of the need for such biofortification interventions. The review further elaborates on the vast potential of creating nutritionally enhanced crops through multi-pathway engineering and the synergistic potential of conventional breeding in combination with genetic engineering, including the impact of novel genome editing technologies.
Collapse
|
15
|
Grażyna C, Hanna C, Adam A, Magdalena BM. Natural antioxidants in milk and dairy products. INT J DAIRY TECHNOL 2017. [DOI: 10.1111/1471-0307.12359] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Cichosz Grażyna
- Department of Dairy Science and Quality Management; University of Warmia and Mazury in Olsztyn; ul. Oczapowskiego 7 10-719 Olsztyn Poland
| | - Czeczot Hanna
- Department of Biochemistry; I Faculty of Medicine; Medical University of Warsaw; ul. Banacha 1 02-097 Warszawa Poland
| | - Ambroziak Adam
- Department of Dairy Science and Quality Management; University of Warmia and Mazury in Olsztyn; ul. Oczapowskiego 7 10-719 Olsztyn Poland
| | - Bielecka Marika Magdalena
- Department of Dairy Science and Quality Management; University of Warmia and Mazury in Olsztyn; ul. Oczapowskiego 7 10-719 Olsztyn Poland
| |
Collapse
|
16
|
Cervinkova B, Krcmova LK, Solichova D, Melichar B, Solich P. Recent advances in the determination of tocopherols in biological fluids: from sample pretreatment and liquid chromatography to clinical studies. Anal Bioanal Chem 2016; 408:2407-24. [DOI: 10.1007/s00216-015-9214-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/04/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023]
|
17
|
Sharipova A, Aidarova S, Grigoriev D, Mutalieva B, Madibekova G, Tleuova A, Miller R. Polymer–surfactant complexes for microencapsulation of vitamin E and its release. Colloids Surf B Biointerfaces 2016; 137:152-7. [DOI: 10.1016/j.colsurfb.2015.03.063] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 12/01/2022]
|
18
|
Pires TCSP, Dias MI, Calhelha RC, Carvalho AM, Queiroz MJRP, Barros L, Ferreira ICFR. Bioactive Properties of Tabebuia impetiginosa-Based Phytopreparations and Phytoformulations: A Comparison between Extracts and Dietary Supplements. Molecules 2015; 20:22863-71. [PMID: 26703544 PMCID: PMC6331982 DOI: 10.3390/molecules201219885] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 01/09/2023] Open
Abstract
Tabebuia impetiginosa (Mart. ex DC.) Standl. has been used in traditional medicine for many centuries, being nowadays marketed as dried plant material (inner bark) for infusions, pills, and syrups. The main objective of the present work was to validate its popular use through the bioactivity evaluation of the inner bark (methanolic extract and infusion) and of two different formulations (pills and syrup) also based on the same plant-material. The antioxidant activity was evaluated by in vitro assays testing free radical scavenging activity, reducing power and inhibition of lipid peroxidation in brain homogenates. The cytotoxicity was determined in four human tumor cell lines (MCF-7, NCI-H460, HeLa and HepG2, and also in non-tumor cells (porcine liver primary cells, PLP2)). Furthermore, the sample was chemically characterized regarding free sugars, organic acids, fatty acids, and tocopherols. Syrup and methanolic extract showed the highest antioxidant activity, related to their highest amount of phenolics and flavonoids. Methanolic extract was the only sample showing cytotoxic effects on the tested human tumor cell lines, but none of the samples showed toxicity in PLP2. Glucose and oxalic acid were, respectively, the most abundant sugar and organic acid in the sample. Unsaturated predominated over the saturated fatty acids, due to oleic, linoleic, and linolenic acids expression. α- and γ-Tocopherols were also identified and quantified. Overall, T. impetiginosa might be used in different phytoformulations, taking advantage of its interesting bioactive properties and chemical composition.
Collapse
Affiliation(s)
- Tânia C S P Pires
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 1172, 5301-855 Bragança, Portugal.
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 1172, 5301-855 Bragança, Portugal.
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 1172, 5301-855 Bragança, Portugal.
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Ana Maria Carvalho
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 1172, 5301-855 Bragança, Portugal.
| | | | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 1172, 5301-855 Bragança, Portugal.
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 1172, 5301-855 Bragança, Portugal.
| |
Collapse
|
19
|
Natural Compounds (Small Molecules) as Potential and Real Drugs of Alzheimer's Disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-63281-4.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
20
|
Naumann EC, Göring S, Ogorek I, Weggen S, Schmidt B. Membrane anchoring γ-secretase modulators with terpene-derived moieties. Bioorg Med Chem Lett 2013; 23:3852-6. [PMID: 23707256 DOI: 10.1016/j.bmcl.2013.04.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/24/2013] [Accepted: 04/27/2013] [Indexed: 02/02/2023]
Abstract
Modulation of γ-secretase activity is a promising therapeutic strategy for the treatment of Alzheimer's disease. Herein we report on the synthesis of carprofen- and tocopherol-derived small-molecule modulators carrying terpene moieties as lipophilic membrane anchors. Additionally, these modulators are equipped with an acidic moiety, which contributes to the desired modulatory effect on the γ-secretase with decreased formation of Aβ42 and increased Aβ38 production.
Collapse
Affiliation(s)
- Eva Christine Naumann
- Clemens Schöpf-Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | | | | | | | | |
Collapse
|
21
|
Freedman DM, Kuncl RW, Weinstein SJ, Malila N, Virtamo J, Albanes D. Vitamin E serum levels and controlled supplementation and risk of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:246-51. [PMID: 23286756 PMCID: PMC3673294 DOI: 10.3109/21678421.2012.745570] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
There are no observational studies or controlled trials of amyotrophic lateral sclerosis (ALS) and circulating α-tocopherol (vitamin E) for prevention of ALS. This study addresses that gap. The study population comprised 29,127 Finnish male smokers, aged 50-69 years, who participated in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study, which is both a prospective cohort and a randomized, double-blind, placebo-controlled trial of α-tocopherol (50 mg/day) and β-carotene (20 mg/day). Serum α-tocopherol and β-carotene was assayed at baseline (1985 - 1988). Follow-up (median 16.7 years) continued through 2004. ALS cases were identified through the national Hospital Discharge Register with diagnostic verification by hospital records and death certificates. During 407,260 person-years of follow-up, 50 men were identified with ALS. For males with serum α-tocopherol concentration above the median (≥ 11.6 mg/l), the age-adjusted relative risk (RR) compared to α-tocopherol below the median, was 0.56 (95% confidence interval 0.32 - 0.99), p = 0.046. The RR among α-tocopherol supplement recipients was 0.75 (95% CI 0.32 - 1.79), p = 0.52. Neither serum β-carotene level nor β-carotene supplementation was associated with ALS. In conclusion, the results are consistent with a hypothesized protective effect of α-tocopherol on ALS risk. However, pooled analyses of cohorts with serum and controlled trials are needed to clarify the role of α-tocopherol in ALS risk.
Collapse
Affiliation(s)
- D. Michal Freedman
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, NIH, DHHS, Bethesda, Maryland, USA
| | | | - Stephanie J. Weinstein
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, NIH, DHHS, Bethesda, Maryland, USA
| | - Nea Malila
- Finnish Cancer Registry, Helsinki, Finland
- School of Health Sciences, University of Tampere, Finland
| | - Jarmo Virtamo
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Demetrius Albanes
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, NIH, DHHS, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Rodríguez-Rodríguez C, Telpoukhovskaia M, Orvig C. The art of building multifunctional metal-binding agents from basic molecular scaffolds for the potential application in neurodegenerative diseases. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.03.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Relkin P, Shukat R. Food protein aggregates as vitamin-matrix carriers: impact of processing conditions. Food Chem 2012; 134:2141-8. [PMID: 23442667 DOI: 10.1016/j.foodchem.2012.04.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 03/16/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
We studied the ability of protein aggregates for loading and protection of α-tocopherol, a model of heat- and light-sensitive bioactive compounds. Aqueous dispersions of whey proteins (4.5 wt.%, pH 6.7) in the absence and presence of α-tocopherol (4 wt.%) were prepared using an ultradisperser (10,000 rpm for 10 min and 65 °C), and then submitted to further high-pressure homogenisation (HPH) at 300 or 1200 bar for 12 cycles. Relative to free-vitamin dispersions, increasing HPH conditions in the presence of vitamin led to higher protein denaturation, more tryptophan quenching and wavelength blue-shift (by 10nm), in parallel with increased zeta potential values (by -10 mV), particle sizes (by 50%), and newly formed protein dimers, trimers and high molecular weight aggregates. As a result, the degree of vitamin degradation under increasing HPH and long-term storage was shown to decrease from 66% (ultradisper) to 50%, or to 30% (subject to further treatments at 300 or 1200 bar, respectively).
Collapse
Affiliation(s)
- Perla Relkin
- AgroParisTech, UMR1145 (INRA, AgroParisTech, CNAM), Department of Science and Engineering of Food and Bioproducts, 1 Avenue des Olympiades, 91300 Massy, France.
| | | |
Collapse
|
24
|
Liu DZ, Ander BP. Cell cycle inhibition without disruption of neurogenesis is a strategy for treatment of aberrant cell cycle diseases: an update. ScientificWorldJournal 2012; 2012:491737. [PMID: 22547985 PMCID: PMC3323905 DOI: 10.1100/2012/491737] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/17/2011] [Indexed: 12/12/2022] Open
Abstract
Since publishing our earlier report describing a strategy for the treatment of central nervous system (CNS) diseases by inhibiting the cell cycle and without disrupting neurogenesis (Liu et al. 2010), we now update and extend this strategy to applications in the treatment of cancers as well. Here, we put forth the concept of "aberrant cell cycle diseases" to include both cancer and CNS diseases, the two unrelated disease types on the surface, by focusing on a common mechanism in each aberrant cell cycle reentry. In this paper, we also summarize the pharmacological approaches that interfere with classical cell cycle molecules and mitogenic pathways to block the cell cycle of tumor cells (in treatment of cancer) as well as to block the cell cycle of neurons (in treatment of CNS diseases). Since cell cycle inhibition can also block proliferation of neural progenitor cells (NPCs) and thus impair brain neurogenesis leading to cognitive deficits, we propose that future strategies aimed at cell cycle inhibition in treatment of aberrant cell cycle diseases (i.e., cancers or CNS diseases) should be designed with consideration of the important side effects on normal neurogenesis and cognition.
Collapse
Affiliation(s)
- Da-Zhi Liu
- Department of Neurology and the MIND Institute, University of California at Davis, Sacramento, CA 95817, USA.
| | | |
Collapse
|
25
|
do Vale FDAC, Corrêa Neto Y, Bertolucci PHF, Machado JCB, da Silva DJ, Allam N, Balthazar MLF. Treatment of Alzheimer's disease in Brazil: I. Cognitive disorders. Dement Neuropsychol 2011; 5:178-188. [PMID: 29213742 PMCID: PMC5619477 DOI: 10.1590/s1980-57642011dn05030005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article reports the recommendations of the Scientific Department of
Cognitive Neurology and Aging of the Brazilian Academy of Neurology for the
treatment of Alzheimer’s disease (AD) in Brazil, with special focus on cognitive
disorders. It constitutes a revision and broadening of the 2005 guidelines based
on a consensus involving researchers (physicians and non-physicians) in the
field. The authors carried out a search of articles published since 2005 on the
MEDLINE, LILACS and Cochrane Library databases. The search criteria were
pharmacological and non-pharmacological treatment of cognitive disorders in AD.
Studies retrieved were categorized into four classes, and evidence into four
levels, based on the 2008 recommendations of the American Academy of Neurology.
The recommendations on therapy are pertinent to the dementia phase of AD.
Recommendations are proposed for the treatment of cognitive disorders
encompassing both pharmacological (including acetyl-cholinesterase inhibitors,
memantine and other drugs and substances) and non-pharmacological (including
cognitive rehabilitation, physical activity, occupational therapy, and music
therapy) approaches. Recommendations for the treatment of behavioral and
psychological symptoms of dementia due to Alzheimer’s disease are included in a
separate article of this edition.
Collapse
Affiliation(s)
| | - Ylmar Corrêa Neto
- Federal University of Santa Catarina (UFSC), Department of Internal Medicine, Florianópolis SC, Brazil
| | | | - João Carlos Barbosa Machado
- Aurus IEPE - Institute of Research and Education on Aging of Belo Horizonte; Faculty of Medical Sciences of Minas Gerais (FCMMG), Department of Geriatric Medicine of Hospital Mater Dei, Belo Horizonte MG, Brazil
| | - Delson José da Silva
- Neurosciences Center of Hospital das Clinicas of the Federal University of Goiás (UFG). Integrated Institute of Neurosciences (IINEURO), Goiânia GO, Brazil
| | - Nasser Allam
- University of Brasilia (UnB), Laboratory of Neurosciences and Behavior, Brasília DF, Brazil
| | | | | |
Collapse
|
26
|
Liu DZ, Ander BP, Sharp FR. Cell cycle inhibition without disruption of neurogenesis is a strategy for treatment of central nervous system diseases. Neurobiol Dis 2009; 37:549-57. [PMID: 19944161 DOI: 10.1016/j.nbd.2009.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 11/10/2009] [Accepted: 11/18/2009] [Indexed: 12/12/2022] Open
Abstract
Classically, the cell cycle is regarded as the process leading to cellular proliferation. However, increasing evidence over the last decade supports the notion that neuronal cell cycle re-entry results in post-mitotic death. A mature neuron that re-enters the cell cycle can neither advance to a new G0 quiescent state nor revert to its earlier G0 state. This presents a critical dilemma to the neuron from which death may be an unavoidable but necessary outcome for adult neurons attempting to complete the cell cycle. In contrast, tumor cells that undergo aberrant cell cycle re-entry divide and can survive. Thus, cell cycle inhibition strategies are of interest in cancer treatment but may also represent an important means of protecting neurons. In this review, we put forth the concept of the "expanded cell cycle" and summarize the cell cycle proteins, signal transduction events and mitogenic molecules that can drive a neuron into the cell cycle in various CNS diseases. We also discuss the pharmacological approaches that interfere with the mitogenic pathways and prevent mature neurons from attempting cell cycle re-entry, protecting them from cell death. Lastly, future attempts at blocking the cell cycle to rescue mature neurons from injury should be designed so as to not block normal neurogenesis.
Collapse
Affiliation(s)
- Da-Zhi Liu
- Department of Neurology and the M.I.N.D. Institute, University of California at Davis, Sacramento, CA 95817, USA.
| | | | | |
Collapse
|
27
|
Sabliov CM, Fronczek C, Astete CE, Khachaturyan M, Khachatryan L, Leonardi C. Effects of Temperature and UV Light on Degradation of α-Tocopherol in Free and Dissolved Form. J AM OIL CHEM SOC 2009. [DOI: 10.1007/s11746-009-1411-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Chan A, Paskavitz J, Remington R, Rasmussen S, Shea TB. Efficacy of a vitamin/nutriceutical formulation for early-stage Alzheimer's disease: a 1-year, open-label pilot study with an 16-month caregiver extension. Am J Alzheimers Dis Other Demen 2008; 23:571-85. [PMID: 19047474 PMCID: PMC10846284 DOI: 10.1177/1533317508325093] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
We examined the efficacy of a vitamin/nutriceutical formulation (folate, vitamin B6, alpha-tocopherol, S-adenosyl methionine, N-acetyl cysteine, and acetyl-L-carnitine) in a 12-month, open-label trial with 14 community-dwelling individuals with early-stage Alzheimer's disease. Participants improved in the Dementia Rating Scale and Clock-drawing tests (Clox 1 and 2). Family caregivers reported improvement in multiple domains of the Neuropsychiatric Inventory (NPI) and maintenance of performance in the Alzheimer's Disease Cooperative Study-Activities of Daily Living (ADL). Sustained performance was reported by caregivers for those participants who continued in an 16-month extension. Performance on the NPI was equivalent to published findings at 3 to 6 months for donepezil and exceeded that of galantamine and their historical placebos. Participants demonstrated superior performance for more than 12 months in NPI and ADL versus those receiving naproxen and rofecoxib or their placebo group. This formulation holds promise for treatment of early-stage Alzheimer's disease prior to and/or as a supplement for pharmacological approaches. A larger, placebo-controlled trial is warranted.
Collapse
Affiliation(s)
- Amy Chan
- Center for Cell Neurobiology and Neurodegeneration Research, University of Massachusetts Lowell, MA, USA
| | | | | | | | | |
Collapse
|
29
|
Vatassery GT, Quach HT, Smith WE, Kuskowski M. Deletion of apolipoprotein E gene modifies the rate of depletion of alpha tocopherol (vitamin E) from mice brains. Biochim Biophys Acta Mol Basis Dis 2008; 1782:414-20. [PMID: 18395016 DOI: 10.1016/j.bbadis.2008.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 02/08/2008] [Accepted: 03/10/2008] [Indexed: 11/30/2022]
Abstract
Our previous reports show that apolipoprotein E (apoE) influences the dynamics of alpha tocopherol (vitamin E) in brain. In this investigation, the patterns of depletion of alpha tocopherol from tissues of apoE deficient and wild type mice were compared after the animals were fed vitamin E deficient diets. Alpha tocopherol concentrations in specific regions of the brain and peripheral tissues at different times were determined by HPLC with electrochemical detection. ApoE deficiency significantly retarded the rate of depletion of alpha tocopherol from all regions of the brain. In addition, comparison of the rates of depletion of alpha tocopherol in both apoE deficient and wild type animals showed that cerebellum behaved differently from other areas such as cortex, hippocampus and striatum. This reinforces the uniqueness of cerebellum with regard to vitamin E biology. Patterns of depletion of tocopherol from peripheral tissues were different from brain. Serum tocopherol was higher in apoE deficient animals and remained higher than wild type during E deficiency. Depletion of liver tocopherol also tended to be unaffected by apoE deficiency. Our current and previous observations strongly suggest that apoE has an important role in modulating tocopherol concentrations in brain, probably acting in concert with other proteins as well.
Collapse
|
30
|
Ramírez-Farías C, Madrigal-Santillán E, Gutiérrez-Salinas J, Rodríguez-Sánchez N, Martínez-Cruz M, Valle-Jones I, Gramlich-Martínez I, Hernández-Ceruelos A, Morales-Gonzaléz JA. Protective effect of some vitamins against the toxic action of ethanol on liver regeneration induced by partial hepatectomy in rats. World J Gastroenterol 2008; 14:899-907. [PMID: 18240347 PMCID: PMC2687057 DOI: 10.3748/wjg.14.899] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 12/06/2007] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of vitamins (A, C and E) on liver injury induced by ethanol administration during liver regeneration in rats. METHODS Male Wistar rats subjected to 70% partial hepatectomy were divided into five groups (groups 1-5). During the experiment, animals of Group 1 drank only water. The other four groups (2-5) drank 30 mL of ethanol/L of water. Group 3 additionally received vitamin A, those of group 4 vitamin C and those of group 5 received vitamin E. Subsequently serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin and bilirubin were measured colorimetrically. Lipid peroxidation (thiobarbituric-acid reactive substances, TBARS) both in plasma and liver was measured, as well as liver mass gain assessment and total DNA. RESULTS Compared with sham group, serum AST and ALT increased significantly under ethanol treatment (43% and 93%, respectively, with P < 0.05). Vitamin C and vitamin E treatment attenuated the ethanol-induced increases in ALT and AST activity. Ethanol treatment also decreased serum albumin concentration compared to sham group (3.1 +/- 0.4 g/dL vs 4.5 +/- 0.2 g/dL; P < 0.05). During liver regeneration vitamins C and E significantly ameliorated liver injury for ethanol administration in hepatic lipid peroxidation (4.92 nmol/mg and 4.25 nmol/mg vs 14.78 nmol/mg, respectively, with P < 0.05). In association with hepatic injury, ethanol administration caused a significant increase in both hepatic and plasma lipid peroxidation. Vitamins (C and E) treatment attenuated hepatic and plasma lipid peroxidation. CONCLUSION Vitamins C and E protect against liver injury and dysfunction, attenuate lipid peroxidation, and thus appear to be significantly more effective than vitamin A against ethanol-mediated toxic effects during liver regeneration.
Collapse
|
31
|
Kontush A, Schekatolina S. An update on using vitamin E in Alzheimer's disease. Expert Opin Drug Discov 2008; 3:261-71. [DOI: 10.1517/17460441.3.2.261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Annaházi A, Mracskó E, Süle Z, Karg E, Penke B, Bari F, Farkas E. Pre-treatment and post-treatment with α-tocopherol attenuates hippocampal neuronal damage in experimental cerebral hypoperfusion. Eur J Pharmacol 2007; 571:120-8. [PMID: 17597609 DOI: 10.1016/j.ejphar.2007.05.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 05/27/2007] [Accepted: 05/29/2007] [Indexed: 11/24/2022]
Abstract
Alpha-tocopherol, a potent antioxidant, has been widely investigated as a dietary supplement with which to reduce the risk of atherosclerosis, and has recently been considered as a potential supplement to moderate oxidative neuronal damage in Alzheimer's disease patients. Since alpha-tocopherol appears beneficial in vascular and neurodegenerative disorders, we set out to identify its neuroprotective action in a rat model of chronic cerebral hypoperfusion-induced brain injury. The bilateral common carotid arteries of male Wistar rats were permanently occluded (2VO). Sham-operated animals served as controls. Half of the animals were pre- or post-treated repeatedly with alpha-tocopherol (5x100 mg/kg daily, i.p.), the other half receiving only soybean oil, the alpha-tocopherol vehicle. One week after the onset of 2VO, the spatial learning capacity of the animals was assessed in the Morris water maze. After testing, hippocampal slices were stained with cresyl violet in order to examine the pyramidal cell layer integrity. The density of microtubule-associated protein-2 (MAP-2)-positive dendrites and the OX-42-labeled microglial activation level were determined immunocytochemically. Finally, alpha-tocopherol was determined in the peripheral tissues, blood and brain. Alpha-tocopherol moderated the 2VO-induced learning impairment. The various forms of alpha-tocopherol treatment, and particularly the post-treatment, prevented the 2VO-induced pyramidal cell death and the activation of microglia in the hippocampus CA1 region, and the degeneration of MAP-2-positive dendrites in the CA3 region. The alpha-tocopherol concentration was elevated in the peripheral tissues and the blood, but not in the brain. The data indicate that alpha-tocopherol, particularly when administered as post-treatment, is neuroprotective in chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Anita Annaházi
- Department of Physiology, School of Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
33
|
Zingg JM. Vitamin E: An overview of major research directions. Mol Aspects Med 2007; 28:400-22. [PMID: 17624418 DOI: 10.1016/j.mam.2007.05.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 05/23/2007] [Indexed: 02/07/2023]
Abstract
During the last 90 years since the discovery of vitamin E, research has focused on different properties of this molecule, the focus often depending on the specific techniques and scientific knowledge present at each time. Originally discovered as a dietary factor essential for reproduction in rats, vitamin E has revealed in the meantime many more important molecular properties, such as the scavenging of reactive oxygen and nitrogen species with consequent prevention of oxidative damage associated with many diseases, or the modulation of signal transduction and gene expression in antioxidant and non-antioxidant manners. Research over the last 30 years has also resolved the biosynthesis and occurrence of vitamin E in plants, the proteins involved in the cellular uptake, tissue distribution and metabolism, and defined a congenital recessive neurological disease, ataxia with vitamin E deficiency (AVED), characterized by impaired enrichment of alpha-tocopherol in plasma as a result of mutations in the liver alpha-tocopherol transfer gene. This review is giving a brief introduction about vitamin E by following the major research directions since its discovery with a historical perspective.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
34
|
Abstract
More than 80 years after the discovery of the essentiality of vitamin E for mammals, the molecular basis of its action is still an enigma. From the eight different forms of vitamin E, only α-tocopherol is retained in the body. This is in part due to the specific selection ofRRR-α-tocopherol by the α-tocopherol transfer protein and in part by its low rate of degradation and elimination compared with the other vitamers. Since the tocopherols have comparable antioxidant properties and some tocotrienols are even more effective in scavenging radicals, the antioxidant capacity cannot be the explanation for its essentiality, at least not the only one. In the last decade, a high number of so-called novel functions of almost all forms of vitamin E have been described, including regulation of cellular signalling and gene expression. α-Tocopherol appears to be most involved in gene regulation, whereas γ-tocopherol appears to be highly effective in preventing cancer-related processes. Tocotrienols appear to be effective in amelioration of neurodegeneration. Most of the novel functions of individual forms of vitamin E have been demonstratedin vitroonly and requirein vivoconfirmation. The distinct bioactivities of the various vitamers are discussed, considering their metabolism and the potential functions of metabolites.
Collapse
|
35
|
Jarrett SG, Cuenco J, Boulton M. Dietary antioxidants provide differential subcellular protection in epithelial cells. Redox Rep 2006; 11:144-52. [PMID: 16984736 DOI: 10.1179/135100006x116646] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This study aimed to evaluate the organelle-specific antioxidant/pro-oxidant actions of clinically important dietary antioxidants against oxidative stress. An in vitro cellular model was employed to investigate the antioxidant/pro-oxidant effects of various concentrations (1, 10 and 100 microM) of ascorbic acid, alpha-tocopherol and beta-carotene during H2O2-induced oxidative stress. Damage to nuclear and mitochondrial genomes was analyzed by quantitative polymerase chain reaction and oxidation of membrane lipids was measured via colorimetric assays. The key findings were: (i) dietary antioxidants conferred a dose-dependent protective effect (with a pro-oxidant shift at higher concentrations); (ii) the protection conferred to different sub-cellular organelles is highly specific to the dietary antioxidant; (iii) the mtDNA is highly sensitive to oxidative attack compared to nDNA (P < 0.05); and (iv) mtDNA protection conferred by dietary antioxidants was required to improve protection against oxidative-induced cell death. This study shows that antioxidant-induced protection of mtDNA is an important target for future oxidative stress therapies.
Collapse
Affiliation(s)
- Stuart G Jarrett
- Cell and Molecular Biology Unit, School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | | | | |
Collapse
|
36
|
Montiel T, Quiroz-Baez R, Massieu L, Arias C. Role of oxidative stress on beta-amyloid neurotoxicity elicited during impairment of energy metabolism in the hippocampus: protection by antioxidants. Exp Neurol 2006; 200:496-508. [PMID: 16626708 DOI: 10.1016/j.expneurol.2006.02.126] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 01/30/2006] [Accepted: 02/07/2006] [Indexed: 11/18/2022]
Abstract
Age-associated oxidative stress has been implicated in neuronal damage linked with Alzheimer's disease (AD). In addition to the role of beta-amyloid peptide (Abeta) in the pathogenesis of AD, reduced glucose oxidative metabolism and decreased mitochondrial activity have been suggested as associated factors. However, the relationship between Abeta toxicity, metabolic impairment, and oxidative stress is far from being understood. In vivo neurotoxicity of Abeta25-35 peptide has been conflicting. However, in previous studies, we have shown that Abeta25-35 consistently induces synaptic toxicity and neuronal death in the hippocampus in vivo, when administered during moderate glycolytic or mitochondrial inhibition. In the present study, we have investigated whether enhancement of Abeta neurotoxicity during these conditions involves oxidative stress. Results show increased lipoperoxidation (LPO) when Abeta is administered in the hippocampus of rats previously treated with the glycolysis inhibitor, iodoacetate. Neuronal damage and LPO are efficiently prevented by vitamin E, while the spin trapper, alpha-phenyl-N-tert-butyl nitrone, shows partial protection. Abeta stimulates LPO in synaptosomes, but toxicity is only observed in the presence of metabolic inhibitors. Damage and LPO are efficiently prevented by vitamin E. The present results suggest an interaction between oxidative stress and metabolic impairment in the Abeta neurotoxic cascade.
Collapse
Affiliation(s)
- Teresa Montiel
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México AP 70-253, México DF 04510, México
| | | | | | | |
Collapse
|
37
|
Sarkar S, Das N. Mannosylated liposomal flavonoid in combating age-related ischemia–reperfusion induced oxidative damage in rat brain. Mech Ageing Dev 2006; 127:391-7. [PMID: 16480758 DOI: 10.1016/j.mad.2005.12.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 12/28/2005] [Accepted: 12/28/2005] [Indexed: 12/21/2022]
Abstract
Active oxygen species alter the activities of the enzymes involved in the defence against free radicals and substantially influence the aging process and age-dependent neuropathology. Unilamellar liposomes were used to deliver flavonoidal antioxidant quercetin (QC) to rat brain. Antioxidant potential of QC loaded in mannosylated (QC 7.2 micromol/kg b.wt.) liposomes (50 nm) was investigated by an in vivo model of cerebral ischemia and reperfusion on Sprague Dawley young (2 months old, b.wt. 160-180 g) and aged (20 months old, b.wt. 415-440 g) rats. Animals were made ischemic for 30 min by bilateral clamping of the common carotid artery followed by a 30 min cerebral reperfusion by withdrawing the clamping. Diene level and (GSSG/GSH) ratio were found to be higher in normal aged, compared to normal young rat brain. Superoxide dismutase, catalase, glucose-6-phosphate dehydrogenase, glutathione reductase and glutathione S-transferase activities were lower in normal aged rat brain. Further reduction of these antioxidant enzymes was observed in aged rat brain by the induction of cerebral ischemia and reperfusion. Mannosylated liposomally encapsulated QC treatment resulted in a significant preservation of the activities of antioxidant enzymes and a marked inhibition of cellular edema formation in neuronal cells of young and old rats.
Collapse
Affiliation(s)
- Sibani Sarkar
- Biomembrane Division, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | | |
Collapse
|
38
|
Shintani DK. Engineering plants for increased nutrition and antioxidant content through the manipulation of the vitamin E pathway. GENETIC ENGINEERING 2006; 27:231-42. [PMID: 16382879 DOI: 10.1007/0-387-25856-6_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- David K Shintani
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
39
|
Howell N, Dykens J, Moos WH. Alzheimer's disease, estrogens, and clinical trials: a case study in drug development for complex disorders. Drug Dev Res 2006. [DOI: 10.1002/ddr.20046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Engelhardt E, Brucki SMT, Cavalcanti JLS, Forlenza OV, Laks J, Vale FAC. [Treatment of Alzheimer's disease: recommendations and suggestions of the Scientific Department of Cognitive Neurology and Aging of the Brazilian Academy of Neurology]. ARQUIVOS DE NEURO-PSIQUIATRIA 2005; 63:1104-12. [PMID: 16400437 DOI: 10.1590/s0004-282x2005000600035] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present recommendations and suggestions on "Treatment of Alzheimer's Disease" were elaborated by a work group constituted by participants of the IV Meeting of Researchers on Alzheimer's Disease and Related Disorders, sponsored by the Scientific Department of Cognitive Neurology and Aging of the Brazilian Academy of Neurology. They comprise topics on pharmacological and non-pharmacological treatment of cognitive impairment and functional decline, as well as of behavioral and psychological symptoms of this dementing disease. Several levels of evidence and of recommendations and suggestions are used for the various proposed drugs, as well as for non-pharmacological treatment, underpinned by a wide national and international bibliographical review.
Collapse
Affiliation(s)
- Eliasz Engelhardt
- Setor de Neurologia Cognitiva e do Comportamento, Instituto de Neurologia Deolindo Couto, Universidade Federal do Rio de Janeiro, RJ, Brasil.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Tremendous progress has been made in understanding the processes of the Alzheimer's disease (AD) cascade, laying the groundwork for improvements in diagnosis and treatment. Advancement has been made in understanding the genetic basis of AD, with identification of causative genes for early-onset familial AD, and the role of the polymorphism of the APOE gene in the late-onset form of the disease. Understanding cerebral degeneration and accumulation of beta-amyloid has generated hopes for discovery of disease-modifying treatments. Progress is needed in understanding the mechanisms that link beta-amyloid accumulation and neuronal death. The next 5 years will be crucial in this respect.
Collapse
Affiliation(s)
- Bruno P Imbimbo
- Research and Development Department, Chiesi Farmaceutici, Parma, Italy
| | | | | |
Collapse
|
42
|
Dhitavat S, Ortiz D, Rogers E, Rivera E, Shea TB. Folate, vitamin E, and acetyl-L-carnitine provide synergistic protection against oxidative stress resulting from exposure of human neuroblastoma cells to amyloid-beta. Brain Res 2005; 1061:114-7. [PMID: 16256963 DOI: 10.1016/j.brainres.2005.05.074] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 05/19/2005] [Accepted: 05/22/2005] [Indexed: 11/29/2022]
Abstract
Oxidative stress is an early and pivotal factor in Alzheimer's disease (AD). The neurotoxic peptide amyloid-beta (Abeta) contributes to oxidative damage in AD by inducing lipid peroxidation, which in turn generates additional downstream cytosolic free radicals and reactive oxygen species (ROS), leading to mitochondrial and cytoskeletal compromise, depletion of ATP, and ultimate apoptosis. Timely application of antioxidants can prevent all downstream consequences of Abeta exposure in culture, but in situ efficacy is limited, due in part to prior damage as well as difficulty in delivery. Herein, we demonstrate that administration of a combination of vitamin E (which prevents de novo membrane oxidative damage), folate (which maintains levels of the endogenous antioxidant glutathione), and acetyl-L-carnitine (which prevents Abeta-induced mitochondrial damage and ATP depletion) provides superior protection to that derived from each agent alone. These findings support a combinatorial approach in Alzheimer's therapy.
Collapse
Affiliation(s)
- Sirikarnt Dhitavat
- Center for Cellular Neurobiology and Neurodegeneration Research, University of Massachusetts-Lowell, Lowell, MA 01854, USA
| | | | | | | | | |
Collapse
|
43
|
Tucker JM, Townsend DM. Alpha-tocopherol: roles in prevention and therapy of human disease. Biomed Pharmacother 2005; 59:380-7. [PMID: 16081238 PMCID: PMC6361124 DOI: 10.1016/j.biopha.2005.06.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Indexed: 12/27/2022] Open
Abstract
Alpha-tocopherol, one of the eight isoforms of vitamin E, is the most potent fat-soluble antioxidant known in nature. For years, it was thought that alpha-tocopherol only functioned as a scavenger of lipid peroxyl radicals, specifically, oxidized low-density lipoprotein (oxLDL), thereby serving as a chief antioxidant for the prevention of atherosclerosis. In recent years, the many roles of alpha-tocopherol have been uncovered, and include not only antioxidant functions, but also pro-oxidant, cell signaling and gene regulatory functions. Decades of clinical and preclinical studies have broadened our understanding of the antioxidant vitamin E and its utility in a number of chronic, oxidative stress-induced pathologies. The results of these studies have shown promising, albeit mixed reviews on the efficacy of alpha-tocopherol in the prevention and treatment of heart disease, cancer and Alzheimer's disease. Future studies to uncover cellular and systemic mechanisms may help guide appropriate clinical treatment strategies using vitamin E across a diverse population of aging individuals.
Collapse
Affiliation(s)
- J M Tucker
- Department of Cell and Molecular Pharmacology, College of Pharmacy, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
44
|
Spires TL, Hannan AJ. Nature, nurture and neurology: gene-environment interactions in neurodegenerative disease. FEBS Anniversary Prize Lecture delivered on 27 June 2004 at the 29th FEBS Congress in Warsaw. FEBS J 2005; 272:2347-61. [PMID: 15885086 DOI: 10.1111/j.1742-4658.2005.04677.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neurodegenerative disorders, such as Huntington's, Alzheimer's, and Parkinson's diseases, affect millions of people worldwide and currently there are few effective treatments and no cures for these diseases. Transgenic mice expressing human transgenes for huntingtin, amyloid precursor protein, and other genes associated with familial forms of neurodegenerative disease in humans provide remarkable tools for studying neurodegeneration because they mimic many of the pathological and behavioural features of the human conditions. One of the recurring themes revealed by these various transgenic models is that different diseases may share similar molecular and cellular mechanisms of pathogenesis. Cellular mechanisms known to be disrupted at early stages in multiple neurodegenerative disorders include gene expression, protein interactions (manifesting as pathological protein aggregation and disrupted signaling), synaptic function and plasticity. Recent work in mouse models of Huntington's disease has shown that enriching the environment of transgenic animals delays the onset and slows the progression of Huntington's disease-associated motor and cognitive symptoms. Environmental enrichment is known to induce various molecular and cellular changes in specific brain regions of wild-type animals, including altered gene expression profiles, enhanced neurogenesis and synaptic plasticity. The promising effects of environmental stimulation, demonstrated recently in models of neurodegenerative disease, suggest that therapy based on the principles of environmental enrichment might benefit disease sufferers and provide insight into possible mechanisms of neurodegeneration and subsequent identification of novel therapeutic targets. Here, we review the studies of environmental enrichment relevant to some major neurodegenerative diseases and discuss their research and clinical implications.
Collapse
Affiliation(s)
- Tara L Spires
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | | |
Collapse
|