1
|
Kings E, Ioannidis K, Grant JE, Chamberlain SR. A systematic review of the cognitive effects of the COMT inhibitor, tolcapone, in adult humans. CNS Spectr 2024; 29:166-175. [PMID: 38487834 DOI: 10.1017/s1092852924000130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
OBJECTIVE The catechol-o-methyltransferase (COMT) inhibitor tolcapone constitutes a potentially useful probe of frontal cortical dopaminergic function. The aim of this systematic review was to examine what is known of effects of tolcapone on human cognition in randomized controlled studies. METHODS The study protocol was preregistered on the Open Science Framework. A systematic review was conducted using PubMed to identify relevant randomized controlled trials examining the effects of tolcapone on human cognition. Identified articles were then screened against inclusion and exclusion criteria. RESULTS Of the 22 full-text papers identified, 13 randomized control trials were found to fit the pre-specified criteria. The most consistent finding was that tolcapone modulated working memory; however, the direction of effect appeared to be contingent on the COMT polymorphism (more consistent evidence of improvement in Val-Val participants). There were insufficient nature and number of studies for meta-analysis. CONCLUSION The cognitive improvements identified upon tolcapone administration, in some studies, are likely to be due to the level of dopamine in the prefrontal cortex being shifted closer to its optimum, per an inverted U model of prefrontal function. However, the results should be interpreted cautiously due to the small numbers of studies. Given the centrality of cortical dopamine to understanding human cognition, studies using tolcapone in larger samples and across a broader set of cognitive domains would be valuable. It would also be useful to explore the effects of different dosing regimens (different doses; and single versus repeated administration).
Collapse
Affiliation(s)
- Emilia Kings
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Konstantinos Ioannidis
- Department of Psychiatry, Faculty of Medicine, University of Southampton, Southampton, UK
- Southern Health NHS Foundation Trust (Southern Gambling Service and Specialist Clinic for Impulsive-Compulsive Disorders), Southampton, UK
| | - Jon E Grant
- Department of Psychiatry, University of Chicago, Chicago, IL, USA
| | - Samuel R Chamberlain
- Department of Psychiatry, Faculty of Medicine, University of Southampton, Southampton, UK
- Southern Health NHS Foundation Trust (Southern Gambling Service and Specialist Clinic for Impulsive-Compulsive Disorders), Southampton, UK
| |
Collapse
|
2
|
Hou WP, Qin XQ, Hou WW, Han YY, Bo QJ, Dong F, Zhou FC, Li XB, Wang CY. Interaction between catechol-O-methyltransferase Val/Met polymorphism and cognitive reserve for negative symptoms in schizophrenia. World J Psychiatry 2024; 14:695-703. [PMID: 38808087 PMCID: PMC11129152 DOI: 10.5498/wjp.v14.i5.695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Cognitive reserve (CR) and the catechol-O-methyltransferase (COMT) Val/Met polymorphism are reportedly linked to negative symptoms in schizophrenia. However, the regulatory effect of the COMT genotype on the relationship between CR and negative symptoms is still unexamined. AIM To investigate whether the relationship between CR and negative symptoms could be regulated by the COMT Val/Met polymorphism. METHODS In a cross-sectional study, 54 clinically stable patients with schizophrenia underwent assessments for the COMT genotype, CR, and negative symptoms. CR was estimated using scores in the information and similarities subtests of a short form of the Chinese version of the Wechsler Adult Intelligence Scale. RESULTS COMT Met-carriers exhibited fewer negative symptoms than Val homozygotes. In the total sample, significant negative correlations were found between negative symptoms and information, similarities. Associations between information, similarities and negative symptoms were observed in Val homozygotes only, with information and similarities showing interaction effects with the COMT genotype in relation to negative symptoms (information, β = -0.282, 95%CI: -0.552 to -0.011, P = 0.042; similarities, β = -0.250, 95%CI: -0.495 to -0.004, P = 0.046). CONCLUSION This study provides initial evidence that the association between negative symptoms and CR is under the regulation of the COMT genotype in schizophrenia.
Collapse
Affiliation(s)
- Wen-Peng Hou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xiang-Qin Qin
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Wei-Wei Hou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yun-Yi Han
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Qi-Jing Bo
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Fang Dong
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Fu-Chun Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xian-Bin Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Chuan-Yue Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| |
Collapse
|
3
|
Chan BWGL, Lynch NB, Tran W, Joyce JM, Savage GP, Meutermans W, Montgomery AP, Kassiou M. Fragment-based drug discovery for disorders of the central nervous system: designing better drugs piece by piece. Front Chem 2024; 12:1379518. [PMID: 38698940 PMCID: PMC11063241 DOI: 10.3389/fchem.2024.1379518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/12/2024] [Indexed: 05/05/2024] Open
Abstract
Fragment-based drug discovery (FBDD) has emerged as a powerful strategy to confront the challenges faced by conventional drug development approaches, particularly in the context of central nervous system (CNS) disorders. FBDD involves the screening of libraries that comprise thousands of small molecular fragments, each no greater than 300 Da in size. Unlike the generally larger molecules from high-throughput screening that limit customisation, fragments offer a more strategic starting point. These fragments are inherently compact, providing a strong foundation with good binding affinity for the development of drug candidates. The minimal elaboration required to transition the hit into a drug-like molecule is not only accelerated, but also it allows for precise modifications to enhance both their activity and pharmacokinetic properties. This shift towards a fragment-centric approach has seen commercial success and holds considerable promise in the continued streamlining of the drug discovery and development process. In this review, we highlight how FBDD can be integrated into the CNS drug discovery process to enhance the exploration of a target. Furthermore, we provide recent examples where FBDD has been an integral component in CNS drug discovery programs, enabling the improvement of pharmacokinetic properties that have previously proven challenging. The FBDD optimisation process provides a systematic approach to explore this vast chemical space, facilitating the discovery and design of compounds piece by piece that are capable of modulating crucial CNS targets.
Collapse
Affiliation(s)
| | - Nicholas B. Lynch
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Wendy Tran
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Jack M. Joyce
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | | | | | | | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Kogure M, Kanahara N, Miyazawa A, Shiko Y, Otsuka I, Matsuyama K, Takase M, Kimura M, Kimura H, Ota K, Idemoto K, Tamura M, Oda Y, Yoshida T, Okazaki S, Yamasaki F, Nakata Y, Watanabe Y, Niitsu T, Hishimoto A, Iyo M. Association of SLC6A3 variants with treatment-resistant schizophrenia: a genetic association study of dopamine-related genes in schizophrenia. Front Psychiatry 2024; 14:1334335. [PMID: 38476817 PMCID: PMC10929739 DOI: 10.3389/fpsyt.2023.1334335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 03/14/2024] Open
Abstract
Background Most genetic analyses that have attempted to identify a locus or loci that can distinguish patients with treatment-resistant schizophrenia (TRS) from those who respond to treatment (non-TRS) have failed. However, evidence from multiple studies suggests that patients with schizophrenia who respond well to antipsychotic medication have a higher dopamine (DA) state in brain synaptic clefts whereas patients with TRS do not show enhanced DA synthesis/release pathways. Patients and methods To examine the contribution (if any) of genetics to TRS, we conducted a genetic association analysis of DA-related genes in schizophrenia patients (TRS, n = 435; non-TRS, n = 539) and healthy controls (HC: n = 489). Results The distributions of the genotypes of rs3756450 and the 40-bp variable number tandem repeat on SLC6A3 differed between the TRS and non-TRS groups. Regarding rs3756450, the TRS group showed a significantly higher ratio of the A allele, whereas the non-TRS group predominantly had the G allele. The analysis of the combination of COMT and SLC6A3 yielded a significantly higher ratio of the putative low-DA type (i.e., high COMT activity + high SLC6A3 activity) in the TRS group compared to the two other groups. Patients with the low-DA type accounted for the minority of the non-TRS group and exhibited milder psychopathology. Conclusion The overall results suggest that (i) SLC6A3 could be involved in responsiveness to antipsychotic medication and (ii) genetic variants modulating brain DA levels may be related to the classification of TRS and non-TRS.
Collapse
Affiliation(s)
- Masanobu Kogure
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobuhisa Kanahara
- Division of Medical Treatment and Rehabilitation, Center for Forensic Mental Health, Chiba University, Chiba, Japan
| | - Atsuhiro Miyazawa
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Doujin-kai Kisarazu Hospital, Kisarazu, Japan
| | - Yuki Shiko
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koichi Matsuyama
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Douwa-kai Chiba Hospital, Funabashi, Japan
| | | | - Makoto Kimura
- Chiba Psychiatric Medical Center, Chiba, Japan
- Department of Psychiatry, Kameda Medical Center, Kamogawa, Japan
| | - Hiroshi Kimura
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Gakuji-kai Kimura Hospital, Chiba, Japan
- Department of Psychiatry, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Kiyomitsu Ota
- Doujin-kai Kisarazu Hospital, Kisarazu, Japan
- Choshi-kokoro Clinic, Choshi, Japan
| | - Keita Idemoto
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Doujin-kai Kisarazu Hospital, Kisarazu, Japan
| | - Masaki Tamura
- Doujin-kai Kisarazu Hospital, Kisarazu, Japan
- Department of Cognitive Behavioral Psychology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Fumiaki Yamasaki
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yusuke Nakata
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Tomihisa Niitsu
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
5
|
Poonkuzhali K, Seenivasagan R, Prabhakaran J, Karthika A. Synthesis and characterization of chemical engineered PLGA nanosphere: Triggering mechanism of Catechol-O-methyltransferase inhibition on in vivo neurodegeneration. Bioorg Chem 2023; 139:106673. [PMID: 37354660 DOI: 10.1016/j.bioorg.2023.106673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
Chemically engineered PLGA nanospheres are one of the emerging technologies for treating neurodegenerative disorders by inhibiting Catechol-O-methyltransferase (COMT). PLGA-MATPM nanospheres were chemically synthesized using PLGA and MATPM (N-allyl-N-(3-(m-tolyloxy)propyl) methioninate). The tailored PLGA nanospheres induce dose-dependent COMT inhibition in competitive kinetic mode. The interactions between COMT and PLGA nanosphere are explained by spectroscopic and molecular dynamics analysis. PLGA-MATPM NPs suppressed the growth of neuroblastoma cells due to the neurodegenerative toxicity of MPTP induction, demonstrating its potency as a cure for neurological disorders. PLGA-MATPM NPs cross the blood-brain barrier more effectively than those in the blood. Furthermore, PLGA nanospheres showed the most neurodegenerative recovery against MPTP-induced C57BL/6 mice. Using magnetic resonance imaging (MRI), it was validated for quality images of cerebral blood flow (CBF).
Collapse
Affiliation(s)
- K Poonkuzhali
- Bioprocess and Microbial Laboratory, Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry - 605 014, India.
| | - R Seenivasagan
- Department of Biotechnology, Arulmigu Kalasalingam College of Arts and Science, Krishnankoil - 626126, Tamil Nadu, India
| | - J Prabhakaran
- Organic Synthesis Laboratory, Department of Chemistry, School of Physical, Chemical and Applied Sciences, Pondicherry University, Pondicherry - 605 014, India
| | - A Karthika
- Department of Microbiology, The Standard Fireworks Rajaratnam College for Women, Sivakasi - 626123, Tamil Nadu, India
| |
Collapse
|
6
|
Rebouta J, Dória ML, Campos F, Araújo F, Loureiro AI. DESI-MSI-based technique to unravel spatial distribution of COMT inhibitor Tolcapone. Int J Pharm 2023; 633:122607. [PMID: 36641138 DOI: 10.1016/j.ijpharm.2023.122607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Ascertaining compound exposure and its spatial distribution are essential steps in the drug development process. Desorption electrospray ionization mass spectrometry (DESI-MSI) is a label-free imaging technique capable of simultaneously identify and visualize the distribution of a diverse range of biomolecules. In this study, DESI-MSI was employed to investigate spatial distribution of tolcapone in rat liver and brain coronal - frontal and striatal -sections after a single oral administration of 100 mg/Kg of tolcapone, brain-penetrant compound. Tolcapone was evenly distributed in liver tissue sections whereas in the brain it showed differential distribution across brain regions analyzed, being mainly located in the olfactory bulb, basal forebrain region, striatum, and pre-frontal cortex (PFC; cingulate, prelimbic and infralimbic area). Tolcapone concentration in tissues was compared using DESI-MSI and liquid-chromatography mass spectrometry (LC-MS/MS). DESI-MSI technique showed a higher specificity on detecting tolcapone in liver sections while in the brain samples DESI-MSI did not allow a feasible quantification. Indeed, DESI-MSI is a qualitative technique that allows to observe heterogeneity on distribution but more challenging regarding accurate measurements. Overall, tolcapone was successfully localized in liver and brain tissue sections using DESI-MSI, highlighting the added value that this technique could provide in assisting tissue-specific drug distribution studies.
Collapse
Key Words
- Arachidonic acid, 5Z,8Z,11Z,14Z-eicosatetraenoic acid, AA
- COMT
- DESI-MSI
- Docosahexaenoic acid, 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid, Cervonic acid
- Epinephrine, 4-[1-hydroxy-2-(methylamino)ethyl]-1,2-benzenediol monohydrochloride
- Mass spectrometry imaging
- Metanephrine, 4-hydroxy-3-methoxy-α-[(methylamino)methyl]-benzenemethanol
- Phosphatidylethanolamine 40:6, 1,2-diacyl-sn-glycero-3-phosphoethanolamine
- Phosphatidylethanolamine O-36:3, PE(O-16:0/20:3) 1-hexadecyl-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphoethanolamine, PE(O-18:0/18:3) 1-octadecyl-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphoethanolamine
- S-adenosyl-l-methionine, 5′-[[(3S)-3-amino-3-carboxypropyl]methylsulfonio]-5′-deoxy-adenosine, dihydrochloride
- Tolcapone
- Tolcapone, (3,4-dihydroxy-5-nitrophenyl)(4-methylphenyl)-methanone
- Tolcapone-d4, (3,4-dihydroxy-5-nitrophenyl)(4-methylphenyl-2,3,5,6-d4)methanone
Collapse
Affiliation(s)
- Joana Rebouta
- R&D department, Bial - Portela & Cª S.A., 4745-457 Coronado (S. Mamede e S. Romão), Portugal.
| | - M Luísa Dória
- R&D department, Bial - Portela & Cª S.A., 4745-457 Coronado (S. Mamede e S. Romão), Portugal
| | - Filipa Campos
- R&D department, Bial - Portela & Cª S.A., 4745-457 Coronado (S. Mamede e S. Romão), Portugal
| | - Francisca Araújo
- R&D department, Bial - Portela & Cª S.A., 4745-457 Coronado (S. Mamede e S. Romão), Portugal
| | - Ana I Loureiro
- R&D department, Bial - Portela & Cª S.A., 4745-457 Coronado (S. Mamede e S. Romão), Portugal
| |
Collapse
|
7
|
Scholz V, Hook RW, Kandroodi MR, Algermissen J, Ioannidis K, Christmas D, Valle S, Robbins TW, Grant JE, Chamberlain SR, den Ouden HEM. Cortical dopamine reduces the impact of motivational biases governing automated behaviour. Neuropsychopharmacology 2022; 47:1503-1512. [PMID: 35260787 PMCID: PMC9206002 DOI: 10.1038/s41386-022-01291-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022]
Abstract
Motivations shape our behaviour: the promise of reward invigorates, while in the face of punishment, we hold back. Abnormalities of motivational processing are implicated in clinical disorders characterised by excessive habits and loss of top-down control, notably substance and behavioural addictions. Striatal and frontal dopamine have been hypothesised to play complementary roles in the respective generation and control of these motivational biases. However, while dopaminergic interventions have indeed been found to modulate motivational biases, these previous pharmacological studies used regionally non-selective pharmacological agents. Here, we tested the hypothesis that frontal dopamine controls the balance between Pavlovian, bias-driven automated responding and instrumentally learned action values. Specifically, we examined whether selective enhancement of cortical dopamine either (i) enables adaptive suppression of Pavlovian control when biases are maladaptive; or (ii) non-specifically modulates the degree of bias-driven automated responding. Healthy individuals (n = 35) received the catechol-o-methyltransferase (COMT) inhibitor tolcapone in a randomised, double-blind, placebo-controlled cross-over design, and completed a motivational Go NoGo task known to elicit motivational biases. In support of hypothesis (ii), tolcapone globally decreased motivational bias. Specifically, tolcapone improved performance on trials where the bias was unhelpful, but impaired performance in bias-congruent conditions. These results indicate a non-selective role for cortical dopamine in the regulation of motivational processes underpinning top-down control over automated behaviour. The findings have direct relevance to understanding neurobiological mechanisms underpinning addiction and obsessive-compulsive disorders, as well as highlighting a potential trans-diagnostic novel mechanism to address such symptoms.
Collapse
Affiliation(s)
- Vanessa Scholz
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands. .,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Centre of Mental Health, University of Würzburg, Margarete-Höppel-Platz1, 97080, Würzburg, Germany.
| | - Roxanne W. Hook
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Mojtaba Rostami Kandroodi
- grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands ,grid.46072.370000 0004 0612 7950School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Johannes Algermissen
- grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Konstantinos Ioannidis
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Cambridge, UK ,grid.450563.10000 0004 0412 9303Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK ,grid.5012.60000 0001 0481 6099Department of International Health, Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
| | - David Christmas
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Cambridge, UK ,grid.450563.10000 0004 0412 9303Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
| | - Stephanie Valle
- grid.170205.10000 0004 1936 7822Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL USA
| | - Trevor W. Robbins
- grid.5335.00000000121885934Department of Psychology, and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Jon E. Grant
- grid.170205.10000 0004 1936 7822Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL USA
| | - Samuel R. Chamberlain
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Cambridge, UK ,grid.5491.90000 0004 1936 9297Department of Psychiatry, Faculty of Medicine, University of Southampton, Southampton, UK. Southern Health NHS Foundation Trust, Southampton, UK
| | - Hanneke E. M. den Ouden
- grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Gonçalves AM, Sousa Â, Pedro AQ, Romão MJ, Queiroz JA, Gallardo E, Passarinha LA. Advances in Membrane-Bound Catechol-O-Methyltransferase Stability Achieved Using a New Ionic Liquid-Based Storage Formulation. Int J Mol Sci 2022; 23:ijms23137264. [PMID: 35806268 PMCID: PMC9266758 DOI: 10.3390/ijms23137264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Membrane-bound catechol-O-methyltransferase (MBCOMT), present in the brain and involved in the main pathway of the catechol neurotransmitter deactivation, is linked to several types of human dementia, which are relevant pharmacological targets for new potent and nontoxic inhibitors that have been developed, particularly for Parkinson’s disease treatment. However, the inexistence of an MBCOMT 3D-structure presents a blockage in new drugs’ design and clinical studies due to its instability. The enzyme has a clear tendency to lose its biological activity in a short period of time. To avoid the enzyme sequestering into a non-native state during the downstream processing, a multi-component buffer plays a major role, with the addition of additives such as cysteine, glycerol, and trehalose showing promising results towards minimizing hMBCOMT damage and enhancing its stability. In addition, ionic liquids, due to their virtually unlimited choices for cation/anion paring, are potential protein stabilizers for the process and storage buffers. Screening experiments were designed to evaluate the effect of distinct cation/anion ILs interaction in hMBCOMT enzymatic activity. The ionic liquids: choline glutamate [Ch][Glu], choline dihydrogen phosphate ([Ch][DHP]), choline chloride ([Ch]Cl), 1- dodecyl-3-methylimidazolium chloride ([C12mim]Cl), and 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) were supplemented to hMBCOMT lysates in a concentration from 5 to 500 mM. A major potential stabilizing effect was obtained using [Ch][DHP] (10 and 50 mM). From the DoE 146% of hMBCOMT activity recovery was obtained with [Ch][DHP] optimal conditions (7.5 mM) at −80 °C during 32.4 h. These results are of crucial importance for further drug development once the enzyme can be stabilized for longer periods of time.
Collapse
Affiliation(s)
- Ana M. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.M.G.); (Â.S.); (J.A.Q.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA, 2819-516 Caparica, Portugal;
- UCIBIO-Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Ângela Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.M.G.); (Â.S.); (J.A.Q.)
| | - Augusto Q. Pedro
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Maria J. Romão
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA, 2819-516 Caparica, Portugal;
- UCIBIO-Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - João A. Queiroz
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.M.G.); (Â.S.); (J.A.Q.)
| | - Eugénia Gallardo
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.M.G.); (Â.S.); (J.A.Q.)
- Laboratório de Fármaco-Toxicologia, UBI Medical, Universidade da Beira Interior, 6201-506 Covilhã, Portugal
- Correspondence: (E.G.); (L.A.P.); Tel.: +351-275-329-002 (E.G. & L.A.P.)
| | - Luís A. Passarinha
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.M.G.); (Â.S.); (J.A.Q.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA, 2819-516 Caparica, Portugal;
- UCIBIO-Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Laboratório de Fármaco-Toxicologia, UBI Medical, Universidade da Beira Interior, 6201-506 Covilhã, Portugal
- Correspondence: (E.G.); (L.A.P.); Tel.: +351-275-329-002 (E.G. & L.A.P.)
| |
Collapse
|
9
|
Cognitive Deficit in Schizophrenia: From Etiology to Novel Treatments. Int J Mol Sci 2021; 22:ijms22189905. [PMID: 34576069 PMCID: PMC8468549 DOI: 10.3390/ijms22189905] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/09/2023] Open
Abstract
Schizophrenia is a major mental illness characterized by positive and negative symptoms, and by cognitive deficit. Although cognitive impairment is disabling for patients, it has been largely neglected in the treatment of schizophrenia. There are several reasons for this lack of treatments for cognitive deficit, but the complexity of its etiology-in which neuroanatomic, biochemical and genetic factors concur-has contributed to the lack of effective treatments. In the last few years, there have been several attempts to develop novel drugs for the treatment of cognitive impairment in schizophrenia. Despite these efforts, little progress has been made. The latest findings point to the importance of developing personalized treatments for schizophrenia which enhance neuroplasticity, and of combining pharmacological treatments with non-pharmacological measures.
Collapse
|
10
|
de Beer AD, Legoabe LJ, Petzer A, Petzer JP. The inhibition of catechol O-methyltransferase and monoamine oxidase by tetralone and indanone derivatives substituted with the nitrocatechol moiety. Bioorg Chem 2021; 114:105130. [PMID: 34225162 DOI: 10.1016/j.bioorg.2021.105130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022]
Abstract
The enzymes, catechol O-methyltransferase (COMT) and monoamine oxidase (MAO) are important drug targets, and inhibitors of these enzymes are established therapy for symptomatic Parkinson's disease (PD). COMT inhibitors enhance the bioavailability of levodopa to the brain, and therefore are combined with levodopa for the treatment of motor fluctuations in PD. Inhibitors of the MAO-B isoform, in turn, are used as monotherapy or in conjunction with levodopa in PD, and function by reducing the central degradation of dopamine. It has been reported that 1-tetralone and 1-indanone derivatives are potent and specific inhibitors of MAO-B, while compounds containing the nitrocatechol moiety (e.g. tolcapone and entacapone) are often potent COMT inhibitors. The present study attempted to discover compounds that exhibit dual COMT and MAO-B inhibition by synthesizing series of 1-tetralone, 1-indanone and related derivatives substituted with the nitrocatechol moiety. These compounds are structurally related to series of nitrocatechol derivatives of chalcone that have recently been investigated as potential dual COMT/MAO inhibitors. The results show that 4-chromanone derivative (7) is the most promising dual inhibitor with IC50 values of 0.57 and 7.26 μM for COMT and MAO-B, respectively, followed by 1-tetralone derivative (4d) with IC50 values of 0.42 and 7.83 μM for COMT and MAO-B, respectively. Based on their potent inhibition of COMT, it may be concluded that nitrocatechol compounds investigated in this study are appropriate for peripheral COMT inhibition, which represents an important strategy in the treatment of PD.
Collapse
Affiliation(s)
- Andries D de Beer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.
| | - Anél Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa; Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa.
| | - Jacobus P Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa; Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
11
|
Kogure M, Kanahara N, Miyazawa A, Oishi K, Nakata Y, Oda Y, Iyo M. Interacting Roles of COMT and GAD1 Genes in Patients with Treatment-Resistant Schizophrenia: a Genetic Association Study of Schizophrenia Patients and Healthy Controls. J Mol Neurosci 2021; 71:2575-2582. [PMID: 34125398 DOI: 10.1007/s12031-021-01866-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
The projection from dopaminergic neurons to gamma-aminobutyric acid (GABA) interneurons in the prefrontal cortex is involved in the etiology of schizophrenia. The impact of interacting effects between dopamine signals and the expression of GABA on the clinical phenotypes of schizophrenia has not been studied. Since these interactions could be closely involved in prefrontal cortex functions, patients with specific alleles of these relevant molecules (which lead to lower or vulnerable genetic functions) may develop treatment-refractory symptoms. We conducted a genetic association study focusing on COMT and GAD1 genes for a treatment-resistant schizophrenia (TRS) group (n=171), a non-TRS group (n=592), and healthy controls (HC: n=447), and we examined allelic combinations specific to TRS. The results revealed that the percentage of subjects with Met allele of rs4680 on the COMT gene and C/C homozygote of rs3470934 on the GAD1 gene was significantly higher in the TRS group than the other two groups. There was no significant difference between the non-TRS group and HC groups. Considering the direction of functions of these single-nucleotide polymorphisms revealed by previous studies, we speculate that subjects with the Met/CC allelic combination could have a higher dopamine level and a lower expression of GABA in the prefrontal cortex. Our results suggest that an interaction between the dopaminergic signal and GABA signal intensities could differ between TRS patients and patients with other types of schizophrenia and healthy subjects.
Collapse
Affiliation(s)
- Masanobu Kogure
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan.
- Division of Medical Treatment and Rehabilitation, Center for Forensic Mental Health, Chiba University, Chiba, Japan.
| | - Atsuhiro Miyazawa
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Doujin-kai Kisarazu Hospital, Chiba, Japan
| | - Kengo Oishi
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Cyclic Innovation, Japan Agency for Medical Research Development, Tokyo, Japan
| | - Yusuke Nakata
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
12
|
Fremont R, Manoochehri M, Armstrong NM, Mattay VS, Apud JA, Tierney MC, Devanand DP, Gazes Y, Habeck C, Wassermann EM, Grafman J, Huey ED. Tolcapone Treatment for Cognitive and Behavioral Symptoms in Behavioral Variant Frontotemporal Dementia: A Placebo-Controlled Crossover Study. J Alzheimers Dis 2021; 75:1391-1403. [PMID: 32444540 PMCID: PMC10131251 DOI: 10.3233/jad-191265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND There are currently no disease-targeted treatments for cognitive or behavioral symptoms in patients with behavioral variant frontotemporal dementia (bvFTD). OBJECTIVE To determine the effect of tolcapone, a specific inhibitor of Catechol-O-Methyltransferase (COMT), in patients with bvFTD. METHODS In this randomized, double-blind, placebo-controlled, cross-over study at two study sites, we examined the effect of tolcapone on 28 adult outpatients with bvFTD. The primary outcome was reaction time on the N-back cognitive test. As an imaging outcome, we examined differences in the resting blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal intensity between subjects on placebo versus tolcapone performing the N-back test. Secondary outcomes included measures of cognitive performance and behavioral disturbance using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), Neuropsychiatric Inventory-Questionnaire (NPI-Q), and Clinical Global Impressions scale (CGI). RESULTS Tolcapone was well tolerated and no patients dropped out. The most frequent treatment-related adverse event during tolcapone treatment was elevated liver enzymes (21%). There were no significant differences between tolcapone treatment and placebo in the primary or imaging outcomes. However, there were significant differences between RBANS total scores (p < 0.01), NPI-Q total scores (p = 0.04), and CGI total scores (p = 0.035) between treatment conditions which were driven by differences between baseline and tolcapone conditions. Further, there was a trend toward significance between tolcapone and placebo on the CGI (p = 0.078). CONCLUSIONS Further study of COMT inhibition and related approaches with longer duration of treatment and larger sample sizes in frontotemporal lobar degeneration-spectrum disorders may be warranted.
Collapse
Affiliation(s)
- Rachel Fremont
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Masood Manoochehri
- Taub Institute, Columbia University, New York, NY, USA.,Department of Neurology, Columbia University, New York, NY, USA
| | | | - Venkata S Mattay
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA.,Departments of Neurology and Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jose A Apud
- Section on Integrative Neuroimaging, Clinical & Translational Neuroscience Branch, Intramural Research Program, NIMH/NIH, Bethesda, MD, USA
| | - Mary C Tierney
- Behavioral Neurology Unit, Intramural Research Program, NINDS/NIH, Bethesda, MD, USA
| | - D P Devanand
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Yunglin Gazes
- Department of Neurology, Columbia University, New York, NY, USA
| | | | - Eric M Wassermann
- Behavioral Neurology Unit, Intramural Research Program, NINDS/NIH, Bethesda, MD, USA
| | - Jordan Grafman
- Department of Physical Medicine and Rehabilitation, Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA.,Departments of Neurology, Psychiatry, and Cognitive Neurology & Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Edward D Huey
- Department of Psychiatry, Columbia University, New York, NY, USA.,Taub Institute, Columbia University, New York, NY, USA.,Department of Neurology, Columbia University, New York, NY, USA
| |
Collapse
|
13
|
Müller T. Experimental Dopamine Reuptake Inhibitors in Parkinson's Disease: A Review of the Evidence. J Exp Pharmacol 2021; 13:397-408. [PMID: 33824605 PMCID: PMC8018398 DOI: 10.2147/jep.s267032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is the second most chronic neurodegenerative disorder worldwide. Deficit of monoamines, particularly dopamine, causes an individually varying compilation of motor and non-motor features. Constraint of presynaptic uptake extends monoamine stay in the synaptic cleft. This review discusses possible benefits of dopamine reuptake inhibition for the treatment of PD. Translation of this pharmacologic principle into positive clinical study results failed to date. Past clinical trial designs did not consider a mandatory, concomitant stable inhibition of glial monoamine turnover, i.e. with monoamine oxidase B inhibitors. These studies focused on improvement of motor behavior and levodopa associated motor complications, which are fluctuations of motor and non-motor behavior. Future clinical investigations in early, levodopa- and dopamine agonist naïve patients shall also aim on alleviation of non-motor symptoms, like fatigue, apathy or cognitive slowing. Oral levodopa/dopa decarboxylase inhibitor application is inevitably necessary with advance of PD. Monoamine reuptake (MRT) inhibition improves the efficacy of levodopa, the blood brain barrier crossing metabolic precursor of dopamine. The pulsatile brain delivery pattern of orally administered levodopa containing formulations results in synaptic dopamine variability. Ups and downs of dopamine counteract the physiologic principle of continuous neurotransmission, particularly in nigrostriatal, respectively mesocorticolimbic pathways, both of which regulate motor respectively non-motor behavior. Thus synaptic dopamine pulsatility overwhelms the existing buffering capacity. Onset of motor and non-motor complications occurs. Future MRT inhibitor studies shall focus on a stabilizing and preventive effect on levodopa related fluctuations of motor and non-motor behavior. Their long-term study designs in advanced levodopa treated patients shall allow a cautious adaptation of oral l-dopa therapy combined with a mandatory inhibition of glial monoamine turnover. Then the evidence for a preventive and beneficial, symptomatic effect of MRT inhibition on motor and non-motor complications will become more likely.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Berlin, 13088, Germany
| |
Collapse
|
14
|
Liver says no: the ongoing search for safe catechol O-methyltransferase inhibitors to replace tolcapone. Drug Discov Today 2020; 25:1846-1854. [DOI: 10.1016/j.drudis.2020.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/02/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
|
15
|
Novel, non-nitrocatechol catechol-O-methyltransferase inhibitors modulate dopamine neurotransmission in the frontal cortex and improve cognitive flexibility. Psychopharmacology (Berl) 2020; 237:2695-2707. [PMID: 32474681 PMCID: PMC7790123 DOI: 10.1007/s00213-020-05566-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
Abstract
RATIONALE Cognitive impairment is a primary feature of many neuropsychiatric disorders and there is a need for new therapeutic options. Catechol-O-methyltransferase (COMT) inhibitors modulate cortical dopaminergic function and have been proposed as potential cognitive enhancers. Unfortunately, currently available COMT inhibitors are not good candidates due to either poor blood-brain barrier penetration or severe toxicity. OBJECTIVES To address the need for safe, brain-penetrant COMT inhibitors, we tested multiple novel compounds in a set of preclinical in vivo efficacy assays in rats to determine their ability to inhibit COMT function and viability as potential clinical candidates. METHODS We measured the change in concentration of dopamine (DA) metabolites in cerebrospinal fluid (CSF) from the cisterna magna and extracellular fluid (ECF) from the frontal cortex produced by our novel compounds. Additionally, we tested the effects of our brain-penetrant COMT inhibitors in an attentional set-shifting assay (ASST). We benchmarked the performance of the novel COMT inhibitors to the effects produced by the known COMT inhibitor tolcapone. RESULTS We found that multiple COMT inhibitors, exemplified by LIBD-1 and LIBD-3, significantly modulated dopaminergic function measured as decreases in homovanillic acid (HVA) and increases in 3,4-Dihydroxyphenylacetic acid (DOPAC), two DA metabolites, in CSF and the frontal cortex. Additionally, we found that LIBD-1 significantly improved cognitive flexibility in the ASST, an effect previously reported following tolcapone administration. CONCLUSIONS These results demonstrate that LIBD-1 is a novel COMT inhibitor with promising in vivo activity and the potential to serve as a new therapy for cognitive impairment.
Collapse
|
16
|
DeBrosse AC, Wheeler AM, Barrow JC, Carr GV. Inhibition of Catechol- O-methyltransferase Does Not Alter Effort-Related Choice Behavior in a Fixed Ratio/Concurrent Chow Task in Male Mice. Front Behav Neurosci 2020; 14:73. [PMID: 32508604 PMCID: PMC7253649 DOI: 10.3389/fnbeh.2020.00073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/21/2020] [Indexed: 01/29/2023] Open
Abstract
Effort-related choice (ERC) tasks allow animals to choose between high-value reinforcers that require high effort to obtain and low-value/low-effort reinforcers. Dopaminergic neuromodulation regulates ERC behavior. The enzyme catechol-O-methyltransferase (COMT) metabolizes synaptically-released dopamine. COMT is the predominant regulator of dopamine turnover in regions of the brain with low levels of dopamine transporters (DATs), including the prefrontal cortex (PFC). Here, we evaluated the effects of the COMT inhibitor tolcapone on ERC performance in a touchscreen-based fixed-ratio/concurrent chow task in male mice. In this task, mice were given the choice between engaging in a fixed number of instrumental responses to acquire a strawberry milk reward and consuming standard lab chow concurrently available on the chamber floor. We found no significant effects of tolcapone treatment on either strawberry milk earned or chow consumed compared to vehicle treatment. In contrast, we found that haloperidol decreased instrumental responding for strawberry milk and increased chow consumption as seen in previously published studies. These data suggest that COMT inhibition does not significantly affect effort-related decision making in a fixed-ratio/concurrent chow task in male mice.
Collapse
Affiliation(s)
- Adrienne C. DeBrosse
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, United States
| | - Abigail M. Wheeler
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - James C. Barrow
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Gregory V. Carr
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Zhang G, Buchler IP, DePasquale M, Wormald M, Liao G, Wei H, Barrow JC, Carr GV. Development of a PC12 Cell Based Assay for Screening Catechol- O-methyltransferase Inhibitors. ACS Chem Neurosci 2019; 10:4221-4226. [PMID: 31491076 PMCID: PMC7032882 DOI: 10.1021/acschemneuro.9b00395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
The male rat adrenal pheochromocytoma cell-derived PC12 cell line can synthesize and release catecholamine neurotransmitters, and it has been widely used as a model system in cell biology and toxicology research. Catechol-O-methyltransferase (COMT) is involved in the inactivation of the catecholamine neurotransmitters, and it is particularly important for the regulation of dopamine. In this study, we explored the feasibility of using PC12 cells as an in vitro drug screening platform to compare the activity of multiple COMT inhibitors. Incubation of PC12 cells with tolcapone, a highly potent and selective COMT inhibitor, increased the concentrations of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) while reducing the metabolites 3-methoxytyramine (3-MT) and homovanillic acid (HVA) in the cell culture medium. LIBD-3, a novel, non-nitrocatechol COMT inhibitor, produced similar effects compared to tolcapone. LIBD-4, a less potent inhibitor, exhibited the expected right-shift in functional inhibition in the assay. These results match the known in vivo effects of COMT inhibition in rodents. Together, these data support the continued use of PC12 cells as an in vitro screen that bridges cell-free enzyme assays and more costly in vivo assays.
Collapse
Affiliation(s)
- Gongliang Zhang
- Lieber
Institute for Brain Development, Baltimore, Maryland 21205, United States
| | - Ingrid P. Buchler
- Lieber
Institute for Brain Development, Baltimore, Maryland 21205, United States
| | - Michael DePasquale
- Lieber
Institute for Brain Development, Baltimore, Maryland 21205, United States
| | - Michael Wormald
- Lieber
Institute for Brain Development, Baltimore, Maryland 21205, United States
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Gangling Liao
- Lieber
Institute for Brain Development, Baltimore, Maryland 21205, United States
| | - Huijun Wei
- Lieber
Institute for Brain Development, Baltimore, Maryland 21205, United States
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - James C. Barrow
- Lieber
Institute for Brain Development, Baltimore, Maryland 21205, United States
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Gregory V. Carr
- Lieber
Institute for Brain Development, Baltimore, Maryland 21205, United States
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
18
|
Hall KT, Loscalzo J, Kaptchuk TJ. Systems pharmacogenomics - gene, disease, drug and placebo interactions: a case study in COMT. Pharmacogenomics 2019; 20:529-551. [PMID: 31124409 PMCID: PMC6563236 DOI: 10.2217/pgs-2019-0001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023] Open
Abstract
Disease, drugs and the placebos used as comparators are inextricably linked in the methodology of the double-blind, randomized controlled trial. Nonetheless, pharmacogenomics, the study of how individuals respond to drugs based on genetic substrate, focuses primarily on the link between genes and drugs, while the link between genes and disease is often overlooked and the link between genes and placebos is largely ignored. Herein, we use the example of the enzyme catechol-O-methyltransferase to examine the hypothesis that genes can function as pharmacogenomic hubs across system-wide regulatory processes that, if perturbed in andomized controlled trials, can have primary and combinatorial effects on drug and placebo responses.
Collapse
Affiliation(s)
- Kathryn T Hall
- Department of Medicine, Brigham & Women’s Hospital, Boston, MA 02115, USA
- Division of Preventive Medicine, Brigham & Women’s Hospital, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham & Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ted J Kaptchuk
- Harvard Medical School, Boston, MA 02115, USA
- Program in Placebo Studies, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
19
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
20
|
Khokhar JY, Dwiel L, Henricks A, Doucette WT, Green AI. The link between schizophrenia and substance use disorder: A unifying hypothesis. Schizophr Res 2018; 194:78-85. [PMID: 28416205 PMCID: PMC6094954 DOI: 10.1016/j.schres.2017.04.016] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 11/29/2022]
Abstract
Substance use disorders occur commonly in patients with schizophrenia and dramatically worsen their overall clinical course. While the exact mechanisms contributing to substance use in schizophrenia are not known, a number of theories have been put forward to explain the basis of the co-occurrence of these disorders. We propose here a unifying hypothesis that combines recent evidence from epidemiological and genetic association studies with brain imaging and pre-clinical studies to provide an updated formulation regarding the basis of substance use in patients with schizophrenia. We suggest that the genetic determinants of risk for schizophrenia (especially within neural systems that contribute to the risk for both psychosis and addiction) make patients vulnerable to substance use. Since this vulnerability may arise prior to the appearance of psychotic symptoms, an increased use of substances in adolescence may both enhance the risk for developing a later substance use disorder, and also serve as an additional risk factor for the appearance of psychotic symptoms. Future studies that assess brain circuitry in a prospective longitudinal manner during adolescence prior to the appearance of psychotic symptoms could shed further light on the mechanistic underpinnings of these co-occurring disorders while identifying potential points of intervention for these difficult-to-treat co-occurring disorders.
Collapse
Affiliation(s)
| | - Lucas Dwiel
- Department of Psychiatry, Geisel School of Medicine at Dartmouth
| | - Angela Henricks
- Department of Psychiatry, Geisel School of Medicine at Dartmouth
| | | | - Alan I. Green
- Department of Psychiatry, Geisel School of Medicine at Dartmouth,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth,Dartmouth Clinical and Translational Science Institute, Dartmouth College
| |
Collapse
|
21
|
Abstract
BACKGROUND Schizophrenia is frequently a chronic and disabling illness with a heterogeneous range of symptoms. The positive symptoms usually respond to antipsychotics but the cognitive and negative symptoms of schizophrenia are difficult to treat with conventional antipsychotics and significantly impact on quality of life and social outcomes. Selective noradrenaline reuptake inhibitors (NRIs) increase prefrontal dopamine and noradrenaline levels without significantly affecting subcortical dopamine levels, making them an attractive candidate for treating cognitive and negative symptoms. OBJECTIVES To investigate the effects of selective noradrenaline reuptake inhibitors (NRIs), compared with a placebo or control treatment, for people with schizophrenia. SEARCH METHODS We searched the Cochrane Schizophrenia Group's Trials Register (up to 7 February 2017) which is based on regular searches of MEDLINE, Embase, CINAHL, BIOSIS, AMED, PubMed, PsycINFO, and registries of clinical trials. There are no language, date, document type, or publication status limitation for inclusion of records into the register. We inspected references of all included studies for further relevant studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing NRIs with either a control treatment or placebo for people with schizophrenia or related disorders (such as schizoaffective disorder) by any means of diagnosis. We included trials that met our selection criteria and provided useable information. DATA COLLECTION AND ANALYSIS We independently inspected all citations from searches, identified relevant abstracts, and independently extracted data from all included studies. For binary data we calculated risk ratio (RR), for continuous data we calculated mean difference (MD), and for cognitive outcomes we derived standardised mean difference (SMD) effect sizes, all with 95% confidence intervals (CI) and using a random-effects model. We assessed risk of bias for the included studies and used the GRADE approach to produce a 'Summary of findings' table which included our prespecified main outcomes of interest. MAIN RESULTS Searching identified 113 records. We obtained the full text of 48 of these records for closer inspection. Sixteen trials, randomising a total of 919 participants are included. The majority of trials included adults with schizophrenia or similar illness who were inpatients, and while they were poorly characterised, most appeared to include patients with a chronic presentation. The intervention NRI in nine of the 16 trials was reboxetine, with atomoxetine and viloxazine used in the remaining trials. 14 trials compared NRIs with placebo. Only two trials provided data to compare NRIs against an active control and both compared reboxetine to citalopram but at 4 weeks and 24 weeks respectively so they could not be combined in a meta-analysis.One trial was described as 'open' and we considered it to be at high risk of bias for randomisation and blinding, three trials were at high risk of bias for attrition, six for reporting, and two for other sources of bias. Our main outcomes of interest were significant response or improvement in positive/negative mental state, global state and cognitive functioning, average cognitive functioning scores, significant response or improvement in quality of life and incidence of nausea. All data for main outcomes were short term.NRIs versus placeboMental state results showed significantly greater rates of improvement in negative symptoms scores (1 RCT, n = 50; RR 3.17, 95% CI 1.52 to 6.58; very low quality evidence) with NRIs on the PANSS negative. No data were reported for significant response or improvement in positive symptoms, but average endpoint PANSS positive scores were available and showed no difference between NRIs and placebo (5 RCTs, n = 294; MD -0.16, 95% CI -0.96 to 0.63; low-quality evidence). Improvement in clinical global status was similar between groups (1 RCT, n = 28; RR 0.99, 95% CI 0.45 to 2.20; very low quality evidence). Significant response or improvement in cognitive functioning data were not reported. Average composite cognitive scores showed no difference between NRIs and placebo (4 RCTs, n = 180; SMD 0.04, 95% CI -0.28 to 0.36; low-quality evidence). Significant response or improvement in quality of life data were not reported, however average endpoint scores from the GQOLI-74 were reported. Those receiving NRIs had better quality of life scores compared to placebo (1 RCT, n = 114; MD 9.36, 95% CI 7.89 to 10.83; very low quality evidence). All-cause withdrawals did not differ between the treatment groups (8 RCTs, n = 401, RR 0.94 95% CI 0.63 to 1.39; moderate-quality evidence). Rates of nausea were not greater with NRIs (3 RCTs, n = 176; RR 0.49, 95% CI 0.10 to 2.41; low-quality evidence). AUTHORS' CONCLUSIONS Our results provide tentative very low quality evidence that compared to placebo, NRIs (specifically reboxetine) may have a benefit on the negative symptoms of schizophrenia. Limited evidence also suggests that NRIs have no effect on the positive symptoms of schizophrenia or cognitive functioning. NRIs appear generally well tolerated with no real differences in adverse effects such as nausea noted between NRIs and placebo. However, these results are based on short-term follow-up and are poor quality - there is need for more good-quality evidence. A large RCT of reboxetine over a longer period of time, focusing specifically on negative and cognitive symptoms as well as more detailed and comprehensive reporting of outcomes, including adverse events, is required.
Collapse
Affiliation(s)
- Paul R L Matthews
- Kildare West Wicklow MHSNorth Kildare Mental Health ServiceCelbridge Community Health CentreShackleton RoadCelbridgeCo. KildareIreland
| | - Jamie Horder
- King's College LondonDepartment of Forensic and Neurodevelopmental SciencesInstitute of PsychiatryDe Crespigny ParkLondonUKSE5 8AF
| | - Michael Pearce
- Oxford Health NHS Foundation TrustDepartment of General and Older Adult PsychiatryWarneford Hospital, Warneford Lane,OxfordUKOX3 7JX
| | | |
Collapse
|
22
|
Purification of Histidine-Tagged Membrane-Bound Catechol-O-Methyltransferase from Detergent-Solubilized Pichia pastoris Membranes. Chromatographia 2018. [DOI: 10.1007/s10337-017-3453-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Amato RJ, Boland J, Myer N, Few L, Dowd D. Pharmacogenomics and Psychiatric Clinical Care. J Psychosoc Nurs Ment Health Serv 2018; 56:22-31. [DOI: 10.3928/02793695-20170928-01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/14/2017] [Indexed: 12/28/2022]
|
24
|
Brain catechol-O-methyltransferase (COMT) inhibition by tolcapone counteracts recognition memory deficits in normal and chronic phencyclidine-treated rats and in COMT-Val transgenic mice. Behav Pharmacol 2017; 27:415-21. [PMID: 26919286 DOI: 10.1097/fbp.0000000000000208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The critical involvement of dopamine in cognitive processes has been well established, suggesting that therapies targeting dopamine metabolism may alleviate cognitive dysfunction. Catechol-O-methyl transferase (COMT) is a catecholamine-degrading enzyme, the substrates of which include dopamine, epinephrine, and norepinephrine. The present work illustrates the potential therapeutic efficacy of COMT inhibition in alleviating cognitive impairment. A brain-penetrant COMT inhibitor, tolcapone, was tested in normal and phencyclidine-treated rats and COMT-Val transgenic mice. In a novel object recognition procedure, tolcapone counteracted a 24-h-dependent forgetting of a familiar object as well as phencyclidine-induced recognition deficits in the rats at doses ranging from 7.5 to 30 mg/kg. In contrast, entacapone, a COMT inhibitor that does not readily cross the blood-brain barrier, failed to show efficacy at doses up to 30 mg/kg. Tolcapone at a dose of 30 mg/kg also improved novel object recognition performance in transgenic mice, which showed clear recognition deficits. Complementing earlier studies, our results indicate that central inhibition of COMT positively impacts recognition memory processes and might constitute an appealing treatment for cognitive dysfunction related to neuropsychiatric disorders.
Collapse
|
25
|
Bhakta SG, Light GA, Talledo JA, Balvaneda B, Hughes E, Alvarez A, Rana BK, Young JW, Swerdlow NR. Tolcapone-Enhanced Neurocognition in Healthy Adults: Neural Basis and Predictors. Int J Neuropsychopharmacol 2017; 20:979-987. [PMID: 29020372 PMCID: PMC5716101 DOI: 10.1093/ijnp/pyx074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/10/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Failure of procognitive drug trials in schizophrenia may reflect the clinical heterogeneity of schizophrenia, underscoring the need to identify biomarkers of treatment sensitivity. We used an experimental medicine design to test the procognitive effects of a putative procognitive agent, tolcapone, using an electroencephalogram-based cognitive control task in healthy subjects. METHODS Healthy men and women (n=27; ages 18-35 years), homozygous for either the Met/Met or Val/Val rs4680 genotype, received placebo and tolcapone 200 mg orally across 2 test days separated by 1 week in a double-blind, randomized, counterbalanced, within-subject design. On each test day, neurocognitive performance was assessed using the MATRICS Consensus Cognitive Battery and an electroencephalogram-based 5 Choice-Continuous Performance Test. RESULTS Tolcapone enhanced visual learning in low-baseline MATRICS Consensus Cognitive Battery performers (d=0.35) and had an opposite effect in high performers (d=0.5), and enhanced verbal fluency across all subjects (P=.03) but had no effect on overall MATRICS Consensus Cognitive Battery performance. Tolcapone reduced false alarm rate (d=0.8) and enhanced frontal P200 amplitude during correctly identified nontarget trials (d=0.6) in low-baseline 5 Choice-Continuous Performance Test performers and had opposite effects in high performers (d=0.5 and d=0.25, respectively). Tolcapone's effect on frontal P200 amplitude and false alarm rate was correlated (rs=-0.4, P=.05). All neurocognitive effects of tolcapone were independent of rs4680 genotype. CONCLUSION Tolcapone enhanced neurocognition and engaged electroencephalogram measures relevant to cognitive processes in specific subgroups of healthy individuals. These findings support an experimental medicine model for identifying procognitive treatments and provide a strong basis for future biomarker-informed procognitive studies in schizophrenia patients.
Collapse
Affiliation(s)
- Savita G Bhakta
- Department of Psychiatry, University of California, San Diego, La Jolla, California (Drs Bhakta and Light, Ms Talledo, Mr Balvaneda, Ms Hughes, Ms Alvarez, and Drs Rana, Young, and Swerdlow); Research Service MIRECC, VISN 22, Veterans Affairs San Diego Healthcare System, San Diego, California (Drs Light and Young),Correspondence: Savita G. Bhakta, MD, Assistant Professor, Department of Psychiatry, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0804 ()
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, La Jolla, California (Drs Bhakta and Light, Ms Talledo, Mr Balvaneda, Ms Hughes, Ms Alvarez, and Drs Rana, Young, and Swerdlow); Research Service MIRECC, VISN 22, Veterans Affairs San Diego Healthcare System, San Diego, California (Drs Light and Young)
| | - Jo A Talledo
- Department of Psychiatry, University of California, San Diego, La Jolla, California (Drs Bhakta and Light, Ms Talledo, Mr Balvaneda, Ms Hughes, Ms Alvarez, and Drs Rana, Young, and Swerdlow); Research Service MIRECC, VISN 22, Veterans Affairs San Diego Healthcare System, San Diego, California (Drs Light and Young)
| | - Bryan Balvaneda
- Department of Psychiatry, University of California, San Diego, La Jolla, California (Drs Bhakta and Light, Ms Talledo, Mr Balvaneda, Ms Hughes, Ms Alvarez, and Drs Rana, Young, and Swerdlow); Research Service MIRECC, VISN 22, Veterans Affairs San Diego Healthcare System, San Diego, California (Drs Light and Young)
| | - Erica Hughes
- Department of Psychiatry, University of California, San Diego, La Jolla, California (Drs Bhakta and Light, Ms Talledo, Mr Balvaneda, Ms Hughes, Ms Alvarez, and Drs Rana, Young, and Swerdlow); Research Service MIRECC, VISN 22, Veterans Affairs San Diego Healthcare System, San Diego, California (Drs Light and Young)
| | - Alexis Alvarez
- Department of Psychiatry, University of California, San Diego, La Jolla, California (Drs Bhakta and Light, Ms Talledo, Mr Balvaneda, Ms Hughes, Ms Alvarez, and Drs Rana, Young, and Swerdlow); Research Service MIRECC, VISN 22, Veterans Affairs San Diego Healthcare System, San Diego, California (Drs Light and Young)
| | - Brinda K Rana
- Department of Psychiatry, University of California, San Diego, La Jolla, California (Drs Bhakta and Light, Ms Talledo, Mr Balvaneda, Ms Hughes, Ms Alvarez, and Drs Rana, Young, and Swerdlow); Research Service MIRECC, VISN 22, Veterans Affairs San Diego Healthcare System, San Diego, California (Drs Light and Young)
| | - Jared W Young
- Department of Psychiatry, University of California, San Diego, La Jolla, California (Drs Bhakta and Light, Ms Talledo, Mr Balvaneda, Ms Hughes, Ms Alvarez, and Drs Rana, Young, and Swerdlow); Research Service MIRECC, VISN 22, Veterans Affairs San Diego Healthcare System, San Diego, California (Drs Light and Young)
| | - Neal R Swerdlow
- Department of Psychiatry, University of California, San Diego, La Jolla, California (Drs Bhakta and Light, Ms Talledo, Mr Balvaneda, Ms Hughes, Ms Alvarez, and Drs Rana, Young, and Swerdlow); Research Service MIRECC, VISN 22, Veterans Affairs San Diego Healthcare System, San Diego, California (Drs Light and Young)
| |
Collapse
|
26
|
Talpos JC. Symptomatic thinking: the current state of Phase III and IV clinical trials for cognition in schizophrenia. Drug Discov Today 2017; 22:1017-1026. [PMID: 28461223 DOI: 10.1016/j.drudis.2017.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022]
Abstract
Research indicates that relieving the cognitive and negative symptoms of schizophrenia is crucial for improving patient quality of life. However effective pharmacotherapies for cognitive and negative symptoms do not currently exist. A review of ongoing Phase III clinical trials indicates that, despite numerous compounds being investigated for cognition in schizophrenia, few are actually novel and most are not backed by empirically driven preclinical research efforts. Based on these trials, and a general disinvestment in development of novel therapies for schizophrenia, the likelihood of a major advancement in treating cognitive differences in schizophrenia does not look promising. Possible ways in which the remaining resources for development of novel treatment for schizophrenia can best be leveraged are discussed.
Collapse
Affiliation(s)
- John C Talpos
- National Center for Toxicological Research, 3900 NCTR Rd, Jefferson, AR 72079, USA.
| |
Collapse
|
27
|
Arnsten AF, Girgis RR, Gray DI, Mailman RB. Novel Dopamine Therapeutics for Cognitive Deficits in Schizophrenia. Biol Psychiatry 2017; 81:67-77. [PMID: 26946382 PMCID: PMC4949134 DOI: 10.1016/j.biopsych.2015.12.028] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/25/2015] [Accepted: 12/31/2015] [Indexed: 11/30/2022]
Abstract
Schizophrenia is characterized by profound cognitive deficits that are not alleviated by currently available medications. Many of these cognitive deficits involve dysfunction of the newly evolved, dorsolateral prefrontal cortex (dlPFC). The brains of patients with schizophrenia show evidence of dlPFC pyramidal cell dendritic atrophy, likely reductions in cortical dopamine, and possible changes in dopamine D1 receptors (D1R). It has been appreciated for decades that optimal levels of dopamine are essential for dlPFC working memory function, with many beneficial actions arising from D1R stimulation. D1R are concentrated on dendritic spines in the primate dlPFC, where their stimulation produces an inverted-U dose response on dlPFC neuronal firing and cognitive performance during working memory tasks. Research in both academia and the pharmaceutical industry has led to the development of selective D1 agonists, e.g., the first full D1 agonist, dihydrexidine, which at low doses improved working memory in monkeys. Dihydrexidine has begun to be tested in patients with schizophrenia or schizotypal disorder. Initial results are encouraging, but studies are limited by the pharmacokinetics of the drug. These data, however, have spurred efforts toward the discovery and development of improved or novel new compounds, including D1 agonists with better pharmacokinetics, functionally selective D1 ligands, and D1R positive allosteric modulators. One or several of these approaches should allow optimization of the beneficial effects of D1R stimulation in the dlPFC that can be translated into clinical practice.
Collapse
Affiliation(s)
- Amy F.T. Arnsten
- Department of Neurobiology, Yale Medical School, New Haven, CT 06510
| | - Ragy R. Girgis
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - David I. Gray
- Neuroscience & Pain Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA 02139
| | - Richard B. Mailman
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17036
| |
Collapse
|
28
|
Lerner C, Jakob-Roetne R, Buettelmann B, Ehler A, Rudolph M, Rodríguez Sarmiento RM. Design of Potent and Druglike Nonphenolic Inhibitors for Catechol O-Methyltransferase Derived from a Fragment Screening Approach Targeting the S-Adenosyl-l-methionine Pocket. J Med Chem 2016; 59:10163-10175. [PMID: 27685665 DOI: 10.1021/acs.jmedchem.6b00927] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A fragment screening approach designed to target specifically the S-adenosyl-l-methionine pocket of catechol O-methyl transferase allowed the identification of structurally related fragments of high ligand efficiency and with activity on the described orthogonal assays. By use of a reliable enzymatic assay together with X-ray crystallography as guidance, a series of fragment modifications revealed an SAR and, after several expansions, potent lead compounds could be obtained. For the first time nonphenolic and small low nanomolar potent, SAM competitive COMT inhibitors are reported. These compounds represent a novel series of potent COMT inhibitors that might be further optimized to new drugs useful for the treatment of Parkinson's disease, as adjuncts in levodopa based therapy, or for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Christian Lerner
- Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Roland Jakob-Roetne
- Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Bernd Buettelmann
- Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andreas Ehler
- Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Markus Rudolph
- Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Rosa María Rodríguez Sarmiento
- Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
29
|
COMT val158met moderation of dopaminergic drug effects on cognitive function: a critical review. THE PHARMACOGENOMICS JOURNAL 2016; 16:430-8. [PMID: 27241058 PMCID: PMC5028240 DOI: 10.1038/tpj.2016.43] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022]
Abstract
The relationship between dopamine (DA) tone in the prefrontal cortex (PFC) and PFC-dependent cognitive functions (for example, working memory, selective attention, executive function) may be described by an inverted-U-shaped function, in which both excessively high and low DA is associated with impairment. In the PFC, the COMT val158met single nucleotide polymorphism (rs4680) confers differences in catechol-O-methyltransferase (COMT) efficacy and DA tone, and individuals homozygous for the val allele display significantly reduced cortical DA. Many studies have investigated whether val158met genotype moderates the effects of dopaminergic drugs on PFC-dependent cognitive functions. A review of 25 such studies suggests evidence for this pharmacogenetic effect is mixed for stimulants and COMT inhibitors, which have greater effects on D1 receptors, and strong for antipsychotics, which have greater effects on D2 receptors. Overall, COMT val158met genotype represents an enticing target for identifying individuals who are more likely to respond positively to dopaminergic drugs.
Collapse
|
30
|
Shukla AA, Jha M, Birchfield T, Mukherjee S, Gleason K, Abdisalaam S, Asaithamby A, Adams-Huet B, Tamminga CA, Ghose S. COMT val158met polymorphism and molecular alterations in the human dorsolateral prefrontal cortex: Differences in controls and in schizophrenia. Schizophr Res 2016; 173:94-100. [PMID: 27021555 PMCID: PMC4836991 DOI: 10.1016/j.schres.2016.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022]
Abstract
The single nucleotide val158met polymorphism in catechol o-methyltransferase (COMT) influences prefrontal cortex function. Working memory, dependent on the dorsolateral prefrontal cortex (DLPFC), has been repeatedly shown to be influenced by this COMT polymorphism. The high activity COMT val isoform is associated with lower synaptic dopamine levels. Altered synaptic dopamine levels are expected to lead to molecular adaptations within the synapse and within DLPFC neural circuitry. In this human post mortem study using high quality DLPFC tissue, we first examined the influence of the COMT val158met polymorphism on markers of dopamine neurotransmission, N-methyl-d-aspartate (NMDA) receptor subunits and glutamatic acid decarboxylase 67 (GAD67), all known to be critical to DLPFC circuitry and function. Next, we compared target gene expression profiles in a cohort of control and schizophrenia cases, each characterized by COMT genotype. We find that the COMT val allele in control subjects is associated with significant upregulation of GluN2A and GAD67 mRNA levels compared to met carriers. Comparisons between control and schizophrenia groups reveal that GluN2A, GAD67 and DRD2 are differentially regulated between diagnostic groups in a genotype specific manner. Chronic antipsychotic treatment in rodents did not explain these differences. These data demonstrate an association between COMTval158met genotype and gene expression profile in the DLPFC of controls, possibly adaptations to maintain DLPFC function. In schizophrenia val homozygotes, these adaptations are not seen and could reflect pathophysiologic mechanisms related to the known poorer performance of these subjects on DLPFC-dependent tasks.
Collapse
Affiliation(s)
- Abhay A. Shukla
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Manish Jha
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Thomas Birchfield
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Shibani Mukherjee
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Kelly Gleason
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Salim Abdisalaam
- Department of Radiation Oncology/Division of Molecular Radiation Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Aroumougame Asaithamby
- Department of Radiation Oncology/Division of Molecular Radiation Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Beverley Adams-Huet
- Department of Clinical Sciences, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Carol A. Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Subroto Ghose
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, United States.
| |
Collapse
|
31
|
Flowers SA, Ryan KA, Lai Z, McInnis MG, Ellingrod VL. Interaction between COMT rs5993883 and second generation antipsychotics is linked to decreases in verbal cognition and cognitive control in bipolar disorder. BMC Psychol 2016; 4:14. [PMID: 27039372 PMCID: PMC4818866 DOI: 10.1186/s40359-016-0118-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/24/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Second generation antipsychotics (SGAs) are increasingly utilized in Bipolar Disorder (BD) but are potentially associated with cognitive side effects. Also linked to cognitive deficits associated with SGA-treatment are catechol-O-methyltransferase (COMT) gene variants. In this study, we examine the relationship between cognition in SGA use and COMT rs5993883 in cohort sample of subjects with BD. METHODS Interactions between SGA-treatment and COMT rs5993883 genotype on cognition was tested using a battery of neuropsychological tests performed in cross-sectional study of 246 bipolar subjects. RESULTS The mean age of our sample was 40.15 years and was comprised of 70 % female subjects. Significant demographic differences included gender, hospitalizations, benzodiazepine/antidepressant use and BD-type diagnosis. Linear regressions showed that the COMT rs5993883 GG genotype predicted lower verbal learning (p = 0.0006) and memory (p = 0.0026) scores, and lower scores on a cognitive control task (p = 0.004) in SGA-treated subjects. Interestingly, COMT GT- or TT-variants showed no intergroup cognitive differences. Further analysis revealed an interaction between SGA-COMT GG-genotype for verbal learning (p = 0.028), verbal memory (p = 0.026) and cognitive control (p = 0.0005). CONCLUSIONS This investigation contributes to previous work demonstrating links between cognition, SGA-treatment and COMT rs5993883 in BD subjects. Our analysis shows significant associations between cognitive domains such as verbal-cognition and cognitive control in SGA-treated subjects carrying the COMT rs5993883 GG-genotype. Prospective studies are needed to evaluate the clinical significance of these findings.
Collapse
Affiliation(s)
- Stephanie A Flowers
- Clinical Pharmacy Department, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI, 48109-106, USA
| | - Kelly A Ryan
- Department of Psychiatry, School of Medicine, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI, 48109, USA
| | - Zongshan Lai
- Department of Psychiatry, School of Medicine, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI, 48109, USA.,Center for Clinical Management Research (CCMR) Veterans Affairs, Ann Arbor, USA
| | - Melvin G McInnis
- Department of Psychiatry, School of Medicine, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI, 48109, USA
| | - Vicki L Ellingrod
- Clinical Pharmacy Department, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI, 48109-106, USA. .,Department of Psychiatry, School of Medicine, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
32
|
Troudet R, Detrait E, Hanon E, Lamberty Y. Optimization and pharmacological validation of a set-shifting procedure for assessing executive function in rats. J Neurosci Methods 2015; 268:182-8. [PMID: 26296285 DOI: 10.1016/j.jneumeth.2015.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 01/20/2023]
Abstract
BACKGROUND Set-shifting tests represent a reliable paradigm to assess executive functions in humans and animals. In the rat, set-shifting in a cross-maze is a recognized method. In this test, rats must learn an egocentric rule to locate food reinforcement. Once acquired, a second rule, based on visual-cue strategy, allows the location of the food. Ability of rats to shift from the first to the second rule is considered to reflect cognitive flexibility. NEW METHOD This study aimed at optimizing the most currently used set-shifting protocol in a cross-maze for standardized drug testing by modulating the parameters related to caloric restriction, reward preference, and by redefining the notion of turn bias and classification of errors sub-types, i.e. perseverative vs. regressive. The new protocol has then been used to assess rats treated by sub-chronic phencyclidine administration and investigate the potential reversal effect of tolcapone, a brain penetrant catechol-O-methyl transferase inhibitor. RESULTS The new procedure resulted in a decreased total duration and a re-definition of turn bias and error subtypes. Despite preferences for sweet rewards, caloric restriction had to be maintained to motivate animals. Overall, sub-chronic PCP-treated rats made mostly perseverative errors compared to controls and required more trials to shift between the two rules. Tolcapone partly reversed impairments observed in PCP-treated rats. CONCLUSION The new protocol has improved the reliability of key parameters and has contributed to the decrease of the test duration. PCP-treated rats submitted to this protocol have been shown to have significant deficits that could be reversed by tolcapone.
Collapse
Affiliation(s)
- R Troudet
- UCB Biopharma, Neuroscience Therapeutic Area, B-1420 Braine-l'Alleud, Belgium
| | - E Detrait
- UCB Biopharma, Neuroscience Therapeutic Area, B-1420 Braine-l'Alleud, Belgium
| | - E Hanon
- UCB Biopharma, Neuroscience Therapeutic Area, B-1420 Braine-l'Alleud, Belgium
| | - Y Lamberty
- UCB Biopharma, Neuroscience Therapeutic Area, B-1420 Braine-l'Alleud, Belgium.
| |
Collapse
|
33
|
Vijayakumari AA, John JP, Halahalli HN, Paul P, Thirunavukkarasu P, Purushottam M, Jain S. Effect of polymorphisms of three genes mediating monoamine signalling on brain morphometry in schizophrenia and healthy subjects. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2015; 13:68-82. [PMID: 25912540 PMCID: PMC4423152 DOI: 10.9758/cpn.2015.13.1.68] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/18/2014] [Accepted: 10/19/2014] [Indexed: 01/11/2023]
Abstract
OBJECTIVE We examined the effect of risk alleles of polymorphisms of three schizophrenia risk genes that mediate monoamine signalling in the brain on regional brain volumes of schizophrenia and healthy control subjects. The risk alleles and the gene polymorphisms studied were: Val allele of catechol o-methyltransferase (COMT) rs4680 polymorphism; short allele of 5-hydroxy tryptamine transporter linked polymorphic region (5HTTLPR) polymorphism; and T allele of 5-hydroxy tryptamine 2A (5HT2A) rs6314 polymorphism. METHODS The study was carried out on patients with recent onset schizophrenia (n=41) recruited from the outpatient department of National Institute of Mental Health and Neurosciences, Bangalore, India and healthy control subjects (n=39), belonging to South Indian Dravidian ethnicity. Individual and additive effects of risk alleles of the above gene polymorphisms on brain morphometry were explored using voxel-based morphometry. RESULTS Irrespective of phenotypes, individuals with the risk allele T of the rs6314 polymorphism of 5HT2A gene showed greater (at cluster-extent equivalent to family wise error-correction [FWEc] p<0.05) regional brain volumes in the left inferior temporal and left inferior occipital gyri. Those with the risk alleles of the other two polymorphisms showed a trend (at p<0.001, uncorrected) towards lower regional brain volumes. A trend (at p<0.001, uncorrected) towards additive effects of the above 3 risk alleles (subjects with 2 or 3 risk alleles vs. those with 1 or no risk alleles) on brain morphology was also noted. CONCLUSIONS The findings of the present study have implications in understanding the role of individual and additive effects of genetic variants in mediating regional brain morphometry in health and disease.
Collapse
Affiliation(s)
- Anupa A Vijayakumari
- Multimodal Brain Image Analysis Laboratory (MBIAL), India.,Departments of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - John P John
- Multimodal Brain Image Analysis Laboratory (MBIAL), India.,Departments of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Departments of Clinical Neuroscience, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Harsha N Halahalli
- Departments of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Pradip Paul
- Departments of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Priyadarshini Thirunavukkarasu
- Multimodal Brain Image Analysis Laboratory (MBIAL), India.,Departments of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Meera Purushottam
- Departments of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sanjeev Jain
- Departments of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
34
|
Kiss LE, Soares-da-Silva P. Medicinal chemistry of catechol O-methyltransferase (COMT) inhibitors and their therapeutic utility. J Med Chem 2014; 57:8692-717. [PMID: 25080080 DOI: 10.1021/jm500572b] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Catechol O-methyltransferase (COMT) is the enzyme responsible for the O-methylation of endogenous neurotransmitters and of xenobiotic substances and hormones incorporating catecholic structures. COMT is a druggable biological target for the treatment of various central and peripheral nervous system disorders, including Parkinson's disease, depression, schizophrenia, and other dopamine deficiency-related diseases. The purpose of this perspective is fourfold: (i) to summarize the physiological role of COMT inhibitors in central and peripheral nervous system disorders; (ii) to provide the history and perspective of the medicinal chemistry behind the discovery and development of COMT inhibitors; (iii) to discuss how the physicochemical properties of recognized COMT inhibitors are understood to exert influence over their pharmacological properties; and (iv) to evaluate the clinical benefits of the most relevant COMT inhibitors.
Collapse
Affiliation(s)
- László E Kiss
- Department of Research & Development, BIAL - Portela & Ca, S.A. , À Avenida da Siderurgia Nacional, 4745-457 S. Mamede do Coronado, Portugal
| | | |
Collapse
|
35
|
Li CT, Palotti M, Holden JE, Oh J, Okonkwo O, Christian BT, Bendlin BB, Buyan-Dent L, Harding SJ, Stone CK, DeJesus OT, Nickles RJ, Gallagher CL. A dual-tracer study of extrastriatal 6-[18F]fluoro-m-tyrosine and 6-[18F]-fluoro-L-dopa uptake in Parkinson's disease. Synapse 2014; 68:325-31. [PMID: 24710997 DOI: 10.1002/syn.21745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 04/03/2014] [Indexed: 11/08/2022]
Abstract
6-[(18)F]-Fluoro-L-dopa (FDOPA) has been widely used as a biomarker for catecholamine synthesis, storage, and metabolism--its intense uptake in the striatum, and fainter uptake in other brain regions, is correlated with the symptoms and pathophysiology of Parkinson's disease (PD). 6-[(18)F]fluoro-m-tyrosine (FMT), which also targets L-amino acid decarboxylase, has potential advantages over FDOPA as a radiotracer because it does not form catechol-O-methyltransferase (COMT) metabolites. The purpose of the present study was to compare the regional distribution of these radiotracers in the brains of PD patients. Fifteen Parkinson's patients were studied with FMT and FDOPA positron emission tomography (PET) as well as high-resolution structural magnetic resonance imaging (MRI). MRI's were automatically parcellated into neuroanatomical regions of interest (ROIs) in Freesurfer (http://surfer.nmr.mgh.harvard.edu); region-specific uptake rate constants (Kocc) were generated from coregistered PET using a Patlak graphical approach. The essential findings were as follows: (1) regional Kocc were highly correlated between the radiotracers and in agreement with a previous FDOPA studies that used different ROI selection techniques; (2) FMT Kocc were higher in extrastriatal regions of relatively large uptake such as amygdala, pallidum, brainstem, hippocampus, entorhinal cortex, and thalamus, whereas cortical Kocc were similar between radiotracers; (3) while subcortical uptake of both radiotracers was related to disease duration and severity, cortical uptake was not. These results suggest that FMT may have advantages for examining pathologic changes within allocortical loop structures, which may contribute to cognitive and emotional symptoms of PD.
Collapse
Affiliation(s)
- Clarence T Li
- William S. Middleton Veterans Hospital and Geriatric Research Education and Clinical Center, Madison, Wisconsin; Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Swerdlow NR, Hines SR, Herrera SD, Weber M, Breier MR. Opposite effects of tolcapone on amphetamine-disrupted startle gating in low vs. high COMT-expressing rat strains. Pharmacol Biochem Behav 2013; 106:128-31. [PMID: 23567203 DOI: 10.1016/j.pbb.2013.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/15/2013] [Accepted: 03/27/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND Differential sensitivity to the prepulse inhibition (PPI)-disruptive effects of dopamine agonists in Sprague-Dawley (SD) vs. Long Evans (LE) rats is heritable, reflects differential activation of DA signaling, and is associated with differences in the brain expression of specific genes, including those of the catecholamine catabolic enzyme, catechol-O-methyltransferase (COMT). In humans, both basal and drug-modified PPI differs significantly between individuals with polymorphisms conferring low- vs. high-activity of COMT. We used the COMT inhibitor, tolcapone, to assess the role of COMT activity in regulating the differential effects of the dopamine releaser, amphetamine (AMPH), on PPI in SD and LE rats. METHODS Acoustic startle and PPI were assessed in SD and LE male rats after pretreatment with tolcapone (vehicle vs. 30 mg/kg ip) and treatment with AMPH (vehicle vs. 4.5mg/kg sc), using 10-120 ms prepulse intervals. RESULTS After tolcapone, AMPH significantly potentiated PPI in LE rats, and significantly disrupted PPI in SD rats. These patterns could not be explained by drug effects on pulse alone startle magnitude. DISCUSSION The impact of COMT inhibition on AMPH-modified PPI was categorically different in strains exhibiting low vs. high levels of forebrain Comt expression, consistent with reports in humans that tolcapone has opposite effects on PPI among individuals with polymorphisms conferring low vs. high COMT activity. The present model provides a basis for understanding the mechanisms by which the effects of COMT inhibition on sensorimotor gating - and potentially, related neurocognitive and clinical functions - under hyperdopaminergic states are dependent on an individual's basal levels of COMT activity.
Collapse
Affiliation(s)
- Neal R Swerdlow
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0804, USA.
| | | | | | | | | |
Collapse
|
37
|
Kontis D, Theochari E, Fryssira H, Kleisas S, Sofocleous C, Andreopoulou A, Kalogerakou S, Gazi A, Boniatsi L, Chaidemenos A, Tsaltas E. COMT and MTHFR polymorphisms interaction on cognition in schizophrenia: an exploratory study. Neurosci Lett 2013; 537:17-22. [PMID: 23353103 DOI: 10.1016/j.neulet.2013.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/22/2012] [Accepted: 01/10/2013] [Indexed: 11/16/2022]
Abstract
The investigation of the catechol-O-methyltransferase (COMT-[rs4680]) and methylenetetrahydrofolate reductase (MTHFR-[rs1801133]) polymorphisms' interaction might shed light into the pathogenetic mechanisms of the cognitive dysfunction in schizophrenia. In an exploratory study, we hypothesized that the MTHFR 677T allele which has been related to a hypoactive MTHFR enzyme would augment the unfavorable effects of COMT Val158 homozygosity which has been associated with COMT enzyme hyperfunction. 90 schizophrenia patients and 55 healthy volunteers were assessed on psychomotor speed, pattern and spatial recognition memory (SRM), spatial working memory (SWM), attentional flexibility and planning (Stockings of Cambridge-SOC). IQ scores in a random subgroup of patients were also measured. A significant COMT×MTHFR interaction on SWM (p=0.048) and planning (p=0.026) was revealed in both groups. Among COMT-Val/Val participants, MTHFR-C/C made more SWM errors (p=0.033) and solved fewer SOC problems (p=0.025) than MTHFR-T carriers. In patients, there was a significant COMT×MTHFR interaction on full scale IQ (p=0.035): among COMT-Met carriers, MTHFR-T carriers performed significantly worse than MTHFR-C/C (p=0.021), which was driven by a COMT×MTHFR interaction involving performance IQ (p=0.047). In conclusion, COMT and MTHFR polymorphisms interacted on cognition, suggesting that the MTHFR enzyme activity might moderate the effects of the COMT enzyme. In contrast to our initial hypothesis, the MTHFR T-allele attenuated the cognitive effects of COMT Val homozygosity. In this preliminary study, we propose that dopaminergic and intracellular methylation mechanisms could interact on cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Dimitrios Kontis
- Unit for the Study of Cognition in Psychosis, Psychiatric Hospital of Attica, Athens, Greece.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Paul Matthews
- Oxford Health NHS Foundation Trust; Marlborough House Medium Secure Unit; Milton Keynes Hospital Site Eaglestone Milton Keynes BUCKS UK MK6 5NG
| | - Jamie Horder
- Institute of Psychiatry, King's College London; Department of Forensic and Neurodevelopmental Sciences; De Crespigny Park London UK SE5 8AF
| |
Collapse
|
39
|
Montag C, Jurkiewicz M, Reuter M. The role of the catechol-O-methyltransferase (COMT) gene in personality and related psychopathological disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2012; 11:236-50. [PMID: 22483293 DOI: 10.2174/187152712800672382] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 10/19/2011] [Accepted: 10/19/2011] [Indexed: 12/29/2022]
Abstract
This review provides a short overview of the most significant biologically oriented theories of human personality. Personality concepts of Eysenck, Gray and McNaughton, Cloninger and Panksepp will be introduced and the focal evidence for the heritability of personality will be summarized. In this context, a synopsis of a large number of COMT genetic association studies (with a focus on the COMT Val158Met polymorphism) in the framework of the introduced biologically oriented personality theories will be given. In line with the theory of a continuum model between healthy anxious behavior and related psychopathological behavior, the role of the COMT gene in anxiety disorders will be discussed. A final outlook considers new research strategies such as genetic imaging and epigenetics for a better understanding of human personality.
Collapse
|
40
|
Association of functional COMT Val108/Met polymorphism with smoking cessation in a nicotine replacement therapy. J Neural Transm (Vienna) 2012; 119:1491-8. [PMID: 22695756 DOI: 10.1007/s00702-012-0841-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/27/2012] [Indexed: 10/28/2022]
Abstract
Nicotine replacement treatment (NRT) can be efficacious for smoking cessation, but used by only a minority of smokers in China. Pharmacogenetic matching may improve treatment outcomes for NRT in subgroups of smokers. We evaluated the efficacy and safety of sublingual nicotine tablets (SNT) for smoking cessation and the association of catechol-O-methyltransferase (COMT) genotype with efficacy in this smoking cessation trial among Chinese smokers. We conducted a double-blind, placebo-controlled, 8-week trial of SNT with a follow-up at week 12 among 250 Chinese smokers. Efficacy and safety were evaluated at day 4 and weeks 2, 4, 6, 8, and 12. Abstinence was biochemically verified by exhaled carbon monoxide (CO) and urine cotinine. The COMT Val108Met genotype was determined as a restriction fragment length polymorphism. Our results showed that the success rates for complete abstinence were greater for active versus placebo treatments at 8 weeks (48 vs. 17 %) and 12 weeks (52 vs. 19 %) (both p < 0.0001). Craving was significantly reduced from week 2 on active treatment compared to placebo. Adverse events were mild and tolerable. We found a genotype by treatment interaction at 12 weeks with greater abstinence rates in the COMT Val/Val (50 vs. 15 %) than the Met/Val + Met/Met genotypes (46 vs. 25 %). We found that SNT significantly increased smoking abstinence, reduced craving and was well tolerated, and the COMT Val/Val genotype was associated with a greater improvement in smoking cessation.
Collapse
|
41
|
COMT Val(158)Met genotype determines the direction of cognitive effects produced by catechol-O-methyltransferase inhibition. Biol Psychiatry 2012; 71:538-44. [PMID: 22364739 PMCID: PMC3314969 DOI: 10.1016/j.biopsych.2011.12.023] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/23/2011] [Accepted: 12/23/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND Catechol-O-methyltransferase (COMT) metabolizes dopamine. The COMT Val(158)Met polymorphism influences its activity, and multiple neural correlates of this genotype on dopaminergic phenotypes, especially working memory, have been reported. COMT activity can also be regulated pharmacologically by COMT inhibitors. The inverted-U relationship between cortical dopamine signaling and working memory predicts that the effects of COMT inhibition will differ according to COMT genotype. METHODS Thirty-four COMT Met(158)Met (Met-COMT) and 33 COMT Val(158)Val (Val-COMT) men were given a single 200-mg dose of the brain-penetrant COMT inhibitor tolcapone or placebo in a randomized, double-blind, between-subjects design. They completed the N-back task of working memory and a gambling task. RESULTS In the placebo group, Met-COMT subjects outperformed Val-COMT subjects on the 2- back, and they were more risk averse. Tolcapone had opposite effects in the two genotype groups: it worsened N-back performance in Met-COMT subjects but enhanced it in Val-COMT subjects. Tolcapone made Met-COMT subjects less risk averse but Val-COMT subjects more so. In both tasks, tolcapone reversed the baseline genotype differences. CONCLUSIONS Depending on genotype, COMT inhibition can enhance or impair working memory and increase or decrease risky decision making. To our knowledge, the data are the clearest demonstration to date that the direction of effect of a drug can be influenced by a polymorphism in its target gene. The results support the inverted-U model of dopamine function. The findings are of translational relevance, because COMT inhibitors are used in the adjunctive treatment of Parkinson's disease and are under evaluation in schizophrenia and other disorders.
Collapse
|
42
|
Kane JM, Yang R, Youakim JM. Adjunctive armodafinil for negative symptoms in adults with schizophrenia: a double-blind, placebo-controlled study. Schizophr Res 2012; 135:116-22. [PMID: 22178084 DOI: 10.1016/j.schres.2011.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 12/21/2022]
Abstract
OBJECTIVE A prior 4-week, proof-of-concept study suggested that adjunctive therapy with armodafinil 200mg/day decreases negative symptoms in patients with clinically stable schizophrenia. This study investigated the efficacy and tolerability of adjunctive armodafinil for treatment of negative symptoms in adults with schizophrenia receiving antipsychotic medications. METHODS This parallel-group, 24-week study enrolled adults with schizophrenia who were receiving oral olanzapine, risperidone, or paliperidone for ≥ 6 weeks, and had a Positive and Negative Syndrome Scale (PANSS) negative symptom subscale score of ≥ 15. Patients received one of 3 doses of once-daily armodafinil (150 mg, 200mg, or 250 mg) or placebo. The primary efficacy measure was the change from baseline to final visit in the PANSS negative symptom subscale score. Secondary measures included the PANSS total score, Clinical Global Impression of Severity, Personal and Social Performance Scale, and CNSVitalSigns cognitive battery. RESULTS Of 285 randomized patients, 213 received armodafinil and 72 received placebo. The mean (SD) changes in PANSS negative symptom subscale score were -1.9 (3.8) for armodafinil 150 mg (n = 70), -2.3 (3.6) for armodafinil 200mg (n = 69), -2.0 (3.3) for armodafinil 250 mg (n = 71), and -2.2 (4.1) for placebo (n=70) (p ≥ 0.70 for each armodafinil group versus placebo). Secondary measures were generally not different between groups. Armodafinil was generally well tolerated, without worsening positive symptoms. CONCLUSIONS This study found no benefit of adjunctive armodafinil versus placebo for negative symptoms in patients with schizophrenia receiving treatment with olanzapine, risperidone, or paliperidone. Armodafinil was generally well tolerated in these patients.
Collapse
Affiliation(s)
- John M Kane
- Department of Psychiatry, The Zucker Hillside Hospital, 75-59 263rd Street, Kaufmann Bldg, Suite 103, Glen Oaks, NY 11004–1150, USA.
| | | | | |
Collapse
|
43
|
Abstract
The dominance of the neurosciences in psychiatric research raises questions about the relationship between research practices and the lived experience of mental illness. Here, I use data from a group of researchers focusing on neurocognition in schizophrenia to explore the problem of representation in psychiatric research and the forms that neuroscientific evidence assumes for those who produce it. These researchers grappled with the complexity of schizophrenia not by narrowing disease concepts to biological facts but by referencing measurement techniques to generate new versions of schizophrenia. By linking experimental findings to inchoate concepts of personhood and social experience, I found that they reframed and reinforced cultural values, including that those with schizophrenia are destined to a debased and deficient existence. I argue that cognition has emerged as an essential feature of schizophrenia not only because of its representational utility but also because of the ontological work the concept performs. In closing, I present some implications for the neurobiological and social sciences.
Collapse
|
44
|
Robinson RG, Smith SM, Wolkenberg SE, Kandebo M, Yao L, Gibson CR, Harrison ST, Polsky-Fisher S, Barrow JC, Manley PJ, Mulhearn JJ, Nanda KK, Schubert JW, Trotter BW, Zhao Z, Sanders JM, Smith RF, McLoughlin D, Sharma S, Hall DL, Walker TL, Kershner JL, Bhandari N, Hutson PH, Sachs NA. Characterization of non-nitrocatechol pan and isoform specific catechol-O-methyltransferase inhibitors and substrates. ACS Chem Neurosci 2012; 3:129-40. [PMID: 22860182 DOI: 10.1021/cn200109w] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 11/14/2011] [Indexed: 11/29/2022] Open
Abstract
Reduced dopamine neurotransmission in the prefrontal cortex has been implicated as causal for the negative symptoms and cognitive deficit associated with schizophrenia; thus, a compound which selectively enhances dopamine neurotransmission in the prefrontal cortex may have therapeutic potential. Inhibition of catechol-O-methyltransferase (COMT, EC 2.1.1.6) offers a unique advantage, since this enzyme is the primary mechanism for the elimination of dopamine in cortical areas. Since membrane bound COMT (MB-COMT) is the predominant isoform in human brain, a high throughput screen (HTS) to identify novel MB-COMT specific inhibitors was completed. Subsequent optimization led to the identification of novel, non-nitrocatechol COMT inhibitors, some of which interact specifically with MB-COMT. Compounds were characterized for in vitro efficacy versus human and rat MB and soluble (S)-COMT. Select compounds were administered to male Wistar rats, and ex vivo COMT activity, compound levels in plasma and cerebrospinal fluid (CSF), and CSF dopamine metabolite levels were determined as measures of preclinical efficacy. Finally, novel non-nitrocatechol COMT inhibitors displayed less potent uncoupling of the mitochondrial membrane potential (MMP) compared to tolcapone as well as nonhepatotoxic entacapone, thus mitigating the risk of hepatotoxicity.
Collapse
Affiliation(s)
- Ronald G. Robinson
- Psychiatric Research, Merck Sharp & Dohme Corp., West Point, Pennsylvania, United States
| | - Sean M. Smith
- Psychiatric Research, Merck Sharp & Dohme Corp., West Point, Pennsylvania, United States
| | - Scott E. Wolkenberg
- Medicinal Chemistry Research, Merck Sharp & Dohme Corp., West Point, Pennsylvania, or Boston, Massachusetts, United States
| | - Monika Kandebo
- Psychiatric Research, Merck Sharp & Dohme Corp., West Point, Pennsylvania, United States
| | - Lihang Yao
- Psychiatric Research, Merck Sharp & Dohme Corp., West Point, Pennsylvania, United States
| | - Christopher R. Gibson
- Preclinical Drug Metabolism, Merck Sharp & Dohme Corp., West Point, Pennsylvania, United States
| | - Scott T. Harrison
- Medicinal Chemistry Research, Merck Sharp & Dohme Corp., West Point, Pennsylvania, or Boston, Massachusetts, United States
| | - Stacey Polsky-Fisher
- Preclinical Drug Metabolism, Merck Sharp & Dohme Corp., West Point, Pennsylvania, United States
| | - James C. Barrow
- Department of Pharmacology and
Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Peter J. Manley
- Medicinal Chemistry Research, Merck Sharp & Dohme Corp., West Point, Pennsylvania, or Boston, Massachusetts, United States
| | - James J. Mulhearn
- Medicinal Chemistry Research, Merck Sharp & Dohme Corp., West Point, Pennsylvania, or Boston, Massachusetts, United States
| | - Kausik K. Nanda
- Medicinal Chemistry Research, Merck Sharp & Dohme Corp., West Point, Pennsylvania, or Boston, Massachusetts, United States
| | - Jeffrey W. Schubert
- Medicinal Chemistry Research, Merck Sharp & Dohme Corp., West Point, Pennsylvania, or Boston, Massachusetts, United States
| | - B. Wesley Trotter
- Medicinal Chemistry Research, Merck Sharp & Dohme Corp., West Point, Pennsylvania, or Boston, Massachusetts, United States
| | - Zhijian Zhao
- Medicinal Chemistry Research, Merck Sharp & Dohme Corp., West Point, Pennsylvania, or Boston, Massachusetts, United States
| | - John M. Sanders
- Chemistry, Modeling, and Informatics, Merck Sharp & Dohme Corp., West Point, Pennsylvania, United States
| | - Robert F. Smith
- Global Structural Biology, Merck Sharp & Dohme Corp., West Point, Pennsylvania, United States
| | - Debra McLoughlin
- Preclinical Drug Metabolism, Merck Sharp & Dohme Corp., West Point, Pennsylvania, United States
| | - Sujata Sharma
- Global Structural Biology, Merck Sharp & Dohme Corp., West Point, Pennsylvania, United States
| | - Dawn L. Hall
- Global Structural Biology, Merck Sharp & Dohme Corp., West Point, Pennsylvania, United States
| | - Tiffany L. Walker
- Psychiatric Research, Merck Sharp & Dohme Corp., West Point, Pennsylvania, United States
| | - Jennifer L. Kershner
- Molecular and Investigative Toxicology, Merck Sharp & Dohme Corp., West Point, Pennsylvania, United States
| | - Neetesh Bhandari
- Molecular and Investigative Toxicology, Merck Sharp & Dohme Corp., West Point, Pennsylvania, United States
| | - Pete H. Hutson
- Psychiatric Research, Merck Sharp & Dohme Corp., West Point, Pennsylvania, United States
| | - Nancy A. Sachs
- Psychiatric Research, Merck Sharp & Dohme Corp., West Point, Pennsylvania, United States
| |
Collapse
|
45
|
Millan MJ, Agid Y, Brüne M, Bullmore ET, Carter CS, Clayton NS, Connor R, Davis S, Deakin B, DeRubeis RJ, Dubois B, Geyer MA, Goodwin GM, Gorwood P, Jay TM, Joëls M, Mansuy IM, Meyer-Lindenberg A, Murphy D, Rolls E, Saletu B, Spedding M, Sweeney J, Whittington M, Young LJ. Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat Rev Drug Discov 2012; 11:141-68. [PMID: 22293568 DOI: 10.1038/nrd3628] [Citation(s) in RCA: 857] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Studies of psychiatric disorders have traditionally focused on emotional symptoms such as depression, anxiety and hallucinations. However, poorly controlled cognitive deficits are equally prominent and severely compromise quality of life, including social and professional integration. Consequently, intensive efforts are being made to characterize the cellular and cerebral circuits underpinning cognitive function, define the nature and causes of cognitive impairment in psychiatric disorders and identify more effective treatments. Successful development will depend on rigorous validation in animal models as well as in patients, including measures of real-world cognitive functioning. This article critically discusses these issues, highlighting the challenges and opportunities for improving cognition in individuals suffering from psychiatric disorders.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherche Servier, 78290 Croissy/Seine, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nikiforuk A, Popik P. Effects of quetiapine and sertindole on subchronic ketamine-induced deficits in attentional set-shifting in rats. Psychopharmacology (Berl) 2012; 220:65-74. [PMID: 21918808 PMCID: PMC3276756 DOI: 10.1007/s00213-011-2487-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/10/2011] [Indexed: 01/13/2023]
Abstract
RATIONALE Prefrontal cortical dysfunctions, including an impaired ability to shift perceptual attentional set, are core features of schizophrenia. Nevertheless, the effectiveness of second-generation antipsychotic drugs in treating specific prefrontal dysfunctions remains equivocal. OBJECTIVES To model schizophrenia-like cognitive inflexibility in rats, we evaluated the effects of repeated administration of ketamine, the noncompetitive antagonist of the N-methyl-D: -aspartate receptor, after a washout period of 14 days in the attentional set-shifting task (ASST). Next, we investigated whether the atypical antipsychotics quetiapine and sertindole would alleviate the ketamine-induced set-shifting impairment. METHODS Ketamine (30 mg/kg) was administered intraperitoneally to rats once daily for 5 or 10 consecutive days to assess its efficacy in producing cognitive impairment. The ASST was performed 14 days following the final drug administration. Quetiapine (0.63, 1.25 or 2.5 mg/kg) or sertindole (2.5 mg/kg) was administered per os 120 min before testing. RESULTS The results of the present study demonstrate that ketamine treatment for 10 but not 5 days significantly and specifically impaired rats' performance in the extra-dimensional shift (EDs) stage of the ASST. This cognitive inflexibility was reversed by acute administration of sertindole or quetiapine. Quetiapine also promoted set-shifting in cognitively unimpaired control animals. CONCLUSION The data presented here show that subchronic administration of ketamine induces cognitive inflexibility after a washout period. This cognitive deficit likely reflects clinically relevant aspects of cognitive dysfunction encountered in schizophrenic patients. The beneficial effects of quetiapine on set-shifting may have therapeutic implications for the treatment of schizophrenia and other disorders associated with frontal-dependent cognitive impairments.
Collapse
Affiliation(s)
- Agnieszka Nikiforuk
- Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland.
| | | |
Collapse
|
47
|
Gottesmann C. To what extent do neurobiological sleep-waking processes support psychoanalysis? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 92:233-90. [PMID: 20870071 DOI: 10.1016/s0074-7742(10)92012-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Sigmund Freud's thesis was that there is a censorship during waking that prevents memory of events, drives, wishes, and feelings from entering the consciousness because they would induce anxiety due to their emotional or ethical unacceptability. During dreaming, because the efficiency of censorship is decreased, latent thought contents can, after dream-work involving condensation and displacement, enter the dreamer's consciousness under the figurative form of manifest content. The quasi-closed dogma of psychoanalytic theory as related to unconscious processes is beginning to find neurobiological confirmation during waking. Indeed, there are active processes that suppress (repress) unwanted memories from entering consciousness. In contrast, it is more difficult to find neurobiological evidence supporting an organized dream-work that would induce meaningful symbolic content, since dream mentation most often only shows psychotic-like activities.
Collapse
Affiliation(s)
- Claude Gottesmann
- Département de Biologie, Faculté des Sciences, Université de Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
48
|
Chatham CH, Herd SA, Brant AM, Hazy TE, Miyake A, O'Reilly R, Friedman NP. From an executive network to executive control: a computational model of the n-back task. J Cogn Neurosci 2011; 23:3598-619. [PMID: 21563882 DOI: 10.1162/jocn_a_00047] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A paradigmatic test of executive control, the n-back task, is known to recruit a widely distributed parietal, frontal, and striatal "executive network," and is thought to require an equally wide array of executive functions. The mapping of functions onto substrates in such a complex task presents a significant challenge to any theoretical framework for executive control. To address this challenge, we developed a biologically constrained model of the n-back task that emergently develops the ability to appropriately gate, bind, and maintain information in working memory in the course of learning to perform the task. Furthermore, the model is sensitive to proactive interference in ways that match findings from neuroimaging and shows a U-shaped performance curve after manipulation of prefrontal dopaminergic mechanisms similar to that observed in studies of genetic polymorphisms and pharmacological manipulations. Our model represents a formal computational link between anatomical, functional neuroimaging, genetic, behavioral, and theoretical levels of analysis in the study of executive control. In addition, the model specifies one way in which the pFC, BG, parietal, and sensory cortices may learn to cooperate and give rise to executive control.
Collapse
|
49
|
Bitsios P, Roussos P. Tolcapone, COMT polymorphisms and pharmacogenomic treatment of schizophrenia. Pharmacogenomics 2011; 12:559-66. [DOI: 10.2217/pgs.10.206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is widely accepted that abnormal prefrontal cortex biology resulting in deficient cognition is a primary problem in schizophrenia and that all currently available antipsychotics fail to improve cognitive and negative symptoms originating from this deficit. Evidence from basic science has revealed the importance of prefrontal dopamine signaling for optimal prefrontal function. This article describes succinctly the progress made so far, taking into account the mechanisms involved in catechol-O-methyltransferase (COMT)-induced modulation of prefrontal dopamine signaling, the impact of COMT on cognitive function and the role of COMT gene polymorphisms. The potential role of the COMT inhibitor tolcapone to improve cognitive function in health and disease is also presented here. It will soon be understood if tolcapone represents one of the first hypothesis-driven, biology-based, genotype-specific, targeted treatments of cognitive and negative symptoms of schizophrenia.
Collapse
Affiliation(s)
| | - Panos Roussos
- Department of Psychiatry & Behavioral Sciences, Faculty of Medicine, PO Box 2208, University of Crete, Heraklion 71003, Crete, Greece
| |
Collapse
|
50
|
Sotnikova TD, Beaulieu JM, Espinoza S, Masri B, Zhang X, Salahpour A, Barak LS, Caron MG, Gainetdinov RR. The dopamine metabolite 3-methoxytyramine is a neuromodulator. PLoS One 2010; 5:e13452. [PMID: 20976142 PMCID: PMC2956650 DOI: 10.1371/journal.pone.0013452] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 09/20/2010] [Indexed: 11/30/2022] Open
Abstract
Dopamine (3-hydroxytyramine) is a well-known catecholamine neurotransmitter involved in multiple physiological functions including movement control. Here we report that the major extracellular metabolite of dopamine, 3-methoxytyramine (3-MT), can induce behavioral effects in a dopamine-independent manner and these effects are partially mediated by the trace amine associated receptor 1 (TAAR1). Unbiased in vivo screening of putative trace amine receptor ligands for potential effects on the movement control revealed that 3-MT infused in the brain is able to induce a complex set of abnormal involuntary movements in mice acutely depleted of dopamine. In normal mice, the central administration of 3-MT caused a temporary mild hyperactivity with a concomitant set of abnormal movements. Furthermore, 3-MT induced significant ERK and CREB phosphorylation in the mouse striatum, signaling events generally related to PKA-mediated cAMP accumulation. In mice lacking TAAR1, both behavioral and signaling effects of 3-MT were partially attenuated, consistent with the ability of 3-MT to activate TAAR1 receptors and cause cAMP accumulation as well as ERK and CREB phosphorylation in cellular assays. Thus, 3-MT is not just an inactive metabolite of DA, but a novel neuromodulator that in certain situations may be involved in movement control. Further characterization of the physiological functions mediated by 3-MT may advance understanding of the pathophysiology and pharmacology of brain disorders involving abnormal dopaminergic transmission, such as Parkinson's disease, dyskinesia and schizophrenia.
Collapse
Affiliation(s)
- Tatyana D. Sotnikova
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, CRULRG/Université Laval, Québec, Canada
| | - Stefano Espinoza
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
| | - Bernard Masri
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- INSERM U 858 - I2MR, Toulouse, France
| | - Xiaodong Zhang
- Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Ali Salahpour
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Larry S. Barak
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marc G. Caron
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Raul R. Gainetdinov
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|