1
|
Exploiting Biofilm Characteristics to Enhance Biological Nutrient Removal in Wastewater Treatment Plants. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Biological treatments are integral processes in wastewater treatment plants (WWTPs). They can be carried out using sludge or biofilm processes. Although the sludge process is effective for biological wastewater systems, it has some drawbacks that make it undesirable. Hence, biofilm processes have gained popularity, since they address the drawbacks of sludge treatments, such as the high rates of sludge production. Although biofilms have been reported to be essential for wastewater, few studies have reviewed the different ways in which the biofilm properties can be explored, especially for the benefit of wastewater treatment. Thus, this review explores the properties of biofilms that can be exploited to enhance biological wastewater systems. In this review, it is revealed that various biofilm properties, such as the extracellular polymeric substances (EPS), quorum sensing (Qs), and acylated homoserine lactones (AHLs), can be enhanced as a sustainable and cost-effective strategy to enhance the biofilm. Moreover, the exploitation of other biofilm properties such as the SOS, which is only reported in the medical field, with no literature reporting it in the context of wastewater treatment, is also recommended to improve the biofilm technology for wastewater treatment processes. Additionally, this review further elaborates on ways that these properties can be exploited to advance biofilm wastewater treatment systems. A special emphasis is placed on exploiting these properties in simultaneous nitrification and denitrification and biological phosphorus removal processes, which have been reported to be the most sensitive processes in biological wastewater treatment.
Collapse
|
2
|
Moore-Ott JA, Chiu S, Amchin DB, Bhattacharjee T, Datta SS. A biophysical threshold for biofilm formation. eLife 2022; 11:e76380. [PMID: 35642782 PMCID: PMC9302973 DOI: 10.7554/elife.76380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria are ubiquitous in our daily lives, either as motile planktonic cells or as immobilized surface-attached biofilms. These different phenotypic states play key roles in agriculture, environment, industry, and medicine; hence, it is critically important to be able to predict the conditions under which bacteria transition from one state to the other. Unfortunately, these transitions depend on a dizzyingly complex array of factors that are determined by the intrinsic properties of the individual cells as well as those of their surrounding environments, and are thus challenging to describe. To address this issue, here, we develop a generally-applicable biophysical model of the interplay between motility-mediated dispersal and biofilm formation under positive quorum sensing control. Using this model, we establish a universal rule predicting how the onset and extent of biofilm formation depend collectively on cell concentration and motility, nutrient diffusion and consumption, chemotactic sensing, and autoinducer production. Our work thus provides a key step toward quantitatively predicting and controlling biofilm formation in diverse and complex settings.
Collapse
Affiliation(s)
- Jenna A Moore-Ott
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Selena Chiu
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Daniel B Amchin
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Tapomoy Bhattacharjee
- Andlinger Center for Energy and the Environment, Princeton UniversityPrincetonUnited States
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| |
Collapse
|
3
|
Combining Colistin with Furanone C-30 Rescues Colistin Resistance of Gram-Negative Bacteria in Vitro and in Vivo. Microbiol Spectr 2021; 9:e0123121. [PMID: 34730415 PMCID: PMC8567244 DOI: 10.1128/spectrum.01231-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The spread of multidrug-resistant (MDR) Gram-negative bacteria (GNB) has led to serious public health problems worldwide. Colistin, as a “last resort” for the treatment of MDR bacterial infections, has been used significantly in recent years and has led to the continuous emergence of colistin-resistant strains. In this study, we aimed to investigate the synergistic effect on the antimicrobial and antibiofilm activities of a colistin/furanone C-30 combination against colistin-resistant GNB in vitro and in vivo. According to antimicrobial resistance profiles, most of the colistin-resistant strains we collected showed MDR phenotypes. The checkerboard method and time-kill curve showed that the combination with furanone C-30 increases the antibacterial activity of colistin significantly. In addition, the furanone C-30/colistin combination can not only inhibit the formation of bacterial biofilm but also has a better eradication effect on preformed mature biofilms. The result of scanning electron microscopy (SEM) demonstrated that the furanone C-30/colistin combination led to a significant reduction in the number of cells in biofilms. Furthermore, furanone C-30 at 50 μg/ml did not cause any additional toxicity to RAW264.7 cells according to a cytotoxicity assay. In in vivo infection experiments, the furanone C-30/colistin combination increased the survival rate of infected Galleria mellonella larvae as well as decreased the microbial load in a mouse thigh infection model. The synergistic effect of the furanone C-30/colistin combination against colistin-resistant GNB is encouraging, and this work may shed light on a new therapeutic approach to combat colistin-resistant pathogens. IMPORTANCE Colistin is among the few antibiotics effective against multidrug-resistant Gram-negative bacteria (GNB) clinical isolates. However, colistin-resistant GNB strains have emerged in recent years. Therefore, the combination of colistin and nonantibacterial drugs has attracted much attention. In this study, the furanone C-30/colistin combination showed good antibacterial and antibiofilm activity in vitro and in vivo. In addition, increased membrane permeability leads to the synergistic effect of the furanone C-30/colistin combination. Because of the low cytotoxicity of furanone C-30, this combination has good application prospects in clinical anti-infective therapy. This finding might shed light on the discovery of combination therapy for infections caused by colistin-resistant GNB pathogens.
Collapse
|
4
|
Biofilm Matrix Formation in Human: Clinical Significance, Diagnostic Techniques, and Therapeutic Drugs. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2021. [DOI: 10.5812/archcid.107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Context: Some recent reports have indicated that almost 80% of clinical infections in humans have biofilm origin and impose additional healthcare costs. This study was an updated review of extracellular polymeric substance matrix (Biofilm) formation in humans and elaborated on its clinical significance, diagnosis, and therapeutic approaches. Evidence Acquisition: This narrative study reviewed the most recent information on the significance of microbial biofilm formation in clinical settings, common biofilm-producing bacterial species, its diagnosis, antibiotic drug resistance, and new approaches to the treatment of infections associated with biofilm formation. Results: Evidence indicated a permanent increase in the frequency of microbial biofilm in the central venous catheter, mechanical heart valve, and urinary catheter, as well as persistent infections. However, antimicrobial resistance induced by biofilms formation and the antimicrobial treatment of biofilms were problematic. Moreover, several assays and lab devices were described to evaluate biofilm formation. Furthermore, new attitudes towards anti-biofilm treatments were introduced in this paper. Conclusions: The number of different mechanisms were in accordance with the recent knowledge on how biofilms play a critical role in the disease pathogenesis. Biofilm strikes the treatment and surveillance of patients bearing infectious diseases under different conditions. The use of new methods in anti-biofilm treatments is effective for the recovery of infected patients.
Collapse
|
5
|
Bhardwaj S, Bhatia S, Singh S, Franco Jr F. Growing emergence of drug-resistant Pseudomonas aeruginosa and attenuation of its virulence using quorum sensing inhibitors: A critical review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:699-719. [PMID: 34630947 PMCID: PMC8487598 DOI: 10.22038/ijbms.2021.49151.11254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022]
Abstract
A perilous increase in the number of bacterial infections has led to developing throngs of antibiotics for increasing the quality and expectancy of life. Pseudomonas aeruginosa is becoming resistant to all known conventional antimicrobial agents thereby posing a deadly threat to the human population. Nowadays, targeting virulence traits of infectious agents is an alternative approach to antimicrobials that is gaining much popularity to fight antimicrobial resistance. Quorum sensing (QS) involves interspecies communication via a chemical signaling pathway. Under this mechanism, cells work in a concerted manner, communicate with each other with the help of signaling molecules called auto-inducers (AI). The virulence of these strains is driven by genes, whose expression is regulated by AI, which in turn acts as transcriptional activators. Moreover, the problem of antibiotic-resistance in case of infections caused by P. aeruginosa becomes more alarming among immune-compromised patients, where the infectious agents easily take over the cellular machinery of the host while hidden in the QS mediated biofilms. Inhibition of the QS circuit of P. aeruginosa by targeting various signaling pathways such as LasR, RhlR, Pqs, and QScR transcriptional proteins will help in blocking downstream signal transducers which could result in reducing the bacterial virulence. The anti-virulence agent does not pose an immediate selective pressure on growing bacterium and thus reduces the pathogenicity without harming the target species. Here, we review exclusively, the growing emergence of multi-drug resistant (MDR) P. aeruginosa and the critical literature survey of QS inhibitors with their potential application of blocking P. aeruginosa infections.
Collapse
Affiliation(s)
- Snigdha Bhardwaj
- Department of Pharmaceutical Science, SHALOM Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Naini, Prayagraj, India
| | - Sonam Bhatia
- Department of Pharmaceutical Science, SHALOM Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Naini, Prayagraj, India
| | - Shaminder Singh
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad - 121 001, Haryana, India
| | - Francisco Franco Jr
- Department of Chemistry, De La Salle University, Manila, Metro Manila, Philippines
| |
Collapse
|
6
|
A Preliminary Study of Chemical Profiles of Honey, Cerumen, and Propolis of the African Stingless Bee Meliponula ferruginea. Foods 2021; 10:foods10050997. [PMID: 34063246 PMCID: PMC8147412 DOI: 10.3390/foods10050997] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 01/28/2023] Open
Abstract
Recently, the honey and propolis of stingless bees have been attracting growing attention because of their health-promoting properties. However, studies on these products of African Meliponini are still very scarce. In this preliminary study, we analyzed the chemical composition of honey, two cerumen, and two resin deposits (propolis) samples of Meliponula ferruginea from Tanzania. The honey of M. ferruginea was profiled by NMR and indicated different long-term stability from Apis mellifera European (Bulgarian) honey. It differed significantly in sugar and organic acids content and had a very high amount of the disaccharide trehalulose, known for its bioactivities. We suggested trehalulose to be a potential marker for African stingless bee honey analogously to the recent proposal for Meliponini honey from Asia, South America, and Australia and demonstrated its easy discrimination by 13C NMR. Propolis and cerumen were studied by GC-MS (gas chromatography-mass spectometry). The samples contained mainly terpenoids (di-and triterpenes) but demonstrated qualitative and quantitative differences. This fact was an indication that possibly M. ferruginea has no strict preferences for resins used to construct and protect their nests. The antimicrobial and anti-quorum sensing properties of the two materials were also tested. These first results demonstrated that the honey, cerumen, and propolis of African stingless bees were rich in biologically active substances and deserved further research.
Collapse
|
7
|
Assessing the Molecular Targets and Mode of Action of Furanone C-30 on Pseudomonas aeruginosa Quorum Sensing. Molecules 2021; 26:molecules26061620. [PMID: 33803983 PMCID: PMC7998126 DOI: 10.3390/molecules26061620] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022] Open
Abstract
Quorum sensing (QS), a sophisticated system of bacterial communication that depends on population density, is employed by many pathogenic bacteria to regulate virulence. In view of the current reality of antibiotic resistance, it is expected that interfering with QS can address bacterial pathogenicity without stimulating the incidence of resistance. Thus, harnessing QS inhibitors has been considered a promising approach to overriding bacterial infections and combating antibiotic resistance that has become a major threat to public healthcare around the globe. Pseudomonas aeruginosa is one of the most frequent multidrug-resistant bacteria that utilize QS to control virulence. Many natural compounds, including furanones, have demonstrated strong inhibitory effects on several pathogens via blocking or attenuating QS. While the natural furanones show no activity against P. aeruginosa, furanone C-30, a brominated derivative of natural furanone compounds, has been reported to be a potent inhibitor of the QS system of the notorious opportunistic pathogen. In the present study, we assess the molecular targets and mode of action of furanone C-30 on P. aeruginosa QS system. Our results suggest that furanone C-30 binds to LasR at the ligand-binding site but fails to establish interactions with the residues crucial for the protein's productive conformational changes and folding, thus rendering the protein dysfunctional. We also show that furanone C-30 inhibits RhlR, independent of LasR, suggesting a complex mechanism for the agent beyond what is known to date.
Collapse
|
8
|
Developing Diagnostic and Therapeutic Approaches to Bacterial Infections for a New Era: Implications of Globalization. Antibiotics (Basel) 2020; 9:antibiotics9120916. [PMID: 33339391 PMCID: PMC7765786 DOI: 10.3390/antibiotics9120916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
In just a few months, the current coronavirus pandemic has exposed the need for a more global approach to human health. Indeed, the quick spread of infectious diseases and their unpredictable consequences, in terms of human lives and economic losses, will require a change in our strategy, both at the clinical and the research level. Ultimately, we should be ready to fight against infectious diseases affecting a huge number of people in different parts of the world. This new scenario will require rapid, inexpensive diagnostic systems, applicable anywhere in the world and, preferably, without the need for specialized personnel. Also, treatments for these diseases must be versatile, easily scalable, cheap, and easy to apply. All this will only be possible with joint support of the governments, which will have to make the requirements for the approval of new therapies more flexible. Meanwhile, the pharmaceutical sector must commit to prioritizing products of global interest over the most profitable ones. Extreme circumstances demand a vehement response, and any profit losses may well pay dividends going forward. Here, we summarize the developing technologies destined to face the current and future health challenges derived from infectious diseases and discuss which ones have more possibilities of being implemented.
Collapse
|
9
|
Piewngam P, Chiou J, Chatterjee P, Otto M. Alternative approaches to treat bacterial infections: targeting quorum-sensing. Expert Rev Anti Infect Ther 2020; 18:499-510. [PMID: 32243194 PMCID: PMC11032741 DOI: 10.1080/14787210.2020.1750951] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
Introduction: The emergence of multi- and pan-drug-resistant bacteria represents a global crisis that calls for the development of alternative anti-infective strategies. These comprise anti-virulence approaches, which target pathogenicity without exerting a bacteriostatic or bactericidal effect and are claimed to reduce the development of resistance. Because in many pathogens, quorum-sensing (QS) systems control the expression of virulence factors, interference with QS, or quorum-quenching, is often proposed as a strategy with a broad anti-virulence effect.Areas covered: We discuss the role and regulatory targets of QS control in selected Gram-positive and Gram-negative bacteria, focusing on those with clinical importance and QS control of virulence. We present the components of QS systems that form possible targets for the development of anti-virulence drugs and discuss recent research on quorum-quenching approaches to control bacterial infection.Expert opinion: While there has been extensive research on QS systems and quorum-quenching approaches, there is a paucity of in-vivo research using adequate animal models to substantiate applicability. In-vivo research on QS blockers needs to be intensified and optimized to use clinically relevant setups, in order to underscore that such drugs can be used effectively to overcome problems associated with the treatment of severe infections by antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Pipat Piewngam
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, Maryland 20814, USA
| | - Janice Chiou
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, Maryland 20814, USA
| | - Priyanka Chatterjee
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, Maryland 20814, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, Maryland 20814, USA
| |
Collapse
|
10
|
Chbib C. Impact of the structure-activity relationship of AHL analogues on quorum sensing in Gram-negative bacteria. Bioorg Med Chem 2019; 28:115282. [PMID: 31918952 DOI: 10.1016/j.bmc.2019.115282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/05/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023]
Abstract
With the emergence of microbial resistance pathogens, recent research aims at studying new mechanisms of action of antibiotics. This review discusses the mechanisms and types of quorum sensing (QS) inhibitors in Gram negative bacteria. It illustrates all published data available in literature pertaining to novel compounds that showed activity against different targets in the quorum sensing pathways in Gram negative bacteria. A systemic overview has been conducted by searching PubMed, Medline, and the Cochrane Library and data extraction of all quorum sensing inhibitors with their mechanisms of action have been collected. This review will focus on signaling autoinducer AI-1 in Gram negative bacteria. The biological activity of the antagonists is mainly reported as IC50 (the concentration of an inhibitor where the response is reduced by half).
Collapse
Affiliation(s)
- Christiane Chbib
- College of Pharmacy, Larkin University, 18301 North Miami Ave, Miami, FL 33169, United States.
| |
Collapse
|
11
|
Lane JA, Calonne J, Slattery H, Hickey RM. Oligosaccharides Isolated from MGO™ Manuka Honey Inhibit the Adhesion of Pseudomonas aeruginosa, Escherichia Coli O157:H7 and Staphylococcus Aureus to Human HT-29 cells. Foods 2019; 8:E446. [PMID: 31581550 PMCID: PMC6835506 DOI: 10.3390/foods8100446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 01/01/2023] Open
Abstract
Historically, honey is known for its anti-bacterial and anti-fungal activities and its use for treatment of wound infections. Although this practice has been in place for millennia, little information exists regarding which manuka honey components contribute to the protective nature of this product. Given that sugar accounts for over 80% of honey and up to 25% of this sugar is composed of oligosaccharides, we have investigated the anti-infective activity of manuka honey oligosaccharides against a range of pathogens. Initially, oligosaccharides were extracted from a commercially-available New Zealand manuka honey-MGO™ Manuka Honey (Manuka Health New Zealand Ltd)-and characterized by High pH anion exchange chromatography coupled with pulsed amperiometric detection. The adhesion of specific pathogens to the human colonic adenocarcinoma cell line, HT-29, was then assessed in the presence and absence of these oligosaccharides. Manuka honey oligosaccharides significantly reduced the adhesion of Escherichia coli O157:H7 (by 40%), Staphylococcus aureus (by 30%), and Pseudomonas aeruginosa (by 52%) to HT-29 cells. This activity was then proven to be concentration dependent and independent of bacterial killing. This study identifies MGO™ Manuka Honey as a source of anti-infective oligosaccharides for applications in functional foods aimed at lowering the incidence of infectious diseases.
Collapse
Affiliation(s)
- Jonathan A Lane
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland.
| | - Julie Calonne
- Department of Biological Sciences, Cork Institute of Technology, Cork T12 P928, Ireland.
| | - Helen Slattery
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland.
| | - Rita M Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland.
| |
Collapse
|
12
|
Lutein: A potential antibiofilm and antiquorum sensing molecule from green microalga Chlorella pyrenoidosa. Microb Pathog 2019; 135:103658. [PMID: 31398531 DOI: 10.1016/j.micpath.2019.103658] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
Abstract
The increasing resistance of Pseudomonas aeruginosa towards antimicrobial agents has been a major cause for the escalation of untreatable diabetic foot ulcer cases around the globe. This demands research towards alternative natural products that inhibit biofilm formation by P. aeruginosa. The study focuses on enhancing as well as understanding the anti-biofilm property of lutein from Chlorella pyrenoidosa against MTCC strain of P. aeruginosa PAO1. C. pyrenoidosa was subjected to nutrient starvation (N-, S- and P-) and their growth, biomass, chlorophyll pigments and total carotenoids were estimated. Lutein extracted from nutrient starved C. pyrenoidosa were quantified using High Performance Liquid Chromatography (HPLC) and also used for quantification of biofilm formation, cell surface hydrophobicity (CSH), extracellular polymeric substances (EPS) and pyocyanin degradation. The results showed 20 μg/mL concentration of lutein showed maximum inhibition and degradation of biofilm formation, pyocyanin production, Cell Surface Hydrophobicity Extracellular Polymeric Substances, when compared to other concentrations. Azithromycin was used as a standard drug to compare the efficiency of lutein as a potential antibiofilm compound. Docking studies confirmed the interaction of lutein with the four proteins - LasI, LasR, RhlI and RhlR, involved in the quorum sensing mechanism during biofilm formation. Among them, RhlI protein was found to strongly interact and LasI exhibiting the least interaction with lutein. Gene expression analyses of las and rhl genes in P. aeruginosa PAO1 revealed a significant down regulation of both the genes in the cultures treated with different concentrations of lutein. Therefore, it can be understood that lutein is an effective antibiofilm agent and can be used in combination with generic drugs that are used for treating diseases such as diabetic foot ulcers, which are ineffective due to high biofilm forming capability of P. aeruginosa and other bacterial species.
Collapse
|
13
|
Bianchi F, Flisi S, Careri M, Riboni N, Resimini S, Sala A, Conti V, Mattarozzi M, Taddei S, Spadini C, Basini G, Grolli S, Cabassi CS, Ramoni R. Vertebrate odorant binding proteins as antimicrobial humoral components of innate immunity for pathogenic microorganisms. PLoS One 2019; 14:e0213545. [PMID: 30901336 PMCID: PMC6430387 DOI: 10.1371/journal.pone.0213545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/23/2019] [Indexed: 12/13/2022] Open
Abstract
The bacterium Pseudomonas aeruginosa (PA) and the yeast Candida albicans (CA) are pathogens that cohabit the mucosa of the respiratory tracts of animals and humans. Their virulence is largely determined by chemical communication driven by quorum sensing systems (QS), and the cross perception of their quorum sensing molecules (QSM) can modulate the prevalence of one microorganism over the other. Aiming to investigate whether some of the protein components dissolved in the mucus layering the respiratory mucosa might interfere with virulence and cross-communication of these, and eventually other microorganisms, ligand binding assays were carried out to test the scavenging potential of the bovine and porcine forms of the Lipocalin odorant binding protein (OBP) for several QSMs (farnesol, and acylhomoserine lactones), and for pyocyanin, a toxin produced by PA. In addition, the direct antimicrobial activity of the OBPs was tested by time kill assay (TKA) against CA, PA and other bacteria and yeasts. The positivity of all the ligand binding assays and the antimicrobial activity determined for CA, and for some of the other microorganisms tested, let hypothesize that vertebrate OBPs might behave as humoral components of innate immunity, active against pathogenic bacteria and fungi. In addition, TKAs with mutants of bovine OBP with structural properties different from those of the native form, and with OBP forms tagged with histidines at the amino terminal, provided information about the mechanisms responsible of their antimicrobial activity and suggested possible applications of the OBPs as alternative or co-adjuvants to antibiotic therapeutic treatments.
Collapse
Affiliation(s)
- Federica Bianchi
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Sara Flisi
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | - Maria Careri
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Nicolò Riboni
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Silvia Resimini
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | - Andrea Sala
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | - Virna Conti
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | - Monica Mattarozzi
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Simone Taddei
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | - Costanza Spadini
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | - Giuseppina Basini
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | - Stefano Grolli
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | | | - Roberto Ramoni
- Department of Veterinary Sciences, University of Parma, Parma, Italy
- * E-mail: (RR); (CSC)
| |
Collapse
|
14
|
Cheng Y, Yam JKH, Cai Z, Ding Y, Zhang LH, Deng Y, Yang L. Population dynamics and transcriptomic responses of Pseudomonas aeruginosa in a complex laboratory microbial community. NPJ Biofilms Microbiomes 2019; 5:1. [PMID: 30675369 PMCID: PMC6334633 DOI: 10.1038/s41522-018-0076-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 12/13/2018] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa tends to be among the dominant species in multi-species bacterial consortia in diverse environments. To understand P. aeruginosa's physiology and interactions with co-existing bacterial species in different conditions, we established physiologically reproducible 18 species communities, and found that P. aeruginosa dominated in mixed-species biofilm communities but not in planktonic communities. P. aeruginosa's H1 type VI secretion system was highly induced in mixed-species biofilm consortia, compared with its monospecies biofilm, which was further demonstrated to play a key role in P. aeruginosa's enhanced fitness over other bacterial species. In addition, the type IV pili and Psl exopolysaccharide were required for P. aeruginosa to compete with other bacterial species in the biofilm community. Our study showed that the physiology of P. aeruginosa is strongly affected by interspecies interactions, and both biofilm determinants and type VI secretion system contribute to higher P. aeruginosa's fitness over other species in complex biofilm communities.
Collapse
Affiliation(s)
- Yingying Cheng
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore 637551
| | - Joey Kuok Hoong Yam
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore 637551
| | - Zhao Cai
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore 637551
| | - Yichen Ding
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore 637551
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China 510642
| | - Yinyue Deng
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, South China Agricultural University, Guangzhou, China 510642
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore 637551
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore 637551
- School of Medicine, Southern University of Science and Technology, Shenzhen, China 518055
| |
Collapse
|
15
|
Gökalsın B, Aksoydan B, Erman B, Sesal NC. Reducing Virulence and Biofilm of Pseudomonas aeruginosa by Potential Quorum Sensing Inhibitor Carotenoid: Zeaxanthin. MICROBIAL ECOLOGY 2017; 74:466-473. [PMID: 28255686 DOI: 10.1007/s00248-017-0949-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/02/2017] [Indexed: 05/06/2023]
Abstract
Pseudomonas aeruginosa can regulate its virulence gene expressions by using a signal system called quorum sensing. It is known that inhibition of quorum sensing can block biofilm formation and leave the bacteria defenseless. Therefore, it is necessary to determine natural sources to obtain potential quorum sensing inhibitors. This study aims to investigate an alternative treatment approach by utilizing the carotenoid zeaxanthin to reduce the expressions of P. aeruginosa virulence factors through quorum sensing inhibition. The inhibition potential of zeaxanthin was determined by in silico screening from a library of 638 lichen metabolites. Fluorescent monitor strains were utilized for quorum sensing inhibitor screens, and quantitative reverse-transcriptase PCR assay was performed for evaluating gene expression. Results indicate that zeaxanthin is a better inhibitor than the lichen secondary metabolite evernic acid, which was previously shown to be capable of inhibiting P. aeruginosa quorum sensing systems.
Collapse
Affiliation(s)
- Barış Gökalsın
- Department of Biology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Busecan Aksoydan
- Department of Biophysics, Institute of Health Sciences, Bahçeşehir University, Istanbul, Turkey
| | - Burak Erman
- Chemical and Biological Engineering Department, Koç University, Istanbul, Turkey
| | - Nüzhet Cenk Sesal
- Department of Biology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey.
| |
Collapse
|
16
|
Karaguler T, Kahraman H, Tuter M. Analyzing effects of ELF electromagnetic fields on removing bacterial biofilm. Biocybern Biomed Eng 2017. [DOI: 10.1016/j.bbe.2016.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Fong J, Yuan M, Jakobsen TH, Mortensen KT, Delos Santos MMS, Chua SL, Yang L, Tan CH, Nielsen TE, Givskov M. Disulfide Bond-Containing Ajoene Analogues As Novel Quorum Sensing Inhibitors of Pseudomonas aeruginosa. J Med Chem 2016; 60:215-227. [PMID: 27977197 DOI: 10.1021/acs.jmedchem.6b01025] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since its discovery 22 years ago, the bacterial cell-to-cell communication system, termed quorum sensing (QS), has shown potential as antipathogenic target. Previous studies reported that ajoene from garlic inhibits QS in opportunistic human pathogen Pseudomonas aeruginosa. In this study, screening of an in-house compound library revealed two sulfur-containing compounds which possess structural resemblance with ajoene and inhibit QS in bioreporter assay. Following a quantitative structure-activity relationship (SAR) study, 25 disulfide bond-containing analogues were synthesized and tested for QS inhibition activities. SAR study indicated that the allyl group could be replaced with other substituents, with the most active being benzothiazole derivative (IC50 = 0.56 μM). The compounds were able to reduce QS-regulated virulence factors (elastase, rhamnolipid, and pyocyanin) and successfully inhibit P. aeruginosa infection in murine model of implant-associated infection. Altogether, the QS inhibition activity of the synthesized compounds is encouraging for further exploration of novel analogues in antimicrobial drug development.
Collapse
Affiliation(s)
- July Fong
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore.,School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| | - Mingjun Yuan
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| | - Tim Holm Jakobsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen , 2200 København N, Denmark
| | - Kim T Mortensen
- Department of Chemistry, Technical University of Denmark , Kemitorvet, 2800 Kgs Lyngby, Denmark
| | - May Margarette Salido Delos Santos
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| | - Song Lin Chua
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore.,School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore
| | - Choon Hong Tan
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, Singapore 637371, Singapore
| | - Thomas E Nielsen
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore.,Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen , 2200 København N, Denmark
| | - Michael Givskov
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University , 60 Nanyang Drive, Singapore 637551, Singapore.,Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen , 2200 København N, Denmark
| |
Collapse
|
18
|
Gökalsın B, Sesal NC. Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa. World J Microbiol Biotechnol 2016; 32:150. [DOI: 10.1007/s11274-016-2105-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/27/2016] [Indexed: 12/31/2022]
|
19
|
Gutiérrez D, Rodríguez-Rubio L, Martínez B, Rodríguez A, García P. Bacteriophages as Weapons Against Bacterial Biofilms in the Food Industry. Front Microbiol 2016; 7:825. [PMID: 27375566 PMCID: PMC4897796 DOI: 10.3389/fmicb.2016.00825] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/16/2016] [Indexed: 12/23/2022] Open
Abstract
Microbiological contamination in the food industry is often attributed to the presence of biofilms in processing plants. Bacterial biofilms are complex communities of bacteria attached to a surface and surrounded by an extracellular polymeric material. Their extreme resistance to cleaning and disinfecting processes is related to a unique organization, which implies a differential bacterial growth and gene expression inside the biofilm. The impact of biofilms on health, and the economic consequences, has promoted the development of different approaches to control or remove biofilm formation. Recently, successful results in phage therapy have boosted new research in bacteriophages and phage lytic proteins for biofilm eradication. In this regard, this review examines the environmental factors that determine biofilm development in food-processing equipment. In addition, future perspectives for the use of bacteriophage-derived tools as disinfectants are discussed.
Collapse
Affiliation(s)
- Diana Gutiérrez
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones CientíficasVillaviciosa, Spain
| | - Lorena Rodríguez-Rubio
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones CientíficasVillaviciosa, Spain
- Laboratory of Gene Technology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Beatriz Martínez
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones CientíficasVillaviciosa, Spain
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones CientíficasVillaviciosa, Spain
| | - Pilar García
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones CientíficasVillaviciosa, Spain
| |
Collapse
|
20
|
Amara N, Gregor R, Rayo J, Dandela R, Daniel E, Liubin N, Willems HME, Ben-Zvi A, Krom BP, Meijler MM. Fine-Tuning Covalent Inhibition of Bacterial Quorum Sensing. Chembiochem 2016; 17:825-35. [PMID: 26840534 DOI: 10.1002/cbic.201500676] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 01/04/2023]
Abstract
Emerging antibiotic resistance among human pathogens has galvanized efforts to find alternative routes to combat bacterial virulence. One new approach entails interfering with the ability of bacteria to coordinate population-wide gene expression, or quorum sensing (QS), thus inhibiting the production of virulence factors and biofilm formation. We have recently developed such a strategy by targeting LasR, the master regulator of QS in the opportunistic human pathogen Pseudomonas aeruginosa, through the rational design of covalent inhibitors closely based on the core structure of the native ligand. We now report several groups of new inhibitors, one of which, fluoro-substituted ITC-12, displayed complete covalent modification of LasR, as well as effective QS inhibition in vitro and promising in vivo results. In addition to their potential clinical relevance, this series of synthetic QS modulators can be used as a tool to further unravel the complicated QS regulation in P. aeruginosa.
Collapse
Affiliation(s)
- Neri Amara
- Department of Chemistry and, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Rachel Gregor
- Department of Chemistry and, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Josep Rayo
- Department of Chemistry and, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Rambabu Dandela
- Department of Chemistry and, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Erik Daniel
- Department of Chemistry and, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Nina Liubin
- Department of Life Sciences and, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheva, Israel
| | - H Marjo E Willems
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, Free University Amsterdam and the University of Amsterdam, Amsterdam, The Netherlands
| | - Anat Ben-Zvi
- Department of Life Sciences and, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, Free University Amsterdam and the University of Amsterdam, Amsterdam, The Netherlands
| | - Michael M Meijler
- Department of Chemistry and, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| |
Collapse
|
21
|
Gizdavic-Nikolaidis MR, Pagnon JC, Ali N, Sum R, Davies N, Roddam LF, Ambrose M. Functionalized polyanilines disrupt Pseudomonas aeruginosa and Staphylococcus aureus biofilms. Colloids Surf B Biointerfaces 2015; 136:666-73. [DOI: 10.1016/j.colsurfb.2015.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/06/2015] [Accepted: 10/10/2015] [Indexed: 10/22/2022]
|
22
|
Bhargava N, Singh SP, Sharma A, Sharma P, Capalash N. Attenuation of quorum sensing-mediated virulence of Acinetobacter baumannii by Glycyrrhiza glabra flavonoids. Future Microbiol 2015; 10:1953-68. [PMID: 26582430 DOI: 10.2217/fmb.15.107] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AIM To develop an alternative quorum quenching therapy against multidrug-resistant Acinetobacter baumannii. METHODS & RESULTS Activity-guided partially purified fraction (F1) from Glycyrrhiza glabra significantly (p < 0.05) reduced quorum sensing regulated virulence factors of A. baumannii viz. motility, biofilm formation and production of antioxidant enzymes. Mechanistically, F1 downregulated the expression of autoinducer synthase gene, abaI, and consequently reduced (92%) the production of 3-OH-C12-HSL as determined by ESI-MS. Q-TOF and Q-TRAP analyses suggested the presence of flavonoids viz. licoricone, glycyrin and glyzarin as the active ingredients. CONCLUSION This is the first report on quorum quenching activity of G. glabra linked to its flavonoids that downregulated the expression of abaI and attenuated quorum sensing regulated virulence of A. baumannii.
Collapse
Affiliation(s)
- Nidhi Bhargava
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Sukhvinder P Singh
- NSW Department of Primary Industries, Central Coast Primary Industries Centre, Locked Bag 26, Gosford NSW 2250, Australia
| | - Anupam Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
23
|
Boothe DM, Boothe HW. Antimicrobial considerations in the perioperative patient. Vet Clin North Am Small Anim Pract 2015; 45:585-608. [PMID: 25758849 DOI: 10.1016/j.cvsm.2015.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surgical site infections are among the complications that can be reduced with the timely implementation of appropriate antimicrobial therapy. A 3-D approach to judicious antimicrobial use focuses on the de-escalation of systemic antimicrobial therapy, design of dosing regimens, and decontamination of the surgeon, patient, and environment. De-escalation can be accomplished in part through proper antimicrobial prophylaxis. Dosing regimens should be designed to maximize efficacy and minimize resistance. Decontamination includes disinfection of inanimate surfaces and timely application of appropriate antiseptics at concentrations that maximize efficacy.
Collapse
Affiliation(s)
- Dawn Merton Boothe
- Clinical Pharmacology Laboratory, Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL 36849, USA
| | - Harry W Boothe
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, 1220 Wire Road, Auburn, AL 36849, USA.
| |
Collapse
|
24
|
Chourasiya SS, Kathuria D, Singh S, Sonawane VC, Chakraborti AK, Bharatam PV. Design, synthesis and biological evaluation of novel unsymmetrical azines as quorum sensing inhibitors. RSC Adv 2015. [DOI: 10.1039/c5ra12925g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this report, novel unsymmetrical azines have been designed and synthesised by using one pot approach. Further, they were evaluated as quorum sensing inhibitors.
Collapse
Affiliation(s)
- Sumit S. Chourasiya
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| | - Deepika Kathuria
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| | - Shaminder Singh
- Bio-Chemical Engineering Research and Process Development Centre (BERPDC)
- Institute of Microbial Technology (IMTECH)
- India
| | - Vijay C. Sonawane
- Bio-Chemical Engineering Research and Process Development Centre (BERPDC)
- Institute of Microbial Technology (IMTECH)
- India
| | - Asit K. Chakraborti
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| |
Collapse
|
25
|
Carpio IEM, Machado-Santelli G, Sakata SK, Ferreira Filho SS, Rodrigues DF. Copper removal using a heavy-metal resistant microbial consortium in a fixed-bed reactor. WATER RESEARCH 2014; 62:156-166. [PMID: 24952346 DOI: 10.1016/j.watres.2014.05.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/22/2014] [Accepted: 05/25/2014] [Indexed: 06/03/2023]
Abstract
A heavy-metal resistant bacterial consortium was obtained from a contaminated river in São Paulo, Brazil and utilized for the design of a fixed-bed column for the removal of copper. Prior to the design of the fixed-bed bioreactor, the copper removal capacity by the live consortium and the effects of copper in the consortium biofilm formation were investigated. The Langmuir model indicated that the sorption capacity of the consortium for copper was 450.0 mg/g dry cells. The biosorption of copper into the microbial biomass was attributed to carboxyl and hydroxyl groups present in the microbial biomass. The effect of copper in planktonic cells to form biofilm under copper rich conditions was investigated with confocal microscopy. The results revealed that biofilm formed after 72 h exposure to copper presented a reduced thickness by 57% when compared to the control; however 84% of the total cells were still alive. The fixed-bed bioreactor was set up by growing the consortium biofilm on granular activated carbon (GAC) and analyzed for copper removal. The biofilm-GAC (BGAC) column retained 45% of the copper mass present in the influent, as opposed to 17% in the control column that contained GAC only. These findings suggest that native microbial communities in sites contaminated with heavy metals can be immobilized in fixed-bed bioreactors and used to treat metal contaminated water.
Collapse
Affiliation(s)
- Isis E Mejias Carpio
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77004, USA
| | - Glaucia Machado-Santelli
- Instituto de Ciências Biomédicas, Universidade de São Paulo, CEP 05508-000 São Paulo, SP, Brazil
| | - Solange Kazumi Sakata
- Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), CEP 05508-000 São Paulo, SP, Brazil
| | - Sidney Seckler Ferreira Filho
- Departamento de Engenharia Hidráulica e Ambiental, Escola Politécnica, Universidade de São Paulo, CEP 05508-000 São Paulo, SP, Brazil
| | - Debora Frigi Rodrigues
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77004, USA.
| |
Collapse
|
26
|
Laverty G, Gorman SP, Gilmore BF. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation. Pathogens 2014; 3:596-632. [PMID: 25438014 PMCID: PMC4243431 DOI: 10.3390/pathogens3030596] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.
Collapse
Affiliation(s)
- Garry Laverty
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Sean P Gorman
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Brendan F Gilmore
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
27
|
Abstract
Bacterial biofilms play an important role in urinary tract infections (UTIs), being responsible for persistence infections causing relapses and acute prostatitis. Bacterial forming biofilm are difficult to eradicate due to the antimicrobial resistant phenotype that this structure confers being combined therapy recommended for the treatment of biofilm-associated infections. However, the presence of persistent cells showing reduced metabolism that leads to higher levels of antimicrobial resistance makes the search for new therapeutic tools necessary. Here, a review of these new therapeutic approaches is provided including catheters coated with hydrogels or antibiotics, nanoparticles, iontophoresis, biofilm enzyme inhibitors, liposomes, bacterial interference, bacteriophages, quorum sensing inhibitors, low-energy surface acoustic waves, and antiadhesion agents. In conclusion, new antimicrobial drugs that inhibit bacterial virulence and biofilm formation are needed.
Collapse
|
28
|
Shetye GS, Singh N, Jia C, Nguyen CDK, Wang G, Luk YY. Specific Maltose Derivatives Modulate the Swarming Motility of Nonswarming Mutant and Inhibit Bacterial Adhesion and Biofilm Formation byPseudomonas aeruginosa. Chembiochem 2014; 15:1514-23. [DOI: 10.1002/cbic.201402093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Indexed: 11/10/2022]
|
29
|
Alhede M, Bjarnsholt T, Givskov M, Alhede M. Pseudomonas aeruginosa biofilms: mechanisms of immune evasion. ADVANCES IN APPLIED MICROBIOLOGY 2014; 86:1-40. [PMID: 24377853 DOI: 10.1016/b978-0-12-800262-9.00001-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The opportunistic gram-negative bacterium Pseudomonas aeruginosa is implicated in many chronic infections and is readily isolated from chronic wounds, medical devices, and the lungs of cystic fibrosis patients. P. aeruginosa is believed to persist in the host organism due to its capacity to form biofilms, which protect the aggregated, biopolymer-embedded bacteria from the detrimental actions of antibiotic treatments and host immunity. A key component in the protection against innate immunity is rhamnolipid, which is a quorum sensing (QS)-regulated virulence factor. QS is a cell-to-cell signaling mechanism used to coordinate expression of virulence and protection of aggregated biofilm cells. Rhamnolipids are known for their ability to cause hemolysis and have been shown to cause lysis of several cellular components of the human immune system, for example, macrophages and polymorphonuclear leukocytes (PMNs). In this chapter, the interplay between P. aeruginosa and the PMNs in chronic infections is discussed with focus on the role of rhamnolipids and extracellular DNA.
Collapse
Affiliation(s)
- Maria Alhede
- Department of International Health, Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas Bjarnsholt
- Department of International Health, Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Michael Givskov
- Department of International Health, Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Morten Alhede
- Department of International Health, Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
30
|
Abstract
We introduce the field of Hamiltonian medicine, which centres on the roles of genetic relatedness in human health and disease. Hamiltonian medicine represents the application of basic social-evolution theory, for interactions involving kinship, to core issues in medicine such as pathogens, cancer, optimal growth and mental illness. It encompasses three domains, which involve conflict and cooperation between: (i) microbes or cancer cells, within humans, (ii) genes expressed in humans, (iii) human individuals. A set of six core principles, based on these domains and their interfaces, serves to conceptually organize the field, and contextualize illustrative examples. The primary usefulness of Hamiltonian medicine is that, like Darwinian medicine more generally, it provides novel insights into what data will be productive to collect, to address important clinical and public health problems. Our synthesis of this nascent field is intended predominantly for evolutionary and behavioural biologists who aspire to address questions directly relevant to human health and disease.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, CanadaV5A 1S6
| | - Kevin Foster
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Francisco Úbeda
- School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
31
|
Pereira UA, Barbosa LC, Maltha CR, Demuner AJ, Masood MA, Pimenta AL. γ-Alkylidene-γ-lactones and isobutylpyrrol-2(5 H )-ones analogues to rubrolides as inhibitors of biofilm formation by Gram-positive and Gram-negative bacteria. Bioorg Med Chem Lett 2014; 24:1052-6. [DOI: 10.1016/j.bmcl.2014.01.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
|
32
|
Christiaen SE, Matthijs N, Zhang XH, Nelis HJ, Bossier P, Coenye T. Bacteria that inhibit quorum sensing decrease biofilm formation and virulence inPseudomonas aeruginosaPAO1. Pathog Dis 2014; 70:271-9. [DOI: 10.1111/2049-632x.12124] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Nele Matthijs
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| | - Xiao-Hua Zhang
- College of Marine Life Sciences; Ocean University of China; Qingdao China
| | - Hans J. Nelis
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center; Ghent University; Ghent Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| |
Collapse
|
33
|
Abstract
There is a real crisis in healthcare with the emergence of bacterial pathogens resistant to multiple drugs. The drug discovery industry is faced with the challenge of developing new classes of antibiotics that are effective against resistant organisms. Targeting bacterial virulence is one approach that has yet to be fully exploited, and the last decade or so has seen the development of reagents, screens and approaches that could make this possible. Several processes utilized by bacteria to cause infection are employed in a wide range of pathogens and as such may make attractive targets. Inhibitors of such targets would be unlikely to affect host cells, be cross-resistant to existing therapies and induce resistance themselves.
Collapse
Affiliation(s)
- Andrea Marra
- Pfizer Global Research and Development, Antibacterials Discovery, MS8118W-249 Eastern Point Road Groton, CT 06340, USA.
| |
Collapse
|
34
|
Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol 2013; 97:9909-21. [PMID: 24150788 DOI: 10.1007/s00253-013-5216-z] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 12/25/2022]
Abstract
In this review, the strategies being employed to exploit the inherent durability of biofilms and the diverse nutrient cycling of the microbiome for bioremediation are explored. Focus will be given to halogenated compounds, hydrocarbons, pharmaceuticals, and personal care products as well as some heavy metals and toxic minerals, as these groups represent the majority of priority pollutants. For decades, industrial processes have been creating waste all around the world, resulting in contaminated sediments and subsequent, far-reaching dispersal into aquatic environments. As persistent pollutants have accumulated and are still being created and disposed, the incentive to find suitable and more efficient solutions to effectively detoxify the environment is even greater. Indigenous bacterial communities are capable of metabolizing persistent organic pollutants and oxidizing heavy metal contaminants. However, their low abundance and activity in the environment, difficulties accessing the contaminant or nutrient limitations in the environment all prevent the processes from occurring as quickly as desired and thus reaching the proposed clean-up goals. Biofilm communities provide among other things a beneficial structure, possibility for nutrient, and genetic exchange to participating microorganisms as well as protection from the surrounding environment concerning for instance predation and chemical and shear stresses. Biofilms can also be utilized in other ways as biomarkers for monitoring of stream water quality from for instance mine drainage. The durability and structure of biofilms together with the diverse array of structural and metabolic characteristics make these communities attractive actors in biofilm-mediated remediation solutions and ecosystem monitoring.
Collapse
|
35
|
de Lima Pimenta A, Chiaradia-Delatorre LD, Mascarello A, de Oliveira KA, Leal PC, Yunes RA, de Aguiar CBNM, Tasca CI, Nunes RJ, Smânia A. Synthetic organic compounds with potential for bacterial biofilm inhibition, a path for the identification of compounds interfering with quorum sensing. Int J Antimicrob Agents 2013; 42:519-23. [PMID: 24016798 DOI: 10.1016/j.ijantimicag.2013.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/26/2013] [Accepted: 07/11/2013] [Indexed: 01/06/2023]
Abstract
New unconventional approaches to the development of antimicrobial drugs must target inhibition of infection stages leading to host colonisation or virulence itself, rather than bacterial viability. Amongst the most promising unconventional targets for the development of new antimicrobial drugs is bacterial adherence and biofilm formation as well as their control system, the quorum-sensing (QS) system, a mechanism of communication used to co-ordinate bacterial activities. Here we describe the evaluation of synthetic organic compounds as bacterial biofilm inhibitors against a panel of clinically relevant Gram-positive and Gram-negative bacterial strains. This approach has successfully allowed the identification of five compounds (GEt, GHex, GOctad, G19 and C33) active not only against bacterial biofilms but also displaying potential to be used as antagonists and/or inhibitors of bacterial QS.
Collapse
Affiliation(s)
- Andréa de Lima Pimenta
- Laboratório de Antibióticos, MIP, Universidade Federal de Santa Catarina (UFSC), Campus Trindade, CEP: 88040-900 Florianópolis, SC, Brazil; Departamento de Odontologia, CEPID, CCS, Universidade Federal de Santa Catarina (UFSC), Campus Trindade, CEP: 88040-900 Florianópolis, SC, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wahjudi M, Murugappan S, van Merkerk R, Eissens AC, Visser MR, Hinrichs WL, Quax WJ. Development of a dry, stable and inhalable acyl–homoserine–lactone–acylase powder formulation for the treatment of pulmonary Pseudomonas aeruginosa infections. Eur J Pharm Sci 2013; 48:637-43. [DOI: 10.1016/j.ejps.2012.12.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/01/2012] [Accepted: 12/20/2012] [Indexed: 02/02/2023]
|
37
|
Sarabhai S, Sharma P, Capalash N. Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS One 2013; 8:e53441. [PMID: 23320085 PMCID: PMC3539995 DOI: 10.1371/journal.pone.0053441] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/28/2012] [Indexed: 11/25/2022] Open
Abstract
Background Burgeoning antibiotic resistance in Pseudomonas aeruginosa has necessitated the development of anti pathogenic agents that can quench acylhomoserine lactone (AHL) mediated QS with least risk of resistance. This study explores the anti quorum sensing potential of T. chebula Retz. and identification of probable compounds(s) showing anti QS activity and the mechanism of attenuation of P. aeruginosa PAO1 virulence factors. Methods and Results Methanol extract of T. chebula Retz. fruit showed anti QS activity using Agrobacterium tumefaciens A136. Bioactive fraction (F7), obtained by fractionation of methanol extract using Sephadex LH20, showed significant reduction (p<0.001) in QS regulated production of extracellular virulence factors in P. aeruginosa PAO1. Biofilm formation and alginate were significantly (p<0.05) reduced with enhanced (20%) susceptibility to tobramycin. Real Time PCR of F7 treated P. aeruginosa showed down regulation of autoinducer synthase (lasI and rhlI) and their cognate receptor (lasR and rhlR) genes by 89, 90, 90 and 93%, respectively. Electrospray Ionization Mass Spectrometry also showed 90 and 64% reduction in the production of 3-oxo-C12HSL and C4HSL after treatment. Decrease in AHLs as one of the mechanisms of quorum quenching by F7 was supported by the reversal of inhibited swarming motility in F7-treated P. aeruginosa PAO1 on addition of C4HSL. F7 also showed antagonistic activity against 3-oxo-C12HSL-dependent QS in E. coli bioreporter. C. elegans fed on F7-treated P. aeruginosa showed enhanced survival with LT50 increasing from 24 to 72 h. LC-ESI-MS of F7 revealed the presence of ellagic acid derivatives responsible for anti QS activity in T. chebula extract. Conclusions This is the first report on anti QS activity of T. chebula fruit linked to EADs which down regulate the expression of lasIR and rhlIR genes with concomitant decrease in AHLs in P. aeruginosa PAO1 causing attenuation of its virulence factors and enhanced sensitivity of its biofilm towards tobramycin.
Collapse
Affiliation(s)
- Sajal Sarabhai
- Department of Microbiology, Panjab University, Chandigarh, India
| | | | | |
Collapse
|
38
|
Shetye GS, Singh N, Gao X, Bandyopadhyay D, Yan A, Luk YY. Structures and biofilm inhibition activities of brominated furanones for Escherichia coli and Pseudomonas aeruginosa. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00059a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Gomes J, Grunau A, Lawrence AK, Eberl L, Gademann K. Bioinspired, releasable quorum sensing modulators. Chem Commun (Camb) 2012; 49:155-7. [PMID: 23169441 DOI: 10.1039/c2cc37287h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate the synthesis and immobilization of natural product hybrids featuring an acyl-homoserine lactone and a nitrodopamine onto biocompatible TiO(2) surfaces through an operationally simple dip-and-rinse procedure. The resulting immobilized hybrids were shown to be powerful quorum sensing (QS) activators in Pseudomonas strains acting by slow release from the surface.
Collapse
Affiliation(s)
- José Gomes
- Department of Chemistry, NCCR Chemical Biology, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
40
|
Mallegol J, Duncan C, Prashar A, So J, Low DE, Terebeznik M, Guyard C. Essential roles and regulation of the Legionella pneumophila collagen-like adhesin during biofilm formation. PLoS One 2012; 7:e46462. [PMID: 23029523 PMCID: PMC3460888 DOI: 10.1371/journal.pone.0046462] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 08/31/2012] [Indexed: 11/19/2022] Open
Abstract
Legionellosis is mostly caused by Legionella pneumophila (Lp) and is defined by a severe respiratory illness with a case fatality rate ranging from 5 to 80%. In a previous study, we showed that a glycosaminoglycan (GAG)-binding adhesin of Lp, named Lcl, is produced during legionellosis and is unique to the L. pneumophila species. Importantly, a mutant depleted in Lcl (Δlpg2644) is impaired in adhesion to GAGs and epithelial cells and in biofilm formation. Here, we examine the molecular function(s) of Lcl and the transcriptional regulation of its encoding gene during different stages of the biofilm development. We show that the collagen repeats and the C-terminal domains of Lcl are crucial for the production of biofilm. We present evidence that Lcl is involved in the early step of surface attachment but also in intercellular interactions. Furthermore, we address the relationship between Lcl gene regulation during biofilm formation and quorum sensing (QS). In a static biofilm assay, we show that Lcl is differentially regulated during growth phases and biofilm formation. Moreover, we show that the transcriptional regulation of lpg2644, mediated by a prototype of QS signaling homoserine lactone (3OC12-HSL), may play a role during the biofilm development. Thus, transcriptional down-regulation of lpg2644 may facilitate the dispersion of Lp to reinitiate biofilm colonization on a distal surface.
Collapse
Affiliation(s)
- Julia Mallegol
- Ontario Agency for Health Protection and Promotion (OAHPP), Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Carla Duncan
- Ontario Agency for Health Protection and Promotion (OAHPP), Toronto, Ontario, Canada
| | - Akriti Prashar
- Cells and System Biology and Department of Biological Sciences, University of Toronto at Scarborough, Toronto, Ontario, Canada
| | - Jannice So
- Ontario Agency for Health Protection and Promotion (OAHPP), Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Donald E. Low
- Ontario Agency for Health Protection and Promotion (OAHPP), Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Mauricio Terebeznik
- Cells and System Biology and Department of Biological Sciences, University of Toronto at Scarborough, Toronto, Ontario, Canada
| | - Cyril Guyard
- Ontario Agency for Health Protection and Promotion (OAHPP), Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Kim J, Hegde M, Kim SH, Wood TK, Jayaraman A. A microfluidic device for high throughput bacterial biofilm studies. LAB ON A CHIP 2012; 12:1157-1163. [PMID: 22318368 DOI: 10.1039/c2lc20800h] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bacteria are almost always found in ecological niches as matrix-encased, surface-associated, multi-species communities known as biofilms. It is well established that soluble chemical signals produced by the bacteria influence the organization and structure of the biofilm; therefore, there is significant interest in understanding how different chemical signals are coordinately utilized for community development. Conventional methods for investigating biofilm formation such as macro-scale flow cells are low-throughput, require large volumes, and do not allow spatial and temporal control of biofilm community formation. Here, we describe the development of a PDMS-based two-layer microfluidic flow cell (μFC) device for investigating bacterial biofilm formation and organization in response to different concentrations of soluble signals. The μFC device contains eight separate microchambers for cultivating biofilms exposed to eight different concentrations of signals through a single diffusive mixing-based concentration gradient generator. The presence of pneumatic valves and a separate cell seeding port that is independent from gradient-mixing channels offers complete isolation of the biofilm microchamber from the gradient mixer, and also performs well under continuous, batch or semi-batch conditions. We demonstrate the utility of the μFC by studying the effect of different concentrations of indole-like biofilm signals (7-hydroxyindole and isatin), either individually or in combination, on biofilm development of pathogenic E. coli. This model can be used for developing a fundamental understanding of events leading to bacterial attachment to surfaces that are important in infections and chemicals that influence the biofilm formation or inhibition.
Collapse
Affiliation(s)
- Jeongyun Kim
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | | | | | | | | |
Collapse
|
42
|
Ramesh D, Shekhar V, Chantibabu D, Rajaram S, Ramulu U, Venkateswarlu Y. First stereoselective total synthesis of pectinolide H. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2011.12.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
43
|
Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Appl Environ Microbiol 2012; 78:2410-21. [PMID: 22286987 DOI: 10.1128/aem.05992-11] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Foods with health-promoting effects beyond nutritional values have been gaining increasing research focus in recent years, although not much has been published on this subject in relation to bacterial infections. With respect to treatment, a novel antimicrobial strategy, which is expected to transcend problems with selective pressures for antibiotic resistance, is to interrupt bacterial communication, also known as quorum sensing (QS), by means of signal antagonists, the so-called QS inhibitors (QSIs). Furthermore, QSI agents offer a potential solution to the deficiencies associated with use of traditional antibiotics to treat infections caused by bacterial biofilms and multidrug-resistant bacteria. Several QSIs of natural origin have been identified, and in this study, several common food products and plants were extracted and screened for QSI activity in an attempt to isolate and characterize previously unknown QSI compounds active against the common opportunistic pathogen Pseudomonas aeruginosa. Several extracts displayed activity, but horseradish exhibited the highest activity. Chromatographic separation led to the isolation of a potent QSI compound that was identified by liquid chromatography-diode array detector-mass spectrometry (LC-DAD-MS) and nuclear magnetic resonance (NMR) spectroscopy as iberin-an isothiocyanate produced by many members of the Brassicaceae family. Real-time PCR (RT-PCR) and DNA microarray studies showed that iberin specifically blocks expression of QS-regulated genes in P. aeruginosa.
Collapse
|
44
|
Le Quement ST, Flagstad T, Mikkelsen RJT, Hansen MR, Givskov MC, Nielsen TE. Petasis three-component coupling reactions of hydrazides for the synthesis of oxadiazolones and oxazolidinones. Org Lett 2012; 14:640-3. [PMID: 22233295 DOI: 10.1021/ol203280b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An application of readily available hydrazides in the Petasis 3-component coupling reaction is presented. An investigation of the substrate scope was performed to establish a general, synthetically useful protocol for the formation of hydrazido alcohols, which were selectively converted to oxazolidinone and oxadiazolone ring systems through triphosgene-mediated cyclization reactions.
Collapse
|
45
|
Leid JG, Cope E. Population level virulence in polymicrobial communities associated with chronic disease. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11515-011-1153-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
46
|
Host derived inflammatory phospholipids regulate rahU (PA0122) gene, protein, and biofilm formation in Pseudomonas aeruginosa. Cell Immunol 2011; 270:95-102. [PMID: 21679933 DOI: 10.1016/j.cellimm.2011.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/12/2011] [Accepted: 04/27/2011] [Indexed: 01/12/2023]
Abstract
This study describes the role of "inflammatory" oxidized (Ox) phospholipids in regulation of rahU (PA0122) expression and biofilm formation in Pseudomonas aeruginosa (383) wild type (rahU(+)) and rahU mutant (rahU(-)) strains. Functional analysis of RahU protein from P. aeruginosa in presence of Ox-phospholipids show: (a) LysoPC modulates RahU gene/and protein expression in rahU(+) cells; (b) rahU promoter activity is increased by lysoPC and inhibited by PAPC, Ox-PAPC and arachidonic acid; the latter inhibitory effect can be reversed by lysoPC, which was enzymatically derived from PAPC; (c) biofilm formation increased in rahU(-) cells as compared to rahU(+); and (d) inhibition of rahU promoter activity by PAPC and AA (but not lysoPC) showed significantly augmented biofilm formation in rahU(+) but not in rahU(-) cells. This study shows that host derived Ox-phospholipids affect P. aeruginosa-rahU gene and protein expression, which in turn modulates biofilm formation. The accompanying paper describes the role of RahU protein in eukaryotic-host cells.
Collapse
|
47
|
Gliszczyńska A, Świtalska M, Wietrzyk J, Wawrzenczyk C. Synthesis of a Natural γ-Butyrolactone from Nerylacetone by Acremonium roseum and Fusarium oxysporum Cultures. Nat Prod Commun 2011. [DOI: 10.1177/1934578x1100600313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Natural γ-butyrolactone - (4 R, 5 R)-5-(4′-methyl-3′pentenyl)-4-hydroxy-5-methyl-dihydrofuran-2-one (2) was isolated as the product of microbial transformation of nerylacetone (1) by fungal strains. This product was obtained as the enantiomer (+) in high yields 24% and 61% with ee=94% and 82% by the biotransformation in the cultures of Acremonium roseum AM336 and Fusarium oxysporum AM13 respectively.
Collapse
Affiliation(s)
- Anna Gliszczyńska
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland
| | - Marta Świtalska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Experimental Oncology, Weigla 12, 53-114 Wrocłtaw, Poland
| | - Joanna Wietrzyk
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Experimental Oncology, Weigla 12, 53-114 Wrocłtaw, Poland
| | - Czesłtaw Wawrzenczyk
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland
| |
Collapse
|
48
|
Lin L, Tan RX. Cross-kingdom actions of phytohormones: a functional scaffold exploration. Chem Rev 2011; 111:2734-60. [PMID: 21250668 DOI: 10.1021/cr100061j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lan Lin
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| | | |
Collapse
|
49
|
Goryachev AB. Understanding bacterial cell-cell communication with computational modeling. Chem Rev 2010; 111:238-50. [PMID: 21175123 DOI: 10.1021/cr100286z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew B Goryachev
- Centre for Systems Biology, School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, United Kingdom.
| |
Collapse
|
50
|
Black CE, Costerton JW. Current concepts regarding the effect of wound microbial ecology and biofilms on wound healing. Surg Clin North Am 2010; 90:1147-60. [PMID: 21074033 DOI: 10.1016/j.suc.2010.08.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Biofilms are a collection of microbes that adhere to surfaces by manufacturing a matrix that shields them from environmental elements. Wound biofilms are difficult to evaluate clinically, and standard culture methods are inadequate for capturing the true bioburden present in the biofilm. New molecular techniques provide the means for rapid detection and evaluation of wound biofilms, and may prove to be useful in the clinical setting. Studies have shown that many commercial topical agents and wound dressings in use are ineffective against the biofilm matrix. At this stage, mechanical debridement appears to be essential in the eradication of a wound biofilm. Topical antimicrobial agents and antibiotics may be effective in the treatment of the wound bed after debridement in the prevention of biofilm reformation.
Collapse
Affiliation(s)
- Carrie E Black
- Department of General Surgery, General Surgery Residency Program, Marshfield Clinic, 1000 North Oak Avenue, Marshfield, WI 54449, USA
| | | |
Collapse
|