1
|
Huang Y, Wang J, Yang W, Hou F, Feng X. Precision therapeutic targets for HPV-positive cancers: an overview and new insights. Infect Agent Cancer 2025; 20:17. [PMID: 40069817 PMCID: PMC11900425 DOI: 10.1186/s13027-025-00641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/26/2025] [Indexed: 03/14/2025] Open
Abstract
The increasing incidence and mortality rates of HPV-positive cancers, particularly HPV-positive head and neck cancer, in recent years have emphasized the pressing need for more efficacious treatment options. Recent studies have elucidated the molecular distinctions between HPV-positive and HPV-negative cancers, which are crucial for developing precise and effective therapeutic strategies. This review updates the most recent findings on the molecular variances between HPV-positive and HPV-negative cancers, evaluates current treatments for HPV-positive cancers, and summarizes emerging frontiers in HPV-targeted therapies aimed at developing more effective and precise interventions against these cancers.
Collapse
Affiliation(s)
- Yixi Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiayi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenbin Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofaical Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Feifei Hou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Matucci-Cerinic C, Herzum A, Ciccarese G, Rosina S, Caorsi R, Gattorno M, Occella C, Viglizzo G, Volpi S. Therapeutic Role of HPV Vaccination on Benign HPV-induced Epithelial Proliferations in Immunocompetent and Immunocompromised Patients: Case Study and Review of the Literature. Open Forum Infect Dis 2024; 11:ofae369. [PMID: 39035570 PMCID: PMC11259138 DOI: 10.1093/ofid/ofae369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Indexed: 07/23/2024] Open
Abstract
Human papillomavirus (HPV) vaccination represents a milestone in primary prevention of sexually transmitted infections. However, little is known about its possible effects on already established HPV infections. We report the case of a 9-year-old immunosuppressed girl with refractory warts, successfully treated with the nonavalent-HPV vaccine and review the literature about the therapeutic effects of HPV vaccination on benign HPV-induced epithelial proliferations in immunocompetent and immunosuppressed patients. In the literature, promising results were shown on cutaneous warts after HPV vaccination, especially in children and young adults, also in immunosuppressed patients, whereas controverse results were found on anogenital warts. These findings suggest a critical need for randomized clinical trials to assess the efficacy of HPV vaccination in the treatment of benign HPV-induced epithelial proliferations.
Collapse
Affiliation(s)
- Caterina Matucci-Cerinic
- DINOGMI, University of Genoa, Genoa, Italy
- UOC Rheumatology and Autoinflammatory diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Astrid Herzum
- UOC Dermatology and Angioma Center, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giulia Ciccarese
- UOC Dermatologia e Venereologia, Dipartimento di Scienze Mediche e Chirugiche, Università degli Studi di Foggia e Policlinico Riuniti, Foggia, Italy
| | - Silvia Rosina
- UOC Rheumatology and Autoinflammatory diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Roberta Caorsi
- DINOGMI, University of Genoa, Genoa, Italy
- UOC Rheumatology and Autoinflammatory diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Gattorno
- UOC Rheumatology and Autoinflammatory diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Corrado Occella
- UOC Dermatology and Angioma Center, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianmaria Viglizzo
- UOC Dermatology and Angioma Center, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Volpi
- DINOGMI, University of Genoa, Genoa, Italy
- UOC Rheumatology and Autoinflammatory diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
3
|
Kim CJ, Campbell SP, Allkanjari A, Lentz AC. Update on the Medical and Surgical Management of Urethral Condyloma. Sex Med Rev 2021; 10:240-254. [PMID: 33752995 DOI: 10.1016/j.sxmr.2021.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Condyloma acuminata (CA) of the urethra presents a management challenge due to high recurrence rates, difficulty in accessing urethral lesions, risk of stricture formation, and potential for sexual dysfunction. While standard treatment modalities are acceptable for some external genital condyloma, they are not always feasible or appropriate for urethral lesions. OBJECTIVES We sought to review the literature on epidemiology, presentation, diagnosis and treatment of urothelial CA with a focus on surgical treatment options. METHODS We performed a comprehensive literature search of PubMed to identify all studies pertaining to urethral CA through November 2020. RESULTS Urethral CA is a relatively rare, but challenging disease to manage with a considerable amount of treatment side effects and downstream morbidity associated. In our comprehensive review we have found a wide selection of treatment modalities ranging from minimally invasive strategies to surgical reconstructive techniques. Proper follow-up to monitor for disease recurrence at the 3-4 month mark is appropriate and will determine subsequent treatment strategies as needed. Future studies and treatment directions include novel drug delivery models to optimize minimally invasive topical drug efficacy. CONCLUSION Treatment of urethral CA should be approached in a step-wise fashion. Medical therapy would be an appropriate option for asymptomatic or minimally symptomatic patients with small lesions who desire to avoid any interventions. If patient is symptomatic, has extensive disease burden or has failed medical therapy intervention should be considered with options including PDT, laser ablation or surgical excision with or without urethral reconstruction. Appropriate selection depends on patient characteristics and preferences along with prior treatment history. Kim CJ, Campbell SP, Allkanjari A, et al. Update on the Medical and Surgical Management of Urethral Condyloma. Sex Med Rev 2021;xxx:xxx-xxx.
Collapse
Affiliation(s)
- Christopher J Kim
- Division of Urologic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Scott P Campbell
- Division of Urologic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Armand Allkanjari
- Division of Urologic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Aaron C Lentz
- Division of Urologic Surgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
4
|
Kechichian E, Helou E, Sarkis J, Hayek C, Labaki C, Nemr E, Tomb R. The place of 5-aminolaevulinic acid-photodynamic therapy in the treatment landscape of urethral warts: A systematic review. Photodiagnosis Photodyn Ther 2021; 33:102204. [PMID: 33529745 DOI: 10.1016/j.pdpdt.2021.102204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/27/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Human papilloma virus (HPV) infection is the most common sexually transmitted disease worldwide and the main cause of genital warts. Clear recommendations for the management of urethral warts, which are often hard to detect and difficult to treat, are still lacking. OBJECTIVE To summarize all available data describing treatment modalities of urethral warts, compare their efficacy and side effects, and provide physicians a treatment strategy outline. MATERIAL AND METHODS Till June 2020, we conducted a systematic review of articles studying the different treatment modalities of urethral condylomas. A chi-square test was used to compare the recurrence rates between treatment modalities, the complete clearance rates at first follow-up and the rates of adverse events. RESULTS A total of 26 articles with 1730 patients were included in our review. 61 % of patients were deemed completely cured on the first follow-up while 21 % recurred. 5-aminolevulinic acid (ALA) mediated photodynamic therapy (PDT) was the most common treatment and yielded the lowest recurrence rate (7.5 %) followed by laser therapy (24 %) and topical therapy (31 %) (p < 0.01). ALA-PDT resulted in a higher rate of clearance on follow up (96 %) compared to laser therapy (69 %) and topical therapy (14 %) (p < 0.01). Adverse events were more frequent in the ALA-PDT group (69 %) compared to laser therapy (28 %) and topical treatment (30 %) (p < 0.01). CONCLUSION ALA-PDT appears to be the most effective treatment of urethral condylomas in term of clearance and recurrence rate, but with a higher risk of adverse events. Management should be tailored to the type of lesion found at presentation.
Collapse
Affiliation(s)
- Elio Kechichian
- Department of Dermatology, Saint-Joseph University, Beirut, Lebanon.
| | - Elie Helou
- Department of Urology, Saint-Joseph University, Beirut, Lebanon
| | - Julien Sarkis
- Department of Urology, Saint-Joseph University, Beirut, Lebanon
| | - Claude Hayek
- Department of Dermatology, Saint-Joseph University, Beirut, Lebanon
| | - Chris Labaki
- Department of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - Elie Nemr
- Department of Urology, Saint-Joseph University, Beirut, Lebanon
| | - Roland Tomb
- Department of Dermatology, Saint-Joseph University, Beirut, Lebanon
| |
Collapse
|
5
|
Kardani K, Basimi P, Fekri M, Bolhassani A. Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development. Expert Rev Clin Pharmacol 2020; 13:1001-1046. [PMID: 32838584 DOI: 10.1080/17512433.2020.1814743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The sexually transmitted infections (STIs) caused by viruses including human T cell leukemia virus type-1 (HTLV-1), human immunodeficiency virus-1 (HIV-1), human simplex virus-2 (HSV-2), hepatitis C virus (HCV), hepatitis B virus (HBV), and human papillomavirus (HPV) are major public health issues. These infections can cause cancer or result in long-term health problems. Due to high prevalence of STIs, a safe and effective vaccine is required to overcome these fatal viruses. AREAS COVERED This review includes a comprehensive overview of the literatures relevant to vaccine development against the sexually transmitted viruses (STVs) using PubMed and Sciencedirect electronic search engines. Herein, we discuss the efforts directed toward development of effective vaccines using different laboratory animal models including mice, guinea pig or non-human primates in preclinical trials, and human in clinical trials with different phases. EXPERT OPINION There is no effective FDA approved vaccine against the sexually transmitted viruses (STVs) except for HBV and HPV as prophylactic vaccines. Many attempts are underway to develop vaccines against these viruses. There are several approaches for improving prophylactic or therapeutic vaccines such as heterologous prime/boost immunization, delivery system, administration route, adjuvants, etc. In this line, further studies can be helpful for understanding the immunobiology of STVs in human. Moreover, development of more relevant animal models is a worthy goal to induce effective immune responses in humans.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Parya Basimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Mehrshad Fekri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| |
Collapse
|
6
|
Pham CT, Juhasz M, Sung CT, Mesinkovska NA. The human papillomavirus vaccine as a treatment for human papillomavirus-related dysplastic and neoplastic conditions: A literature review. J Am Acad Dermatol 2019; 82:202-212. [PMID: 31085272 DOI: 10.1016/j.jaad.2019.04.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND Human papillomavirus (HPV) infections are associated with common dermatologic and nondermatologic diseases. Although HPV vaccines are well established as preventive measures for genital warts and cervical neoplasia, their use as therapeutic agents deserves greater attention. OBJECTIVE To evaluate the use of HPV vaccine(s) as a treatment modality for cutaneous and/or mucosal disease. METHODS A primary literature search using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was conducted in January 2019 by using the PubMed and Cochrane databases. RESULTS A total of 63 articles with 4439 patients were included. The majority of patients with cutaneous warts, recurrent respiratory papillomatosis, and squamous and basal cell carcinomas were successfully treated with HPV vaccination. Preliminary data on patients with pre-existing anogenital warts, cervical intraepithelial neoplasia, anal intraepithelial neoplasia, and vulvar intraepithelial neoplasia is promising. LIMITATIONS This review was limited by the lack of controls, patients' previous HPV vaccination status, and publication bias. CONCLUSION The commercially available three-dose, quadrivalent HPV vaccine is a potential therapeutic option for the treatment of cutaneous warts, recurrent respiratory papillomatosis, and squamous and basal cell carcinomas. Noncommercially available HPV vaccines demonstrate therapeutic response for treating anogenital warts, cervical intraepithelial neoplasia, anal intraepithelial neoplasia, and vulvar intraepithelial neoplasia. The vaccine's efficacy as an adjunct therapy for HPV-associated cutaneous and/or mucosal disease warrants further exploration.
Collapse
Affiliation(s)
- Christine T Pham
- University of California, Irvine School of Medicine, Irvine, California; Department of Dermatology, University of California, Irvine, California.
| | - Margit Juhasz
- Department of Dermatology, University of California, Irvine, California
| | - Calvin T Sung
- University of California, Riverside School of Medicine, Riverside, California
| | | |
Collapse
|
7
|
Cabo Beltran OR, Rosales Ledezma R. MVA E2 therapeutic vaccine for marked reduction in likelihood of recurrence of respiratory papillomatosis. Head Neck 2019; 41:657-665. [PMID: 30605254 PMCID: PMC6590416 DOI: 10.1002/hed.25477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/20/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022] Open
Abstract
Background Recurrent respiratory papillomatosis (RRP) or laryngeal papillomatosis is a disease caused by papillomavirus infection. Methods In this phase I/II clinical trial, we evaluated the efficacy of the modified vaccinia Ankara (MVA) E2 virus in the treatment of RRP. Twenty‐nine patients (18 female and 11 male) underwent injection of MVA E2 directly into the borders of the vocal cords where lesions were seen and were monitored by direct laryngoscopy. The immune response was assessed by the determination of CD3+, CD4+, and CD8+ lymphocytes counts. The presence of papillomavirus was determined by polymerase chain reaction analysis. Results Lesions were completely eliminated in 13 patients (44.8%). In 16 patients (55.2%), lesions recurred between 6 and 18 months after treatment; these patients received a second round of treatment with MVA E2, and they are not seen with new recurrences. Conclusion The MVA E2 vaccine has excellent potential for generating complete regression of RRP lesions.
Collapse
|
8
|
Jabbar B, Rafique S, Salo-Ahen OMH, Ali A, Munir M, Idrees M, Mirza MU, Vanmeert M, Shah SZ, Jabbar I, Rana MA. Antigenic Peptide Prediction From E6 and E7 Oncoproteins of HPV Types 16 and 18 for Therapeutic Vaccine Design Using Immunoinformatics and MD Simulation Analysis. Front Immunol 2018; 9:3000. [PMID: 30619353 PMCID: PMC6305797 DOI: 10.3389/fimmu.2018.03000] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Abstract
Human papillomavirus (HPV) induced cervical cancer is the second most common cause of death, after breast cancer, in females. Three prophylactic vaccines by Merck Sharp & Dohme (MSD) and GlaxoSmithKline (GSK) have been confirmed to prevent high-risk HPV strains but these vaccines have been shown to be effective only in girls who have not been exposed to HPV previously. The constitutively expressed HPV oncoproteins E6 and E7 are usually used as target antigens for HPV therapeutic vaccines. These early (E) proteins are involved, for example, in maintaining the malignant phenotype of the cells. In this study, we predicted antigenic peptides of HPV types 16 and 18, encoded by E6 and E7 genes, using an immunoinformatics approach. To further evaluate the immunogenic potential of the predicted peptides, we studied their ability to bind to class I major histocompatibility complex (MHC-I) molecules in a computational docking study that was supported by molecular dynamics (MD) simulations and estimation of the free energies of binding of the peptides at the MHC-I binding cleft. Some of the predicted peptides exhibited comparable binding free energies and/or pattern of binding to experimentally verified MHC-I-binding epitopes that we used as references in MD simulations. Such peptides with good predicted affinity may serve as candidate epitopes for the development of therapeutic HPV peptide vaccines.
Collapse
Affiliation(s)
- Basit Jabbar
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shazia Rafique
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Outi M H Salo-Ahen
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland.,Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, Turku, Finland
| | - Amjad Ali
- Department of Genetics, Hazara University, Mansehra, Pakistan
| | - Mobeen Munir
- Division of Science and Technology, University of Education Lahore, Lahore, Pakistan
| | - Muhammad Idrees
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.,Hazara University, Mansehra, Pakistan
| | - Muhammad Usman Mirza
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Michiel Vanmeert
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Syed Zawar Shah
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Iqra Jabbar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
9
|
Dadar M, Chakraborty S, Dhama K, Prasad M, Khandia R, Hassan S, Munjal A, Tiwari R, Karthik K, Kumar D, Iqbal HMN, Chaicumpa W. Advances in Designing and Developing Vaccines, Drugs and Therapeutic Approaches to Counter Human Papilloma Virus. Front Immunol 2018; 9:2478. [PMID: 30483247 PMCID: PMC6240620 DOI: 10.3389/fimmu.2018.02478] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/08/2018] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) is a viral infection with skin-to-skin based transmission mode. HPV annually caused over 500,000 cancer cases including cervical, anogenital and oropharyngeal cancer among others. HPV vaccination has become a public-health concern, worldwide, to prevent the cases of HPV infections including precancerous lesions, cervical cancers, and genital warts especially in adolescent female and male population by launching national programs with international alliances. Currently, available prophylactic and therapeutic vaccines are expensive to be used in developing countries for vaccination programs. The recent progress in immunotherapy, biotechnology, recombinant DNA technology and molecular biology along with alternative and complementary medicinal systems have paved novel ways and valuable opportunities to design and develop effective prophylactic and therapeutic vaccines, drugs and treatment approach to counter HPV effectively. Exploration and more researches on such advances could result in the gradual reduction in the incidences of HPV cases across the world. The present review presents a current global scenario and futuristic prospects of the advanced prophylactic and therapeutic approaches against HPV along with recent patents coverage of the progress and advances in drugs, vaccines and therapeutic regimens to effectively combat HPV infections and its cancerous conditions.
Collapse
Affiliation(s)
- Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, West Tripura, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Minakshi Prasad
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Sameer Hassan
- Department of Biomedical Informatics, National Institute for Research in Tuberculosis, Indian Council of Medical Research, Chennai, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, U P Pt. Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Faculty of Medicine SIriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
10
|
Taberna M, Mena M, Pavón MA, Alemany L, Gillison ML, Mesía R. Human papillomavirus-related oropharyngeal cancer. Ann Oncol 2018. [PMID: 28633362 DOI: 10.1093/annonc/mdx304] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
High-risk human papillomavirus (HPV) is now recognised as the principal cause of the increasing incidence rates of oropharyngeal squamous cell carcinoma (OPSCC) in some parts of the world. The primary risk factor for developing HPV-related OPSCC is oral HPV-infection and the majority of oral HPV-infections are acquired by oral sex. Progression into an OPSCC includes persistent infection with evasion of immune response in the microenvironment, the activation of viral early genes (E6, E7) in basal epithelial cells, the deregulation of cell cycle and the accumulation of chromosomal instability. Patients affected by HPV-related OPSCC tend to be younger and have better outcomes. This observation has lead current research to evaluate treatment de-escalation options to reduce long-term associated morbidity. Moreover, a different molecular profile for HPV-related OPSCC has been described, opening new options for targeted therapy and immunotherapy approaches. This paper comprehensively reviews our accumulated knowledge regarding the role of HPV in OPSCC spanning from infection to cancer development, including its clinical diagnosis, management and preventive strategies.
Collapse
Affiliation(s)
- M Taberna
- Department of Medical Oncology;; Cancer Epidemiology Research Program, IDIBELL, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona;; Department of Medicine, University of Barcelona, Barcelona;.
| | - M Mena
- Cancer Epidemiology Research Program, IDIBELL, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona;; CIBER in primary and secondary prevention of viral induced cancers (CIBERONC), Madrid, Spain
| | - M A Pavón
- Cancer Epidemiology Research Program, IDIBELL, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona
| | - L Alemany
- Cancer Epidemiology Research Program, IDIBELL, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona;; Epidemiology and Public Health, Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - M L Gillison
- Department of Medicine, The Ohio State University, Columbus, USA
| | - R Mesía
- Department of Medical Oncology;; Department of Medicine, University of Barcelona, Barcelona
| |
Collapse
|
11
|
Hancock G, Hellner K, Dorrell L. Therapeutic HPV vaccines. Best Pract Res Clin Obstet Gynaecol 2018; 47:59-72. [PMID: 29108943 DOI: 10.1016/j.bpobgyn.2017.09.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 12/22/2022]
Abstract
High-risk human papillomavirus (HPV) infection is known to be a necessary factor for cervical and anogenital malignancies. Cervical cancers account for over a quarter of a million deaths annually. Despite the availability of prophylactic vaccines, HPV infections remain extremely common worldwide. Furthermore, these vaccines are ineffective at clearing pre-existing infections and associated preinvasive lesions. As cervical dysplasia can regress spontaneously, a therapeutic HPV vaccine that boosts host immunity could have a significant impact on the morbidity and mortality associated with HPV. Therapeutic vaccines differ from prophylactic vaccines in that they are aimed at generating cell-mediated immunity rather than neutralising antibodies. This review will cover various therapeutic vaccine strategies in development for the treatment of HPV-associated lesions and cancers.
Collapse
Affiliation(s)
- Gemma Hancock
- Nuffield Department of Medicine, University of Oxford and Oxford NIHR Biomedical Research Centre, NDM Research Building, Old Road Campus, Headington, Oxford, UK.
| | - Karin Hellner
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, UK.
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford and Oxford NIHR Biomedical Research Centre, NDM Research Building, Old Road Campus, Headington, Oxford, UK; Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
12
|
Yang A, Jeang J, Cheng K, Cheng T, Yang B, Wu TC, Hung CF. Current state in the development of candidate therapeutic HPV vaccines. Expert Rev Vaccines 2016; 15:989-1007. [PMID: 26901118 DOI: 10.1586/14760584.2016.1157477] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The identification of human papillomavirus (HPV) as an etiological factor for HPV-associated malignancies creates the opportunity to control these cancers through vaccination. Currently, available preventive HPV vaccines have not yet demonstrated strong evidences for therapeutic effects against established HPV infections and lesions. Furthermore, HPV infections remain extremely common. Thus, there is urgent need for therapeutic vaccines to treat existing HPV infections and HPV-associated diseases. Therapeutic vaccines differ from preventive vaccines in that they are aimed at generating cell-mediated immunity rather than neutralizing antibodies. The HPV-encoded early proteins, especially oncoproteins E6 and E7, form ideal targets for therapeutic HPV vaccines since they are consistently expressed in HPV-associated malignancies and precancerous lesions, playing crucial roles in the generation and maintenance of HPV-associated disease. Our review will cover various therapeutic vaccines in development for the treatment of HPV-associated lesions and cancers. Furthermore, we review strategies to enhance vaccine efficacy and the latest clinical trials on therapeutic HPV vaccines.
Collapse
Affiliation(s)
- Andrew Yang
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA
| | - Jessica Jeang
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA
| | - Kevin Cheng
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA
| | - Ting Cheng
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA
| | - Benjamin Yang
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA
| | - T-C Wu
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA.,b Department of Obstetrics and Gynecology , Johns Hopkins University , Baltimore , MD , USA.,c Department of Molecular Microbiology and Immunology , Johns Hopkins University , Baltimore , MD , USA.,d Department of Oncology , Johns Hopkins University , Baltimore , MD , USA
| | - Chien-Fu Hung
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA.,d Department of Oncology , Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
13
|
Graziani GM, Angel JB. Evaluating the efficacy of therapeutic HIV vaccines through analytical treatment interruptions. J Int AIDS Soc 2015; 18:20497. [PMID: 26561337 PMCID: PMC4641978 DOI: 10.7448/ias.18.1.20497] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/16/2015] [Accepted: 10/08/2015] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION The development of an effective therapeutic HIV vaccine that induces immunologic control of viral replication, thereby eliminating or reducing the need for antiretroviral therapy (ART), would be of great value. Besides the obvious challenges of developing a therapeutic vaccine that would generate effective, sustained anti-HIV immunity in infected individuals is the issue of how to best assess the efficacy of vaccine candidates. DISCUSSION This review discusses the various outcome measures assessed in therapeutic HIV vaccine clinical trials involving individuals receiving suppressive ART, with a particular focus on the role of analytical treatment interruption (ATI) as a way to assess the virologic control induced by an immunotherapy. This strategy is critical given that there are otherwise no readily available measures to determine the ability of a vaccine-induced immune response to effectively control HIV replication. The various outcome measures that have been used to assess vaccine efficacy in published therapeutic HIV vaccine clinical trials will also be discussed. Outcome measures have included the kinetics of viral rebound, the new viral set point and changes in the size of the viral reservoir. Clinically relevant outcomes such as the CD4 decline, the time to resume therapy or the time to meet the criterion to resume therapy, the proportion of participants who resume therapy and/or the development of clinical symptoms such as acute retroviral syndrome are also measures of vaccine efficacy. CONCLUSIONS Given the lack of consistency between therapeutic HIV vaccine trials in how efficacy is assessed, comparing vaccines has been difficult. It would, therefore, be beneficial to determine the most clinically relevant measure for use in future studies. Other recommendations for future clinical trials also include studying compartments in addition to blood and replacing ATIs with single-copy assays in situations in which the use of an ATI is not ideal.
Collapse
Affiliation(s)
| | - Jonathan B Angel
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Division of Infectious Disease, The Ottawa Hospital, Ottawa, ON, Canada;
| |
Collapse
|
14
|
Abstract
The immune system plays a key role in the development, establishment, and progression of head and neck squamous cell carcinoma (HNSCC). A greater understanding of the dysregulation and evasion of the immune system in the evolution and progression of HNSCC provides the basis for improved therapies and outcomes for patients. HNSCC cells evade the host immune system through manipulation of their own immunogenicity, production of immunosuppressive mediators, and promotion of immunomodulatory cell types. Through the tumor's influence on the microenvironment, the immune system can be exploited to promote metastasis, angiogenesis, and growth. This article provides a brief overview of key components of the immune infiltrating cells in the tumor microenvironment, reviewing immunological principles related to head and neck cancer, including the concept of cancer immunosurveillance and immune escape. Current immunotherapeutic strategies and emerging results from ongoing clinical trials are presented.
Collapse
|
15
|
Rosales R, López-Contreras M, Rosales C, Magallanes-Molina JR, Gonzalez-Vergara R, Arroyo-Cazarez JM, Ricardez-Arenas A, del Follo-Valencia A, Padilla-Arriaga S, Guerrero MV, Pirez MA, Arellano-Fiore C, Villarreal F. Regression of human papillomavirus intraepithelial lesions is induced by MVA E2 therapeutic vaccine. Hum Gene Ther 2014; 25:1035-49. [PMID: 25275724 PMCID: PMC4270165 DOI: 10.1089/hum.2014.024] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 09/23/2014] [Indexed: 01/07/2023] Open
Abstract
Human papilloma viruses can induce warts, condylomas, and other intraepithelial cervical lesions that can progress to cancer. Cervical cancer is a serious problem in developing countries because early detection is difficult, and thus proper early treatment is many times missing. In this phase III clinical trial, we evaluated the potential use of MVA E2 recombinant vaccinia virus to treat intraepithelial lesions associated with papillomavirus infection. A total of 1176 female and 180 male patients with intraepithelial lesions were studied. They were injected with 10(7) MVA E2 virus particles directly into their uterus, urethra, vulva, or anus. Patients were monitored by colposcopy and cytology. Immune response was determined by measuring the antibody titer against MVA E2 virus and by analyzing the cytotoxic activity against cancer cells bearing papillomavirus DNA. Papillomavirus was determined by the Hybrid Capture method or by polymerase chain reaction analysis. By histology, 1051 (89.3%) female patients showed complete elimination of lesions after treatment with MVA E2. In 28 (2.4%) female patients, the lesion was reduced to CIN 1. Another 97 (8.3%) female patients presented isolated koilocytes after treatment. In men, all lesions were completely eliminated. All MVA E2-treated patients developed antibodies against the MVA E2 vaccine and generated a specific cytotoxic response against papilloma-transformed cells. Papillomavirus DNA was not detected after treatment in 83% of total patients treated. MVA E2 did not generate any apparent side effects. These data suggest that therapeutic vaccination with MVA E2 vaccine is an excellent candidate to stimulate the immune system and generate regression in intraepithelial lesions when applied locally.
Collapse
Affiliation(s)
| | | | - Carlos Rosales
- Instituto de Investigaciones Biomédicas, CP 04510 Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ondondo BO. The influence of delivery vectors on HIV vaccine efficacy. Front Microbiol 2014; 5:439. [PMID: 25202303 PMCID: PMC4141443 DOI: 10.3389/fmicb.2014.00439] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/03/2014] [Indexed: 12/31/2022] Open
Abstract
Development of an effective HIV/AIDS vaccine remains a big challenge, largely due to the enormous HIV diversity which propels immune escape. Thus novel vaccine strategies are targeting multiple variants of conserved antibody and T cell epitopic regions which would incur a huge fitness cost to the virus in the event of mutational escape. Besides immunogen design, the delivery modality is critical for vaccine potency and efficacy, and should be carefully selected in order to not only maximize transgene expression, but to also enhance the immuno-stimulatory potential to activate innate and adaptive immune systems. To date, five HIV vaccine candidates have been evaluated for efficacy and protection from acquisition was only achieved in a small proportion of vaccinees in the RV144 study which used a canarypox vector for delivery. Conversely, in the STEP study (HVTN 502) where human adenovirus serotype 5 (Ad5) was used, strong immune responses were induced but vaccination was more associated with increased risk of HIV acquisition than protection in vaccinees with pre-existing Ad5 immunity. The possibility that pre-existing immunity to a highly promising delivery vector may alter the natural course of HIV to increase acquisition risk is quite worrisome and a huge setback for HIV vaccine development. Thus, HIV vaccine development efforts are now geared toward delivery platforms which attain superior immunogenicity while concurrently limiting potential catastrophic effects likely to arise from pre-existing immunity or vector-related immuno-modulation. However, it still remains unclear whether it is poor immunogenicity of HIV antigens or substandard immunological potency of the safer delivery vectors that has limited the success of HIV vaccines. This article discusses some of the promising delivery vectors to be harnessed for improved HIV vaccine efficacy.
Collapse
Affiliation(s)
- Beatrice O Ondondo
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford Oxford, UK
| |
Collapse
|
17
|
Therapeutic Vaccine Strategies against Human Papillomavirus. Vaccines (Basel) 2014; 2:422-62. [PMID: 26344626 PMCID: PMC4494257 DOI: 10.3390/vaccines2020422] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022] Open
Abstract
High-risk types of human papillomavirus (HPV) cause over 500,000 cervical, anogenital and oropharyngeal cancer cases per year. The transforming potential of HPVs is mediated by viral oncoproteins. These are essential for the induction and maintenance of the malignant phenotype. Thus, HPV-mediated malignancies pose the unique opportunity in cancer vaccination to target immunologically foreign epitopes. Therapeutic HPV vaccination is therefore an ideal scenario for proof-of-concept studies of cancer immunotherapy. This is reflected by the fact that a multitude of approaches has been utilized in therapeutic HPV vaccination design: protein and peptide vaccination, DNA vaccination, nanoparticle- and cell-based vaccines, and live viral and bacterial vectors. This review provides a comprehensive overview of completed and ongoing clinical trials in therapeutic HPV vaccination (summarized in tables), and also highlights selected promising preclinical studies. Special emphasis is given to adjuvant science and the potential impact of novel developments in vaccinology research, such as combination therapies to overcome tumor immune suppression, the use of novel materials and mouse models, as well as systems vaccinology and immunogenetics approaches.
Collapse
|
18
|
Sunthamala N, Pientong C, Ohno T, Zhang C, Bhingare A, Kondo Y, Azuma M, Ekalaksananan T. HPV16 E2 protein promotes innate immunity by modulating immunosuppressive status. Biochem Biophys Res Commun 2014; 446:977-82. [DOI: 10.1016/j.bbrc.2014.03.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/11/2014] [Indexed: 12/19/2022]
|
19
|
Vici P, Mariani L, Pizzuti L, Sergi D, Di Lauro L, Vizza E, Tomao F, Tomao S, Cavallotti C, Paolini F, Venuti A. Immunologic treatments for precancerous lesions and uterine cervical cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:29. [PMID: 24667138 PMCID: PMC3986944 DOI: 10.1186/1756-9966-33-29] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/18/2014] [Indexed: 01/24/2023]
Abstract
Development of HPV-associated cancers not only depends on efficient negative regulation of cell cycle control that supports the accumulation of genetic damage, but also relies on immune evasion that enable the virus to go undetected for long periods of time. In this way, HPV-related tumors usually present MHC class I down-regulation, impaired antigen-processing ability, avoidance of T-cell mediated killing, increased immunosuppression due to Treg infiltration and secrete immunosuppressive cytokines. Thus, these are the main obstacles that immunotherapy has to face in the treatment of HPV-related pathologies where a number of different strategies have been developed to overcome them including new adjuvants. Although antigen-specific immunotherapy induced by therapeutic HPV vaccines was proved extremely efficacious in pre-clinical models, its progression through clinical trials suffered poor responses in the initial trials. Later attempts seem to have been more promising, particularly against the well-defined precursors of cervical, anal or vulvar cancer, where the local immunosuppressive milieu is less active. This review focuses on the advances made in these fields, highlighting several new technologies (such as mRNA vaccine, plant-derived vaccine). The most promising immunotherapies used in clinical trials are also summarized, along with integrated strategies, particularly promising in controlling tumor metastasis and in eliminating cancer cells altogether. After the early promising clinical results, the development of therapeutic HPV vaccines need to be implemented and applied to the users in order to eradicate HPV-associated malignancies, eradicating existing perception (after the effectiveness of commercial preventive vaccines) that we have already solved the problem.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Aldo Venuti
- HPV Unit, Regina Elena National Cancer Institute, V Elio Chianesi 53, Rome 00144, Italy.
| |
Collapse
|
20
|
Knoff J, Yang B, Hung CF, Wu TC. Cervical Cancer: Development of Targeted Therapies Beyond Molecular Pathogenesis. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2014; 3:18-32. [PMID: 24533233 PMCID: PMC3921905 DOI: 10.1007/s13669-013-0068-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It is well known that human papillomavirus (HPV) is the causative agent of cervical cancer. The integration of HPV genes into the host genome causes the upregulation of E6 and E7 oncogenes. E6 and E7 proteins inactivate and degrade tumor suppressors p53 and retinoblastoma, respectively, leading to malignant progression. HPV E6 and E7 antigens are ideal targets for the development of therapies for cervical cancer and precursor lesions because they are constitutively expressed in infected cells and malignant tumors but not in normal cells and they are essential for cell immortalization and transformation. Immunotherapies are being developed to target E6/E7 by eliciting antigen-specific immune responses. siRNA technologies target E6/E7 by modulating the expression of the oncoproteins. Proteasome inhibitors and histone deacetylase inhibitors are being developed to indirectly target E6/E7 by interfering with their oncogenic activities. The ultimate goal for HPV-targeted therapies is the progression through clinical trials to commercialization.
Collapse
Affiliation(s)
- Jayne Knoff
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Benjamin Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - T.-C. Wu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Obstetrics and Gynecology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
21
|
Clinical development of Modified Vaccinia virus Ankara vaccines. Vaccine 2013; 31:4241-6. [PMID: 23523410 DOI: 10.1016/j.vaccine.2013.03.020] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 03/11/2013] [Indexed: 12/21/2022]
Abstract
The smallpox vaccine Vaccinia was successfully used to eradicate smallpox, but although very effective, it was a very reactogenic vaccine and responsible for the deaths of one or two people per million vaccinated. Modified Vaccinia virus Ankara (MVA) is a replication-deficient and attenuated derivative, also used in the smallpox eradication campaign and now being developed as a recombinant viral vector to produce vaccines against infectious diseases and cancer. Many clinical trials of these new vaccines have been conducted, and the findings of these trials are reviewed here. The safety of MVA is now well documented, immunogenicity is influenced by the dose and vaccination regimen, and information on the efficacy of MVA-vectored vaccines is now beginning to accumulate.
Collapse
|
22
|
Nyitray AG, Lu B, Kreimer AR, Anic G, Stanberry LR, Giuliano AR. The Epidemiology and Control of Human Papillomavirus Infection and Clinical Disease. Sex Transm Dis 2013. [DOI: 10.1016/b978-0-12-391059-2.00013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Ma B, Maraj B, Tran NP, Knoff J, Chen A, Alvarez RD, Hung CF, Wu TC. Emerging human papillomavirus vaccines. Expert Opin Emerg Drugs 2012; 17:469-92. [PMID: 23163511 PMCID: PMC3786409 DOI: 10.1517/14728214.2012.744393] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Identification of human papillomavirus (HPV) as the etiologic factor of cervical, anogenital, and a subset of head and neck cancers has stimulated the development of preventive and therapeutic HPV vaccines to control HPV-associated malignancies. Excitement has been generated by the commercialization of two preventive L1-based vaccines, which use HPV virus-like particles (VLPs) to generate capsid-specific neutralizing antibodies. However, factors such as high cost and requirement for cold chain have prevented widespread implementation where they are needed most. AREAS COVERED Next generation preventive HPV vaccine candidates have focused on cost-effective stable alternatives and generating broader protection via targeting multivalent L1 VLPs, L2 capsid protein, and chimeric L1/L2 VLPs. Therapeutic HPV vaccine candidates have focused on enhancing T cell-mediated killing of HPV-transformed tumor cells, which constitutively express HPV-encoded proteins, E6 and E7. Several therapeutic HPV vaccines are in clinical trials. EXPERT OPINION Although progress is being made, cost remains an issue inhibiting the use of preventive HPV vaccines in countries that carry the majority of the cervical cancer burden. In addition, progression of therapeutic HPV vaccines through clinical trials may require combination strategies employing different therapeutic modalities. As research in the development of HPV vaccines continues, we may generate effective strategies to control HPV-associated malignancies.
Collapse
Affiliation(s)
- Barbara Ma
- The Johns Hopkins Medical Institutions, Departments of Pathology, Baltimore, MD, USA
| | - Bharat Maraj
- The Johns Hopkins Medical Institutions, Departments of Pathology, Baltimore, MD, USA
| | - Nam Phuong Tran
- The Johns Hopkins Medical Institutions, Departments of Pathology, Baltimore, MD, USA
| | - Jayne Knoff
- The Johns Hopkins Medical Institutions, Departments of Pathology, Baltimore, MD, USA
| | - Alexander Chen
- The Johns Hopkins Medical Institutions, Departments of Pathology, Baltimore, MD, USA
| | - Ronald D Alvarez
- University of Alabama at Birmingham, Department of Obstetrics and Gynecology, Birmingham, MD, USA
| | - Chien-Fu Hung
- The Johns Hopkins Medical Institutions, Departments of Pathology, Baltimore, MD, USA
- The Johns Hopkins Medical Institutions, Departments of Oncology, Baltimore, MD, USA
| | - T.-C. Wu
- The Johns Hopkins Medical Institutions, Departments of Pathology, Baltimore, MD, USA
- The Johns Hopkins Medical Institutions, Departments of Oncology, Baltimore, MD, USA
- The Johns Hopkins Medical Institutions, Departments of Obstetrics and Gynecology, Baltimore, MD, USA
- The Johns Hopkins Medical Institutions, Departments of Molecular Microbiology and Immunology, Baltimore, MD, USA
| |
Collapse
|
24
|
Boukhebza H, Bellon N, Limacher JM, Inchauspé G. Therapeutic vaccination to treat chronic infectious diseases: current clinical developments using MVA-based vaccines. Hum Vaccin Immunother 2012; 8:1746-57. [PMID: 22894957 DOI: 10.4161/hv.21689] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A famous milestone in the vaccine field has been the first successful vaccination against smallpox, in 1798, by Edward Jenner. Using the vaccinia cowpox virus, Jenner was able to protect vaccinees from variola or smallpox. The Modified Virus Ankara (MVA) poxvirus strain has been one of the vaccines subsequently developed to prevent smallpox infection and was selected by the US government in their Biodefense strategy. Progress in molecular biology and immunology associated with MVA infection has led to the development of MVA as vaccine platform, both in the field of preventive and therapeutic vaccines. This later class of therapeutics has witnessed growing interest that has translated into an increasing number of vaccine candidates reaching the clinics. Among those, MVA-based therapeutic vaccines have addressed four major chronic infections including viral hepatitis, AIDS, human papillomavirus-linked pathologies and tuberculosis. Clinical trials encompass phase 1 and 2 and have started to show significant results and promises.
Collapse
Affiliation(s)
- Houda Boukhebza
- Transgene, Department of Infectious Diseases, Centre d'Infectiologie, Lyon, France
| | | | | | | |
Collapse
|
25
|
Walsh SR, Dolin R. Vaccinia viruses: vaccines against smallpox and vectors against infectious diseases and tumors. Expert Rev Vaccines 2012; 10:1221-40. [PMID: 21854314 DOI: 10.1586/erv.11.79] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Less than 200 years after its introduction, widespread use of vaccinia virus (VACV) as a smallpox vaccine has eradicated variola virus. Along with the remarkable success of the vaccination program, frequent and sometimes severe adverse reactions to VACV were encountered. After eradication, VACV has been reserved for select populations who might be at significant risk for orthopoxvirus infections. Events over the past decade have renewed concerns over the potential use of variola virus as a biological weapon. Accordingly, interest in VACV and attenuated derivatives has increased, both as vaccines against smallpox and as vectors for other vaccines. This article will focus on new developments in the field of orthopoxvirus immunization and will highlight recent advances in the use of vaccinia viruses as vectors for infectious diseases and malignancies.
Collapse
Affiliation(s)
- Stephen R Walsh
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Three Blackfan Circle, E/CLS-1006, Boston, MA 02215, USA.
| | | |
Collapse
|
26
|
Frazer IH, Leggatt GR, Mattarollo SR. Prevention and treatment of papillomavirus-related cancers through immunization. Annu Rev Immunol 2011; 29:111-38. [PMID: 21166538 DOI: 10.1146/annurev-immunol-031210-101308] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cervical and other anogenital cancers are initiated by infection with one of a small group of human papillomaviruses (HPV). Virus-like particle-based vaccines have recently been developed to prevent infection with two cancer-associated HPV genotypes (HPV16, HPV18) and have been ∼95% effective at preventing HPV-associated disease caused by these genotypes in virus-naive subjects. Although immunization induces virus-neutralizing antibody sufficient to prevent infection, persistence of antibody as measured by current assays does not appear necessary to maintain protection over time. Investigators have not identified a reliable surrogate immunological marker of protection against disease following immunization. The prophylactic vaccines are not therapeutic for existing infection. Trials of HPV-specific immunotherapy have shown some efficacy for existing disease, although animal modeling suggests that a combination of immunization and local enhancement of innate immunity may be necessary for optimal therapeutic outcome. HPV prophylactic vaccines are the first vaccines designed to prevent a human cancer and are the practical outcome of a global collaborative effort between basic and applied scientists, clinicians, and industry.
Collapse
Affiliation(s)
- Ian H Frazer
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Australia.
| | | | | |
Collapse
|
27
|
Shen YJ, Shephard E, Douglass N, Johnston N, Adams C, Williamson C, Williamson AL. A novel candidate HIV vaccine vector based on the replication deficient Capripoxvirus, Lumpy skin disease virus (LSDV). Virol J 2011; 8:265. [PMID: 21624130 PMCID: PMC3117847 DOI: 10.1186/1743-422x-8-265] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 05/30/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Capripoxvirus, Lumpy skin disease virus (LSDV) has a restricted host-range and is being investigated as a novel HIV-1 vaccine vector. LSDV does not complete its replication cycle in non-ruminant hosts. METHODS The safety of LSDV was tested at doses of 104 and 106 plaque forming units in two strains of immunocompromised mice, namely RAG mice and CD4 T cell knockout mice. LSDV expressing HIV-1 subtype C Gag, reverse transcriptase (RT), Tat and Nef as a polyprotein (Grttn), (rLSDV-grttn), was constructed. The immunogenicity of rLSDV-grttn was tested in homologous prime-boost regimens as well as heterologous prime-boost regimes in combination with a DNA vaccine (pVRC-grttn) or modified vaccinia Ankara vaccine (rMVA-grttn) both expressing Grttn. RESULTS Safety was demonstrated in two strains of immunocompromised mice.In the immunogenicity experiments mice developed high magnitudes of HIV-specific cells producing IFN-gamma and IL-2. A comparison of rLSDV-grttn and rMVA-grttn to boost a DNA vaccine (pVRC-grttn) indicated a DNA prime and rLSDV-grttn boost induced a 2 fold (p < 0.01) lower cumulative frequency of Gag- and RT-specific IFN-γ CD8 and CD4 cells than a boost with rMVA-grttn. However, the HIV-specific cells induced by the DNA vaccine prime rLSDV-grttn boost produced greater than 3 fold (p < 0.01) more IFN- gamma than the HIV-specific cells induced by the DNA vaccine prime rMVA-grttn boost. A boost of HIV-specific CD4 cells producing IL-2 was only achieved with the DNA vaccine prime and rLSDV-grttn boost. Heterologous prime-boost combinations of rLSDV-grttn and rMVA-grttn induced similar cumulative frequencies of IFN- gamma producing Gag- and RT-specific CD8 and CD4 cells. A significant difference (p < 0.01) between the regimens was the higher capacity (2.1 fold) of Gag-and RT-specific CD4 cells to produce IFN-γ with a rMVA-grttn prime - rLSDV-grttn boost. This regimen also induced a 1.5 fold higher (p < 0.05) frequency of Gag- and RT-specific CD4 cells producing IL-2. CONCLUSIONS LSDV was demonstrated to be non-pathogenic in immunocompromised mice. The rLSDV-grttn vaccine was immunogenic in mice particularly in prime-boost regimens. The data suggests that this novel vaccine may be useful for enhancing, in particular, HIV-specific CD4 IFN- gamma and IL-2 responses induced by a priming vaccine.
Collapse
Affiliation(s)
- Yen-Ju Shen
- Institute of Infectious Disease and Molecular Medicine, UCT, Cape Town, South Africa
| | | | | | | | | | | | | |
Collapse
|
28
|
Riemer AB, Keskin DB, Zhang G, Handley M, Anderson KS, Brusic V, Reinhold B, Reinherz EL. A conserved E7-derived cytotoxic T lymphocyte epitope expressed on human papillomavirus 16-transformed HLA-A2+ epithelial cancers. J Biol Chem 2010; 285:29608-22. [PMID: 20615877 PMCID: PMC2937992 DOI: 10.1074/jbc.m110.126722] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/20/2010] [Indexed: 11/06/2022] Open
Abstract
Human Papillomavirus 16 (HPV-16) has been identified as the causative agent of 50% of cervical cancers and many other HPV-associated tumors. The transforming potential/tumor maintenance capacity of this high risk HPV is mediated by two viral oncoproteins, E6 and E7, making them attractive targets for therapeutic vaccines. Of 21 E6 and E7 peptides computed to bind HLA-A*0201, 10 were confirmed through TAP-deficient T2 cell HLA stabilization assay. Those scoring positive were investigated to ascertain which were naturally processed and presented by surface HLA molecules for CTL recognition. Because IFNγ ELISpot frequencies from healthy HPV-exposed blood donors against HLA-A*0201-binding peptides were unable to identify specificities for tumor targeting, their physical presence among peptides eluted from HPV-16-transformed epithelial tumor HLA-A*0201 immunoprecipitates was analyzed by MS(3) Poisson detection mass spectrometry. Only one epitope (E7(11-19)) highly conserved among HPV-16 strains was detected. This 9-mer serves to direct cytolysis by T cell lines, whereas a related 10-mer (E7(11-20)), previously used as a vaccine candidate, was neither detected by MS(3) on HPV-transformed tumor cells nor effectively recognized by 9-mer specific CTL. These data underscore the importance of precisely defining CTL epitopes on tumor cells and offer a paradigm for T cell-based vaccine design.
Collapse
Affiliation(s)
- Angelika B. Riemer
- From the Cancer Vaccine Center and
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Derin B. Keskin
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Maris Handley
- From the Cancer Vaccine Center and
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | - Bruce Reinhold
- From the Cancer Vaccine Center and
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Ellis L. Reinherz
- From the Cancer Vaccine Center and
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
29
|
Su JH, Wu A, Scotney E, Ma B, Monie A, Hung CF, Wu TC. Immunotherapy for cervical cancer: Research status and clinical potential. BioDrugs 2010; 24:109-29. [PMID: 20199126 DOI: 10.2165/11532810-000000000-00000] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The high-risk types of human papillomavirus (HPV) have been found to be associated with most cervical cancers and play an essential role in the pathogenesis of the disease. Despite recent advances in preventive HPV vaccine development, such preventive vaccines are unlikely to reduce the prevalence of HPV infections within the next few years, due to their cost and limited availability in developing countries. Furthermore, preventive HPV vaccines may not be capable of treating established HPV infections and HPV-associated lesions, which account for high morbidity and mortality worldwide. Thus, it is important to develop therapeutic HPV vaccines for the control of existing HPV infection and associated malignancies. Therapeutic vaccines are quite different from preventive vaccines in that they require the generation of cell-mediated immunity, particularly T cell-mediated immunity, instead of the generation of neutralizing antibodies. The HPV-encoded early proteins, the E6 and E7 oncoproteins, form ideal targets for therapeutic HPV vaccines, since they are consistently expressed in HPV-associated cervical cancer and its precursor lesions and thus play crucial roles in the generation and maintenance of HPV-associated disease. Our review covers the various therapeutic HPV vaccines for cervical cancer, including live vector-based, peptide or protein-based, nucleic acid-based, and cell-based vaccines targeting the HPV E6 and/or E7 antigens. Furthermore, we review the studies using therapeutic HPV vaccines in combination with other therapeutic modalities and review the latest clinical trials on therapeutic HPV vaccines.
Collapse
Affiliation(s)
- Jun-Han Su
- National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
30
|
Nieto K, Gissmann L, Schädlich L. Human papillomavirus-specific immune therapy: failure and hope. Antivir Ther 2010; 15:951-7. [DOI: 10.3851/imp1665] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Cid-Arregui A. Therapeutic vaccines against human papillomavirus and cervical cancer. Open Virol J 2009; 3:67-83. [PMID: 19915722 PMCID: PMC2776308 DOI: 10.2174/1874357900903010067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/11/2009] [Accepted: 08/20/2009] [Indexed: 12/20/2022] Open
Abstract
Cervical cancer and its precursor intra-epithelial lesions are linked to infection by a subset of so-called "highrisk" human papillomavirus types, which are estimated to infect nearly four hundred million women worldwide. Two prophylactic vaccines have been commercialized recently targeting HPV16 and 18, the most prevalent viral types found in cervical cancer, which operate through induction of capsid-specific neutralizing antibodies. However, in patients with persistent infection these vaccines have not been found to protect against progression to neoplasia. Attempts are being made to develop therapeutic vaccines targeting nonstructural early viral proteins. Among these, E6 and E7 are the preferred targets, since they are essential for induction and maintenance of the malignant phenotype and are constitutively expressed by the transformed epithelial cells. Here are reviewed the most relevant potential vaccines based on HPV early antigens that have shown efficacy in preclinical models and that are being tested in clinical studies, which should determine their therapeutic capacity for eradicating HPV-induced premalignant and malignant lesions and cure cervical cancer.
Collapse
Affiliation(s)
- Angel Cid-Arregui
- Translational Immunology Unit, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| |
Collapse
|
32
|
Venuti A. Progress and challenges in the vaccine-based treatment of head and neck cancers. J Exp Clin Cancer Res 2009; 28:69. [PMID: 19473517 PMCID: PMC2695420 DOI: 10.1186/1756-9966-28-69] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 05/27/2009] [Indexed: 11/30/2022] Open
Abstract
Head and neck (HN) cancer represents one of the most challenging diseases because the mortality remains high despite advances in early diagnosis and treatment. Although vaccine-based approaches for the treatment of advanced squamous cell carcinoma of the head and neck have achieved limited clinical success, advances in cancer immunology provide a strong foundation and powerful new tools to guide current attempts to develop effective cancer vaccines. This article reviews what has to be rather what has been done in the field for the development of future vaccines in HN tumours.
Collapse
Affiliation(s)
- Aldo Venuti
- Laboratory of Virology, Regina Elena Cancer Institute, Via Messi d'Oro, 156-00158 Rome, Italy.
| |
Collapse
|
33
|
|
34
|
Hung CF, Ma B, Monie A, Tsen SW, Wu TC. Therapeutic human papillomavirus vaccines: current clinical trials and future directions. Expert Opin Biol Ther 2008; 8:421-39. [PMID: 18352847 DOI: 10.1517/14712598.8.4.421] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Cervical cancer is the second largest cause of cancer deaths in women worldwide. It is now evident that persistent infection with high-risk human papillomavirus (HPV) is necessary for the development and maintenance of cervical cancer. Thus, effective vaccination against HPV represents an opportunity to restrain cervical cancer and other important cancers. The FDA recently approved the HPV vaccine Gardasil for the preventive control of HPV, using HPV virus-like particles (VLP) to generate neutralizing antibodies against major capsid protein, L1. However, prophylactic HPV vaccines do not have therapeutic effects against pre-existing HPV infections and HPV-associated lesions. Furthermore, due to the considerable burden of HPV infections worldwide, it would take decades for preventive vaccines to affect the prevalence of cervical cancer. Thus, in order to speed up the control of cervical cancer and treat current infections, the continued development of therapeutic vaccines against HPV is critical. Therapeutic HPV vaccines can potentially eliminate pre-existing lesions and malignant tumors by generating cellular immunity against HPV-infected cells that express early viral proteins such as E6 and E7. OBJECTIVE This review discusses the future directions of therapeutic HPV vaccine approaches for the treatment of established HPV-associated malignancies, with emphasis on current progress of HPV vaccine clinical trials. METHODS Relevant literature is discussed. RESULTS/CONCLUSION Though their development has been challenging, many therapeutic HPV vaccines have been shown to induce HPV-specific antitumor immune responses in preclinical animal models and several promising strategies have been applied in clinical trials. With continued progress in the field of vaccine development, HPV therapeutic vaccines may provide a potentially promising approach for the control of lethal HPV-associated malignancies.
Collapse
Affiliation(s)
- Chien-Fu Hung
- The Johns Hopkins University School of Medicine, Department of Pathology, CRBII 309, 1550 Orleans Street, Baltimore, Maryland 21231, USA
| | | | | | | | | |
Collapse
|
35
|
Wu AA, Niparko KJ, Pai SI. Immunotherapy for head and neck cancer. J Biomed Sci 2008; 15:275-89. [PMID: 18392689 DOI: 10.1007/s11373-008-9247-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Accepted: 11/06/2007] [Indexed: 11/27/2022] Open
Abstract
Head and neck cancer represents a challenging disease. Despite recent treatment advances, which have improved functional outcomes, the long-term survival of head and neck cancer patients has remained unchanged for the past 25 years. One of the goals of adjuvant cancer therapy is to eradicate local regional microscopic and micrometastatic disease with minimal toxicity to surrounding normal cells. In this respect, antigen-specific immunotherapy is an attractive therapeutic approach. With the advances in molecular genetics and fundamental immunology, antigen-specific immunotherapy is being actively explored using DNA, bacterial vector, viral vector, peptide, protein, dendritic cell, and tumor-cell based vaccines. Early phase clinical trials have demonstrated the safety and feasibility of these novel therapies and the emphasis is now shifting towards the development of strategies, which can increase the potency of these vaccines. As the field of immunotherapy matures and as our understanding of the complex interaction between tumor and host develops, we get closer to realizing the potential of immunotherapy as an adjunctive method to control head and neck cancer and improve long-term survival in this patient population.
Collapse
Affiliation(s)
- Annie A Wu
- Department of Otolaryngology/Head and Neck Surgery, The Johns Hopkins Medical Institutions, 601 North Caroline Street, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
36
|
Kanodia S, Da Silva DM, Kast WM. Recent advances in strategies for immunotherapy of human papillomavirus-induced lesions. Int J Cancer 2008; 122:247-59. [PMID: 17973257 PMCID: PMC4943456 DOI: 10.1002/ijc.23252] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human papillomavirus (HPV)-induced lesions are distinct in that they have targetable foreign antigens, the expression of which is necessary to maintain the cancerous phenotype. Hence, they pose as a very attractive target for "proof of concept" studies in the development of therapeutic vaccines. This review will focus on the most recent clinical trials for the immunotherapy of mucosal and cutaneous HPV-induced lesions as well as emerging therapeutic strategies that have been tested in preclinical models for HPV-induced lesions. Progress in peptide-based vaccines, DNA-based vaccines, viral/bacterial vector-based vaccines, immune response modifiers, photodynamic therapy and T cell receptor based therapy for HPV will be discussed.
Collapse
Affiliation(s)
- Shreya Kanodia
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|