1
|
Hernandez-Lara MA, Richard J, Deshpande DA. Diacylglycerol kinase is a keystone regulator of signaling relevant to the pathophysiology of asthma. Am J Physiol Lung Cell Mol Physiol 2024; 327:L3-L18. [PMID: 38742284 PMCID: PMC11380957 DOI: 10.1152/ajplung.00091.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Signal transduction by G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and immunoreceptors converge at the activation of phospholipase C (PLC) for the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This is a point for second-messenger bifurcation where DAG via protein kinase C (PKC) and IP3 via calcium activate distinct protein targets and regulate cellular functions. IP3 signaling is regulated by multiple calcium influx and efflux proteins involved in calcium homeostasis. A family of lipid kinases belonging to DAG kinases (DGKs) converts DAG to phosphatidic acid (PA), negatively regulating DAG signaling and pathophysiological functions. PA, through a series of biochemical reactions, is recycled to produce new molecules of PIP2. Therefore, DGKs act as a central switch in terminating DAG signaling and resynthesis of membrane phospholipids precursor. Interestingly, calcium and PKC regulate the activation of α and ζ isoforms of DGK that are predominantly expressed in airway and immune cells. Thus, DGK forms a feedback and feedforward control point and plays a crucial role in fine-tuning phospholipid stoichiometry, signaling, and functions. In this review, we discuss the previously underappreciated complex and intriguing DAG/DGK-driven mechanisms in regulating cellular functions associated with asthma, such as contraction and proliferation of airway smooth muscle (ASM) cells and inflammatory activation of immune cells. We highlight the benefits of manipulating DGK activity in mitigating salient features of asthma pathophysiology and shed light on DGK as a molecule of interest for heterogeneous diseases such as asthma.
Collapse
Affiliation(s)
- Miguel A Hernandez-Lara
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Joshua Richard
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Deepak A Deshpande
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
2
|
Del Duca E, Dahabreh D, Kim M, Bar J, Da Rosa JC, Rabinowitz G, Facheris P, Gómez-Arias PJ, Chang A, Utti V, Chowdhury A, Liu Y, Estrada YD, Laculiceanu A, Agache I, Guttman-Yassky E. Transcriptomic evaluation of skin tape-strips in children with allergic asthma uncovers epidermal barrier dysfunction and asthma-associated biomarkers abnormalities. Allergy 2024; 79:1516-1530. [PMID: 38375886 PMCID: PMC11247382 DOI: 10.1111/all.16060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/08/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Tape-strips, a minimally invasive method validated for the evaluation of several skin diseases, may help identify asthma-specific biomarkers in the skin of children with allergic asthma. METHODS Skin tape-strips were obtained and analyzed with RNA-Seq from children with moderate allergic asthma (MAA) (n = 11, mean age 7.00; SD = 1.67), severe allergic asthma (SAA) (n = 9, mean age 9.11; SD = 2.37), and healthy controls (HCs) (n = 12, mean age 7.36; SD = 2.03). Differentially expressed genes (DEGs) were identified by fold change ≥2 with a false discovery rate <0.05. Transcriptomic biomarkers were analyzed for their accuracy in distinguishing asthma from HCs, their relationships with asthma-related outcomes (exacerbation rate, lung function-FEV1, IOS-R5-20, and lung inflammation-FeNO), and their links to skin (barrier and immune response) and lung (remodeling, metabolism, aging) pathogenetic pathways. RESULTS RNA-Seq captured 1113 in MAA and 2117 DEGs in SAA. Epidermal transcriptomic biomarkers for terminal differentiation (FLG/filaggrin), cell adhesion (CDH19, JAM2), lipid biosynthesis/metabolism (ACOT2, LOXL2) were significantly downregulated. Gene set variation analysis revealed enrichment of Th1/IFNγ pathways (p < .01). MAA and SAA shared downregulation of G-protein-coupled receptor (OR4A16, TAS1R3), upregulation of TGF-β/ErbB signaling-related (ACVR1B, EGFR, ID1/2), and upregulation of mitochondrial-related (HIGD2A, VDAC3, NDUFB9) genes. Skin transcriptomic biomarkers correlated with the annualized exacerbation rate and with lung function parameters. A two-gene classifier (TSSC4-FAM212B) was able to differentiate asthma from HCs with 100% accuracy. CONCLUSION Tape-strips detected epithelial barrier and asthma-associated signatures in normal-appearing skin from children with allergic asthma and may serve as an alternative to invasive approaches for evaluating asthma endotypes.
Collapse
Affiliation(s)
- Ester Del Duca
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
- Dermatology Clinic, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Dante Dahabreh
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Madeline Kim
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Jonathan Bar
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Joel Correa Da Rosa
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Grace Rabinowitz
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Paola Facheris
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
- Department of Dermatology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Pedro Jesús Gómez-Arias
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
- Department of Dermatology, Reina Sofía University Hospital, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Annie Chang
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Vivian Utti
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Amira Chowdhury
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Ying Liu
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Yeriel D. Estrada
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Alexandru Laculiceanu
- Department of Allergy and Clinical Immunology, Transylvania University, Brasov, Romania
| | - Ioana Agache
- Department of Allergy and Clinical Immunology, Transylvania University, Brasov, Romania
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| |
Collapse
|
3
|
Yap HM, Israf DA, Harith HH, Tham CL, Sulaiman MR. Crosstalk Between Signaling Pathways Involved in the Regulation of Airway Smooth Muscle Cell Hyperplasia. Front Pharmacol 2019; 10:1148. [PMID: 31649532 PMCID: PMC6794426 DOI: 10.3389/fphar.2019.01148] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
Increased ASM mass, primarily due to ASM hyperplasia, has been recognized as a hallmark of airway remodeling in asthma. Increased ASM mass is the major contributor to the airway narrowing, thus worsening the bronchoconstriction in response to stimuli. Inflammatory mediators and growth factors released during inflammation induce increased ASM mass surrounding airway wall via increased ASM proliferation, diminished ASM apoptosis and increased ASM migration. Several major pathways, such as MAPKs, PI3K/AKT, JAK2/STAT3 and Rho kinase, have been reported to regulate these cellular activities in ASM and were reported to be interrelated at certain points. This article aims to provide an overview of the signaling pathways/molecules involved in ASM hyperplasia as well as the mapping of the interplay/crosstalk between these major pathways in mediating ASM hyperplasia. A more comprehensive understanding of the complexity of cellular signaling in ASM cells will enable more specific and safer drug development in the control of asthma.
Collapse
Affiliation(s)
- Hui Min Yap
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
4
|
Fang L, Wang X, Sun Q, Papakonstantinou E, S'ng C, Tamm M, Stolz D, Roth M. IgE Downregulates PTEN through MicroRNA-21-5p and Stimulates Airway Smooth Muscle Cell Remodeling. Int J Mol Sci 2019; 20:ijms20040875. [PMID: 30781615 PMCID: PMC6412688 DOI: 10.3390/ijms20040875] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
The patho-mechanism leading to airway wall remodeling in allergic asthma is not well understood and remodeling is resistant to therapies. This study assessed the effect of immunoglobulin E (IgE) in the absence of allergens on human primary airway smooth muscle cell (ASMC) remodeling in vitro. ASMCs were obtained from five allergic asthma patients and five controls. Proliferation was determined by direct cell counts, mitochondrial activity by expression of cytochrome c, protein expression by immunoblotting and immuno-fluorescence, cell migration by microscopy imaging, and collagen deposition by cell based ELISA and RNA expression by real time PCR. Non-immune IgE activated two signaling pathways: (i) signal transducer and activator of transcription 3 (STAT3)→miR-21-5p→downregulating phosphatase and tensin homolog (PTEN) expression, and (ii) phosphatidylinositol 3-kinases (PI3K)→protein kinase B (Akt)→mammalian target of rapamycin (mTOR)→ribosomal protein S6 kinase beta-1 (p70s6k)→peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1-α)→peroxisome proliferator-activated receptor-γ (PPAR-γ)→cyclooxygenase-2 (COX-2)→mitochondrial activity, proliferation, migration, and extracellular matrix deposition. Reduced PTEN expression correlated with enhanced PI3K signaling, which upregulated ASMC remodeling. The inhibition of microRNA-21-5p increased PTEN and reduced mTOR signaling and remodeling. Mimics of microRNA-21-5p had opposing effects. IgE induced ASMC remodeling was significantly reduced by inhibition of mTOR or STAT3. In conclusion, non-immune IgE alone is sufficient for stimulated ASMC remodeling by upregulating microRNA-21-5p. Our findings suggest that the suppression of micoRNA-21-5p may present a therapeutic target to reduce airway wall remodeling.
Collapse
Affiliation(s)
- Lei Fang
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
| | - Xinggang Wang
- Gynecological Endocrinology, Department of Biomedicine, University & University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Qingzhu Sun
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Eleni Papakonstantinou
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
- Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | | | - Michael Tamm
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
| | - Daiana Stolz
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
| | - Michael Roth
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
| |
Collapse
|
5
|
Role of microRNA in severe asthma. Respir Investig 2018; 57:9-19. [PMID: 30455067 DOI: 10.1016/j.resinv.2018.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/23/2022]
Abstract
The various roles of microRNAs (miRNAs) in the epigenetic regulation of human disease are gaining importance as areas of research, and a better understanding of these roles may identify targets for development of novel therapies for severe asthma. MiRNAs, a class of small non-coding RNAs that serve as post-transcriptional gene repressors, are recognized as critical components in regulating tissue homeostasis. Alteration in miRNA expression disrupts homeostasis and is an underlying mechanism for development of chronic respiratory diseases, including asthma. Differential profiles of miRNA expression are involved in inflammation and remodeling pathogenicity via activating airway structural cells and immune cells and inducing cytokine releases. miRNA action leads to asthma progression from mild to severe stages. Here, current knowledge of the heterogeneous roles of miRNAs in severe asthma, including biological mechanisms underlying Th2 and macrophage polarization, type 2 innate lymphoid cell (ILC2) biology regulation, steroid-resistant asthma phenotype, airway smooth muscle (ASM) dysfunction, and impaired anti-viral innate immune, are reviewed.
Collapse
|
6
|
Kim BS, Lee E, Lee MJ, Kang MJ, Yoon J, Cho HJ, Park J, Won S, Lee SY, Hong SJ. Different functional genes of upper airway microbiome associated with natural course of childhood asthma. Allergy 2018; 73:644-652. [PMID: 29052232 DOI: 10.1111/all.13331] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Microbial colonization of the airway plays a role in the pathogenesis of asthma; however, the effect of the upper airway microbiome on childhood asthma is not fully understood. We analyzed the metagenome of airway microbiome to understand the associated role of upper airway microbiome with the natural course of childhood asthma. METHODS Nasopharyngeal swabs were collected from children with asthma, those in asthma remission, and control groups. High-throughput sequencing was used to examine the structure and functional dynamics of the airway microbiome with respect to asthma phenotypes. RESULTS The composition of microbiota differed among healthy control, asthma, and remission groups. The relative abundance of Streptococcus was negatively associated with FEV1% predicted (P = .023) and that of Staphylococcus was negatively associated with methacholine PC20 (P = .013). Genes related to arachidonic acid metabolites, lysine residues, and glycosaminoglycans in the microbiome could be associated with airway inflammation. In particular, genes related to synthesis of anti-inflammatory prostaglandin E2 (PGE2 ) were not detected from the airway microbiome in the asthma group. CONCLUSIONS These data suggest that alterations in the composition and function of the upper airway microbiome could be related with the natural course of asthma in children.
Collapse
Affiliation(s)
- B.-S. Kim
- Department of Life Science; Multidisciplinary Genome Institute; Hallym University; Chuncheon Korea
| | - E. Lee
- Department of Pediatrics; Chonnam National University Hospital; Gwangju Korea
| | - M.-J. Lee
- Department of Life Science; Multidisciplinary Genome Institute; Hallym University; Chuncheon Korea
| | - M.-J. Kang
- Asan Institute for Life Science; University of Ulsan College of Medicine; Seoul Korea
| | - J. Yoon
- Department of Pediatrics; Childhood Asthma Atopy Center; Environmental Health Center; Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| | - H.-J. Cho
- Department of Pediatrics; Childhood Asthma Atopy Center; Environmental Health Center; Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| | - J. Park
- Interdisciplinary Program of Bioinformatics; Seoul National University; Seoul Korea
| | - S. Won
- Interdisciplinary Program of Bioinformatics; Seoul National University; Seoul Korea
- Department of Public Health Science; Seoul National University; Seoul Korea
- Institute of Health and Environment; Seoul National University; Seoul Korea
| | - S. Y. Lee
- Department of Pediatrics; Childhood Asthma Atopy Center; Environmental Health Center; Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| | - S. J. Hong
- Department of Pediatrics; Childhood Asthma Atopy Center; Environmental Health Center; Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| |
Collapse
|
7
|
Cook DP, Adam RJ, Zarei K, Deonovic B, Stroik MR, Gansemer ND, Meyerholz DK, Au KF, Stoltz DA. CF airway smooth muscle transcriptome reveals a role for PYK2. JCI Insight 2017; 2:95332. [PMID: 28878137 DOI: 10.1172/jci.insight.95332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022] Open
Abstract
Abnormal airway smooth muscle function can contribute to cystic fibrosis (CF) airway disease. We previously found that airway smooth muscle from newborn CF pigs had increased basal tone, an increased bronchodilator response, and abnormal calcium handling. Since CF pigs lack airway infection and inflammation at birth, these findings suggest intrinsic airway smooth muscle dysfunction in CF. In this study, we tested the hypothesis that CFTR loss in airway smooth muscle would produce a distinct set of changes in the airway smooth muscle transcriptome that we could use to develop novel therapeutic targets. Total RNA sequencing of newborn wild-type and CF airway smooth muscle revealed changes in muscle contraction-related genes, ontologies, and pathways. Using connectivity mapping, we identified several small molecules that elicit transcriptional signatures opposite of CF airway smooth muscle, including NVP-TAE684, an inhibitor of proline-rich tyrosine kinase 2 (PYK2). In CF airway smooth muscle tissue, PYK2 phosphorylation was increased and PYK2 inhibition decreased smooth muscle contraction. In vivo NVP-TAE684 treatment of wild-type mice reduced methacholine-induced airway smooth muscle contraction. These findings suggest that studies in the newborn CF pig may provide an important approach to enhance our understanding of airway smooth muscle biology and for discovery of novel airway smooth muscle therapeutics for CF and other diseases of airway hyperreactivity.
Collapse
Affiliation(s)
- Daniel P Cook
- Department of Internal Medicine.,Department of Molecular Physiology and Biophysics, and
| | - Ryan J Adam
- Department of Biomedical Engineering, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Keyan Zarei
- Department of Biomedical Engineering, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Benjamin Deonovic
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | | | | | - David K Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Kin Fai Au
- Department of Internal Medicine.,Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - David A Stoltz
- Department of Internal Medicine.,Department of Molecular Physiology and Biophysics, and.,Department of Biomedical Engineering, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Zhang Y, Jing Y, Qiao J, Luan B, Wang X, Wang L, Song Z. Activation of the mTOR signaling pathway is required for asthma onset. Sci Rep 2017; 7:4532. [PMID: 28674387 PMCID: PMC5495772 DOI: 10.1038/s41598-017-04826-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/22/2017] [Indexed: 12/11/2022] Open
Abstract
The mTOR pathway has been implicated in immune functions; however, its role in asthma is not well understood. We found that patients experiencing an asthma attack, when compared with patients in asthma remission, showed significantly elevated serum mTOR pathway activation, increased Th17 cells and IL-4, and decreased Treg cells and IFN-γ. In patients experiencing asthma, mTOR activation was positively correlated with the loss of Th17/Treg and Th1/Th2 balance. The role of mTOR in asthma was further confirmed using an ovalbumin-induced asthmatic mouse model. The mTOR pathway was activated in asthmatic mice, demonstrated by elevated levels of p-PI3K, p-Akt, p-mTOR, and p-p70S6k, and this activation was significantly reduced by treatment with budenoside or mTOR pathway inhibitors. Moreover, mTOR pathway inhibitor treatment reduced asthmatic markers and reversed the Th17/Treg and Th1/Th2 imbalances in asthmatic mice. Finally, different mTOR pathway inhibitor treatments have different inhibitory effects on signaling molecules in asthmatic mice. In summary, mTOR is activated during asthma onset and suppressed during asthma remission, and inhibiting the mTOR pathway in asthmatic mice alleviates asthmatic markers and restores the balances of Th17/Treg and Th1/Th2 cytokines. These data strongly suggest a critical requirement for mTOR pathway activation in asthma onset, suggesting potential targets for asthma treatments.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Pediatrics, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Ying Jing
- School of Medicine for Basic Research, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Junying Qiao
- Department of Pediatrics, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Bin Luan
- Department of Pediatrics, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiufang Wang
- Department of Pediatrics, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Li Wang
- Department of Pediatrics, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhe Song
- Department of Pediatrics, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
9
|
Chang HS, Shin SW, Lee TH, Bae DJ, Park JS, Kim YH, Uh ST, Choi BW, Kim MK, Choi IS, Park BL, Shin HD, Park CS. Development of a genetic marker set to diagnose aspirin-exacerbated respiratory disease in a genome-wide association study. THE PHARMACOGENOMICS JOURNAL 2015; 15:316-21. [PMID: 25707394 DOI: 10.1038/tpj.2014.78] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 09/28/2014] [Accepted: 11/05/2014] [Indexed: 12/27/2022]
Abstract
We developed a genetic marker set of single nucleotide polymorphisms (SNPs) by summing risk scores of 14 SNPs showing a significant association with aspirin-exacerbated respiratory disease (AERD) from our previous 660 W genome-wide association data. The summed scores were higher in the AERD than in the aspirin-tolerant asthma (ATA) group (P=8.58 × 10(-37)), and were correlated with the percent decrease in forced expiratory volume in 1 s after aspirin challenge (r(2)=0.150, P=5.84 × 10(-30)). The area under the curve of the scores for AERD in the receiver operating characteristic curve was 0.821. The best cutoff value of the summed risk scores was 1.01328 (P=1.38 × 10(-32)). The sensitivity and specificity of the best scores were 64.7% and 85.0%, respectively, with 42.1% positive and 93.4% negative predictive values. The summed risk score may be used as a genetic marker with good discriminative power for distinguishing AERD from ATA.
Collapse
Affiliation(s)
- H S Chang
- Department of Medical Bioscience, Graduate School, Soonchunhyang University, Asan, Republic of Korea
| | - S W Shin
- Asthma Genome Research Center, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - T H Lee
- Department of Medical Bioscience, Graduate School, Soonchunhyang University, Asan, Republic of Korea
| | - D J Bae
- Department of Medical Bioscience, Graduate School, Soonchunhyang University, Asan, Republic of Korea
| | - J S Park
- 1] Asthma Genome Research Center, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea [2] Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Y H Kim
- Division of Allergy and Respiratory Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - S T Uh
- Division of Allergy and Respiratory Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - B W Choi
- Department of Internal Medicine, Chung-Ang University Yongsan Hospital, Seoul, Republic of Korea
| | - M K Kim
- Division of Internal Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - I S Choi
- Department of Allergy, Chonnam National University, Gwangju, Republic of Korea
| | - B L Park
- Department of Genetic Epidemiology, SNP Genetics Incorporation, Seoul, Republic of Korea
| | - H D Shin
- 1] Department of Genetic Epidemiology, SNP Genetics Incorporation, Seoul, Republic of Korea [2] Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - C S Park
- 1] Asthma Genome Research Center, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea [2] Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| |
Collapse
|
10
|
Dangelmaier C, Manne BK, Liverani E, Jin J, Bray P, Kunapuli SP. PDK1 selectively phosphorylates Thr(308) on Akt and contributes to human platelet functional responses. Thromb Haemost 2013; 111:508-17. [PMID: 24352480 DOI: 10.1160/th13-06-0484] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 11/14/2013] [Indexed: 11/05/2022]
Abstract
3-phosphoinositide-dependent protein kinase 1 (PDK1), a member of the protein A,G and C (AGC) family of proteins, is a Ser/Thr protein kinase that can phosphorylate and activate other protein kinases from the AGC family, including Akt at Thr308, all of which play important roles in mediating cellular responses. The functional role of PDK1 or the importance of phosphorylation of Akt on Thr308 for its activity has not been investigated in human platelets. In this study, we tested two pharmacological inhibitors of PDK1, BX795 and BX912, to assess the role of Thr308 phosphorylation on Akt. PAR4-induced phosphorylation of Akt on Thr308 was inhibited by BX795 without affecting phosphorylation of Akt on Ser473. The lack of Thr308 phosphorylation on Akt also led to the inhibition of PAR4-induced phosphorylation of two downstream substrates of Akt, viz. GSK3β and PRAS40. In vitro kinase activity of Akt was completely abolished if Thr308 on Akt was not phosphorylated. BX795 caused inhibition of 2-MeSADP-induced or collagen-induced aggregation, ATP secretion and thromboxane generation. Primary aggregation induced by 2-MeSADP was also inhibited in the presence of BX795. PDK1 inhibition also resulted in reduced clot retraction indicating its role in outside-in signalling. These results demonstrate that PDK1 selectively phosphorylates Thr308 on Akt thereby regulating its activity and plays a positive regulatory role in platelet physiological responses.
Collapse
Affiliation(s)
| | | | | | | | | | - S P Kunapuli
- Satya P. Kunapuli, PhD, Department of Physiology, Temple University, Rm. 217 MRB, 3420 N. Broad Street, Philadelphia, Pennsylvania 19140, USA, Tel.: +1 215 707 4615, Fax: +1 215 707 4003, E-mail:
| |
Collapse
|
11
|
Silver nanoparticles induce anti-proliferative effects on airway smooth muscle cells. Role of nitric oxide and muscarinic receptor signaling pathway. Toxicol Lett 2013; 224:246-56. [PMID: 24188929 DOI: 10.1016/j.toxlet.2013.10.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 12/28/2022]
Abstract
Silver nanoparticles (AgNPs) are used to manufacture materials with new properties and functions. However, little is known about their toxic or beneficial effects on human health, especially in the respiratory system, where its smooth muscle (ASM) regulates the airway contractility by different mediators, such as acetylcholine (ACh) and nitric oxide (NO). The aim of this study was to evaluate the effects of AgNPs on ASM cells. Exposure to AgNPs induced ACh-independent expression of the inducible nitric oxide synthase (iNOS) at 100 μg/mL, associated with excessive production of NO. AgNPs induced the muscarinic receptor activation, since its blockage with atropine and blockage of its downstream signaling pathway inhibited the NO production. AgNPs at 10 and 100 μg/mL induced ACh-independent prolonged cytotoxicity and decreased cellular proliferation mediated by the muscarinic receptor-iNOS pathway. However, the concentration of 100 μg/mL of AgNPs induced muscarinic receptor-independent apoptosis, suggesting the activation of multiple pathways. These data indicate that AgNPs induce prolonged cytotoxic and anti-proliferative effects on ASM cells, suggesting an activation of the muscarinic receptor-iNOS pathway. Further investigation is required to understand the full mechanisms of action of AgNPs on ASM under specific biological conditions.
Collapse
|
12
|
Foster JG, Blunt MD, Carter E, Ward SG. Inhibition of PI3K signaling spurs new therapeutic opportunities in inflammatory/autoimmune diseases and hematological malignancies. Pharmacol Rev 2012; 64:1027-54. [PMID: 23023033 DOI: 10.1124/pr.110.004051] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The phosphoinositide 3-kinase/mammalian target of rapamycin/protein kinase B (PI3K/mTOR/Akt) signaling pathway is central to a plethora of cellular mechanisms in a wide variety of cells including leukocytes. Perturbation of this signaling cascade is implicated in inflammatory and autoimmune disorders as well as hematological malignancies. Proteins within the PI3K/mTOR/Akt pathway therefore represent attractive targets for therapeutic intervention. There has been a remarkable evolution of PI3K inhibitors in the past 20 years from the early chemical tool compounds to drugs that are showing promise as anticancer agents in clinical trials. The use of animal models and pharmacological tools has expanded our knowledge about the contribution of individual class I PI3K isoforms to immune cell function. In addition, class II and III PI3K isoforms are emerging as nonredundant regulators of immune cell signaling revealing potentially novel targets for disease treatment. Further complexity is added to the PI3K/mTOR/Akt pathway by a number of novel signaling inputs and feedback mechanisms. These can present either caveats or opportunities for novel drug targets. Here, we consider recent advances in 1) our understanding of the contribution of individual PI3K isoforms to immune cell function and their relevance to inflammatory/autoimmune diseases as well as lymphoma and 2) development of small molecules with which to inhibit the PI3K pathway. We also consider whether manipulating other proximal elements of the PI3K signaling cascade (such as class II and III PI3Ks or lipid phosphatases) are likely to be successful in fighting off different immune diseases.
Collapse
Affiliation(s)
- John G Foster
- Inflammatory Cell Biology Laboratory, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, UK.
| | | | | | | |
Collapse
|
13
|
Resveratrol attenuates experimental allergic asthma in mice by restoring inositol polyphosphate 4 phosphatase (INPP4A). Int Immunopharmacol 2012; 14:438-43. [PMID: 22986054 DOI: 10.1016/j.intimp.2012.08.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 12/13/2022]
Abstract
Asthma is a chronic airway inflammatory disorder which is characterized by reversible airway obstruction, airway hyperresponsiveness and airway inflammation. Oxidative stress has been shown to be strongly associated with most of the features of asthma and leads to accumulation of phosphatidyl inositol (3,4) bis-phosphate {PtdIns(3,4)P2} which is the major substrate for inositol polyphosphate 4 phosphatase (INPP4A). PtdIns(3,4)P2 in turn activates PI3K pathway and contributes to oxidative stress. Thus, there exists a vicious loop between oxidative stress and lipid phosphatase signaling. In this context, we have recently shown that INPP4A, a crucial molecular checkpoint in controlling PI3K-Akt signaling pathway, is downregulated in allergic airway inflammation. Resveratrol, a potent antioxidant found in red wines, has been shown to attenuate asthma features in murine model of allergic airway inflammation (AAI), however the underlying mode of its action was not completely understood. In this study, the effect of resveratrol on mitochondrial dysfunction, PI3K-Akt signaling and inositol polyphosphate 4 phosphatase was studied in murine model of allergic airway inflammation. We observed that resveratrol treatment of allergic mice was found to significantly downregulate oxidative stress and restore mitochondrial function. It also decreased calpain activity and restored the expression of INPP4A in lungs which in turn reduced Akt kinase activity and Akt phosphorylation. These results suggest a novel mechanism of action of resveratrol in attenuating asthma phenotype by downregulating PI3K-Akt pathway via upregulating INPP4A.
Collapse
|
14
|
Summer R, Walsh K, Medoff BD. Obesity and pulmonary arterial hypertension: Is adiponectin the molecular link between these conditions? Pulm Circ 2012; 1:440-7. [PMID: 22530098 PMCID: PMC3329073 DOI: 10.4103/2045-8932.93542] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a condition of unknown etiology whose pathological features include increased vascular resistance, perivascular inflammatory cell infiltration and pulmonary arteriolar remodeling. Although risk factors for PAH are poorly defined, recent studies indicate that obesity may be an important risk factor for this condition. The mechanisms leading to this association are largely unknown, but bioactive mediators secreted from adipose tissue have been implicated in this process. One of the most important mediators released from adipose tissue is the adipokine adiponectin. Adiponectin is highly abundant in the circulation of lean healthy individuals, and possesses well-described metabolic and antiinflammatory actions. Levels of adiponectin decrease with increasing body mass, and low levels are directly linked to the development of PAH in mice. Moreover, overexpression of adiponectin has been shown to protect mice from developing PAH in response to inflammation and hypoxia. Based on the findings from these studies, it is suggested that the effects of adiponectin are mediated, in part, through its antiinflammatory and antiproliferative properties. In this review, we discuss the emerging evidence demonstrating a role for adiponectin in lung vascular homeostasis and discuss how deficiency in this adipocyte-derived hormone might explain the recent association between obesity and PAH.
Collapse
Affiliation(s)
- Ross Summer
- The Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
15
|
Medoff BD. Fat, fire and muscle--the role of adiponectin in pulmonary vascular inflammation and remodeling. Pulm Pharmacol Ther 2012; 26:420-6. [PMID: 22750271 DOI: 10.1016/j.pupt.2012.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/13/2012] [Accepted: 06/18/2012] [Indexed: 12/15/2022]
Abstract
Pulmonary hypertension is a life-threatening condition that results from a heterogeneous group of diseases, many of which demonstrate characteristic pathologic changes of pulmonary vascular inflammation and remodeling. Recent clinical studies indicate obesity to be a risk factor for the development of pulmonary hypertension; however, the mechanisms leading to this association are unknown. Adipocytes secrete multiple bioactive mediators that can influence inflammation and tissue remodeling, suggesting that adipose tissue may directly influence the pathogenesis of pulmonary hypertension. One of these mediators is adiponectin, a protein with a wide range of metabolic, anti-inflammatory, and anti-proliferative activities. Paradoxically, adiponectin is present in high concentration in the serum of lean healthy individuals, but decreases in obesity. Studies suggest that relative adiponectin-deficiency may contribute to the development of inflammatory diseases in obesity, and recent animal studies implicate adiponectin in the pathogenesis of pulmonary hypertension. Most notably, experimental studies show that adiponectin can reduce lung vascular remodeling in response to inflammation and hypoxia. Moreover, mice deficient in adiponectin develop a spontaneous lung vascular phenotype characterized by age-dependent increases in peri-vascular inflammatory cells and elevated pulmonary artery pressures. Emerging evidence indicates adiponectin's effects are mediated through anti-inflammatory and anti-proliferative actions on cells in the lung. This review aims to synthesize the existing data related to adiponectin's effects on the pulmonary vasculature and to discuss how changes in adiponectin levels might contribute to the development of pulmonary hypertension.
Collapse
Affiliation(s)
- Benjamin D Medoff
- Pulmonary and Critical Care Unit and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
16
|
Loss-of-function of inositol polyphosphate-4-phosphatase reversibly increases the severity of allergic airway inflammation. Nat Commun 2012; 3:877. [PMID: 22673904 DOI: 10.1038/ncomms1880] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 05/02/2012] [Indexed: 01/09/2023] Open
Abstract
Inositol polyphosphate phosphatases regulate the magnitude of phosphoinositide-3 kinase signalling output. Although inositol polyphosphate-4-phosphatase is known to regulate phosphoinositide-3 kinase signalling, little is known regarding its role in asthma pathogenesis. Here we show that modulation of inositol polyphosphate-4-phosphatase alters the severity of asthma. Allergic airway inflammation in mice led to calpain-mediated degradation of inositol polyphosphate-4-phosphatase. In allergic airway inflammation models, preventing inositol polyphosphate-4-phosphatase degradation by inhibiting calpain activity, or overexpression of inositol polyphosphate-4-phosphatase in mouse lungs, led to attenuation of the asthma phenotype. Conversely, knockdown of inositol polyphosphate-4-phosphatase severely aggravated the allergic airway inflammation and the asthma phenotype. Interestingly, inositol polyphosphate-4-phosphatase knockdown in lungs of naive mice led to spontaneous airway hyper-responsiveness, suggesting that inositol polyphosphate-4-phosphatase could be vital in maintaining the lung homeostasis. We suggest that inositol polyphosphate-4-phosphatase has an important role in modulating inflammatory response in asthma, and thus, uncover a new understanding of the complex interplay between inositol signalling and asthma, which could provide alternative strategies in asthma management.
Collapse
|
17
|
Goncharova EA, Lim PN, Chisolm A, Fogle HW, Taylor JH, Goncharov DA, Eszterhas A, Panettieri RA, Krymskaya VP. Interferons modulate mitogen-induced protein synthesis in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2010; 299:L25-35. [PMID: 20382746 PMCID: PMC2904093 DOI: 10.1152/ajplung.00228.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 04/06/2010] [Indexed: 01/10/2023] Open
Abstract
Severe asthma is characterized by increased airway smooth muscle (ASM) mass due, in part, to ASM cell growth and contractile protein expression associated with increased protein synthesis. Little is known regarding the combined effects of mitogens and interferons on ASM cytosolic protein synthesis. We demonstrate that human ASM mitogens including PDGF, EGF, and thrombin stimulate protein synthesis. Surprisingly, pleiotropic cytokines IFN-beta and IFN-gamma, which inhibit ASM proliferation, also increased cytosolic protein content in ASM cells. Thus IFN-beta alone significantly increased protein synthesis by 1.62 +/- 0.09-fold that was further enhanced by EGF to 2.52 +/- 0.17-fold. IFN-gamma alone also stimulated protein synthesis by 1.91 +/- 0.15-fold; treatment of cells with PDGF, EGF, and thrombin in the presence of IFN-gamma stimulated protein synthesis by 2.24 +/- 0.3-, 1.25 +/- 0.17-, and 2.67 +/- 0.34-fold, respectively, compared with growth factors alone. The mammalian target of rapamycin (mTOR)/S6 kinase 1 (S6K1) inhibition with rapamycin inhibited IFN- and EGF-induced protein synthesis, suggesting that IFN-induced protein synthesis is modulated by mTOR/S6K1 activation. Furthermore, overexpression of tumor suppressor protein tuberous sclerosis complex 2 (TSC2), which is an upstream negative regulator of mTOR/S6K1 signaling, also inhibited mitogen-induced protein synthesis in ASM cells. IFN-beta and IFN-gamma stimulated miR143/145 microRNA expression and increased SM alpha-actin accumulation but had little effect on ASM cell size. In contrast, EGF increased ASM cell size but had little effect on miR143/145 expression. Our data demonstrate that both IFNs and mitogens stimulate protein synthesis but have differential effects on cell size and contractile protein expression and suggest that combined effects of IFNs and mitogens may contribute to ASM cell growth, contractile protein expression, and ASM remodeling in asthma.
Collapse
Affiliation(s)
- Elena A Goncharova
- Pulmonary, Allergy, and Critical Care Division, Airway Biology Initiative, Department of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
That regulatory T cells (Tregs) have a crucial role in controlling allergic diseases such as asthma is now undisputed. The cytokines most commonly implicated in Treg-mediated suppression of allergic asthma are transforming growth factor-beta (TGF-beta) and interleukin (IL)-10). In addition to naturally occurring Tregs, adaptive Tregs, induced in response to foreign antigens, have been shown in recent studies. The concept of inducible/adaptive Tregs (iTregs) has considerable significance in preventing asthma if generated early enough in life. This is because cytokines such as IL-4 and IL-6 inhibit Foxp3 induction in naive CD4+ T cells and therefore de novo generation of Tregs can be expected to be less efficient when it is concomitant with effector cell development in response to an allergen. However, if iTregs can be induced, the process of infectious tolerance would facilitate expansion of the iTreg pool as suggested in the recent literature. It is tempting to speculate that there is a window of opportunity in early life in the context of a relatively immature immune system that is permissive for the generation of iTregs specific to a spectrum of allergens that would regulate asthma for lifelong. The focus of this review is the relevance of nTregs and iTregs in controlling asthma from early life into adulthood, the mechanisms underlying Treg function, and the prospects for using our current concepts to harness the full potential of Tregs to limit disease development and progression.
Collapse
|
19
|
Camateros P, Marino R, Fortin A, Martin JG, Skamene E, Sladek R, Radzioch D. Identification of novel chromosomal regions associated with airway hyperresponsiveness in recombinant congenic strains of mice. Mamm Genome 2009; 21:28-38. [PMID: 20012967 DOI: 10.1007/s00335-009-9236-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 10/27/2009] [Indexed: 11/24/2022]
Abstract
Airway responsiveness is the ability of the airways to respond to bronchoconstricting stimuli by reducing their diameter. Airway hyperresponsiveness has been associated with asthma susceptibility in both humans and murine models, and it has been shown to be a complex and heritable trait. In particular, the A/J mouse strain is known to have hyperresponsive airways, while the C57BL/6 strain is known to be relatively refractory to bronchoconstricting stimuli. We analyzed recombinant congenic strains (RCS) of mice generated from these hyper- and hyporesponsive parental strains to identify genetic loci underlying the trait of airway responsiveness in response to methacholine as assessed by whole-body plethysmography. Our screen identified 16 chromosomal regions significantly associated with airway hyperresponsiveness (genome-wide P <or= 0.05): 8 are supported by independent and previously published reports while 8 are entirely novel. Regions that overlap with previous reports include two regions on chromosome 2, three on chromosome 6, one on chromosome 15, and two on chromosome 17. The 8 novel regions are located on chromosome 1 (92-100 cM), chromosome 5 (>73 cM), chromosome 7 (>63 cM), chromosome 8 (52-67 cM), chromosome 10 (3-7 cM and >68 cM), and chromosome 12 (25-38 cM and >52 cM). Our data identify several likely candidate genes from the 16 regions, including Ddr2, Hc, Fbn1, Flt3, Utrn, Enpp2, and Tsc.
Collapse
Affiliation(s)
- Pierre Camateros
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, H3A 2T5, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Tliba O, Panettieri RA. Noncontractile functions of airway smooth muscle cells in asthma. Annu Rev Physiol 2009; 71:509-35. [PMID: 18851708 DOI: 10.1146/annurev.physiol.010908.163227] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although pivotal in regulating bronchomotor tone in asthma, airway smooth muscle (ASM) also modulates airway inflammation and undergoes hypertrophy and hyperplasia, contributing to airway remodeling in asthma. ASM myocytes secrete or express a wide array of immunomodulatory mediators in response to extracellular stimuli, and in chronic severe asthma, increases in ASM mass may render the airway irreversibly obstructed. Although the mechanisms by which ASM secretes cytokines and chemokines are the same as those regulating immune cells, there exist unique ASM signaling pathways that may provide novel therapeutic targets. This review provides an overview of our current understanding of the proliferative as well as the synthetic properties of ASM.
Collapse
Affiliation(s)
- Omar Tliba
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
21
|
Hu W, Li F, Mahavadi S, Murthy KS. Upregulation of RGS4 expression by IL-1beta in colonic smooth muscle is enhanced by ERK1/2 and p38 MAPK and inhibited by the PI3K/Akt/GSK3beta pathway. Am J Physiol Cell Physiol 2009; 296:C1310-20. [PMID: 19369446 DOI: 10.1152/ajpcell.00573.2008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Initial Ca(2+)-dependent contraction of intestinal smooth muscle is inhibited upon IL-1beta treatment. The decrease in contraction reflects the upregulation of regulator of G protein signaling-4 (RGS4) via the canonical inhibitor of NF-kappaB kinase-2 (IKK2)/IkappaB-alpha/NF-kappaB pathway. Here, we show that the activation of various protein kinases, including ERK1/2, p38 MAPK, and phosphoinositide 3-kinase (PI3K), differentially modulates IL-1beta-induced upregulation of RGS4 in rabbit colonic muscle cells. IL-1beta treatment caused a transient phosphorylation of ERK1/2 and p38 MAPK. It also caused the phosphorylation of Akt and glycogen synthase kinase-3beta (GSK3beta), sequential downstream effectors of PI3K. Pretreatment with PD-98059 (an ERK inhibitor) and SB-203580 (a p38 MAPK inhibitor) significantly inhibited IL-1beta-induced RGS4 expression. In contrast, LY-294002 (a PI3K inhibitor) augmented, whereas GSK3beta inhibitors inhibited, IL-1beta-induced RGS4 expression. PD-98059 blocked IL-1beta-induced phosphorylation of IKK2, degradation of IkappaB-alpha, and phosphorylation and nuclear translocation of NF-kappaB subunit p65, whereas SB-203580 had a marginal effect, implying that the effect of ERK1/2 is exerted on the canonical IKK2/IkappaB-alpha/p65 pathway of NF-kappaB activation but that the effect of p38 MAPK may not predominantly involve NF-kappaB signaling. The increase in RGS4 expression enhanced by LY-294002 was accompanied by an increase in the phosphorylation of IKK2/IkappaB-alpha/p65 and blocked by pretreatment with inhibitors of IKK2 (IKK2-IV) and IkappaB-alpha (MG-132). Inhibition of GSK3beta abolished IL-1beta-induced phosphorylation of IKK2/p65. These findings suggest that ERK1/2 and p38 MAPK enhance IL-1beta-induced upregulation of RGS4; the effect of ERK1/2 reflects its ability to promote IKK2 phosphorylation and increase NF-kappaB activity. GSK3beta acts normally to augment the activation of the canonical NF-kappaB signaling. The PI3K/Akt/GSK3beta pathway attenuates IL-1beta-induced upregulation of RGS4 expression by inhibiting NF-kappaB activation.
Collapse
Affiliation(s)
- Wenhui Hu
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA.
| | | | | | | |
Collapse
|
22
|
Doukas J, Eide L, Stebbins K, Racanelli-Layton A, Dellamary L, Martin M, Dneprovskaia E, Noronha G, Soll R, Wrasidlo W, Acevedo LM, Cheresh DA. Aerosolized phosphoinositide 3-kinase gamma/delta inhibitor TG100-115 [3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7-yl]phenol] as a therapeutic candidate for asthma and chronic obstructive pulmonary disease. J Pharmacol Exp Ther 2009; 328:758-65. [PMID: 19056934 DOI: 10.1124/jpet.108.144311] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are key elements in the signaling cascades that lie downstream of many cellular receptors. In particular, PI3K delta and gamma isoforms contribute to inflammatory cell recruitment and subsequent activation. For this reason, in a series of preclinical studies, we tested the potential of a recently developed small-molecule inhibitor of these two isoforms, TG100-115 [3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7-yl]phenol], as a form of anti-inflammatory therapy for respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD). To determine pharmacokinetic profiles, aerosolized formulations of the drug were delivered to mice by a nose-only inhalation route, yielding high pulmonary TG100-115 levels with minimal systemic exposure. Safety assessments were favorable, with no clinical or histological changes noted after 21 days of daily dosing. In a murine asthma model, aerosolized TG100-115 markedly reduced the pulmonary eosinophilia and the concomitant interleukin-13 and mucin accumulation characteristic of this disease. As a functional benefit, interventional dosing schedules of this inhibitor also reduced airway hyper-responsiveness. To model the pulmonary neutrophilia characteristic of COPD, mice were exposed to either intranasal lipopolysaccharide or inhaled smoke. Aerosolized TG100-115 again inhibited these inflammatory patterns, most notably in the smoke model, where interventional therapy overcame the steroid-resistant nature of the pulmonary inflammation. In conclusion, aerosolized TG100-115 displays pharmacokinetic, safety, and biological activity profiles favorable for further development as a therapy for both asthma and COPD. Furthermore, these studies support the hypothesis that PI3K delta and gamma are suitable molecular targets for these diseases.
Collapse
Affiliation(s)
- John Doukas
- TargeGen, Inc., 9380 Judicial Drive, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Signal transduction of many growth factors and oncogenes is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1), a master regulator of a number of downstream signal protein kinase cascades. Hence, PDK1 represents a convergence point for receptor tyrosine kinase and cytokine-mediated pathways for the regulation of vital cell processes such as cell survival and proliferation. Pathological upregulation of PDK1 signalling due to constitutive growth factor receptor activation and/or PTEN (phosphatase and tensin homologue) mutations significantly triggers downstream signalling, e.g. PKB/Akt, which subsequently promote proliferative events such as tumour invasiveness, angiogenesis, and progression. Consistent with this, a mouse model expressing low levels of PDK1 is protected from tumourigenesis resulting from loss of PTEN. Because more than 50 % of all human cancers possess significant overstimulation of the PDK1 signalling pathway, inhibition of this protein kinase by small molecules is predicted to result in effective inhibition of cancer cell proliferation and thus be therapeutically beneficial. Various classes of small-molecule PDK1 inhibitors have been published in patents and papers. Herein we present for the first time a comprehensive collection of small molecules reported to interact with PDK1, and we refer to their biological characterisation in terms of activity and selectivity for PDK1.
Collapse
Affiliation(s)
- Christian Peifer
- MRC Protein Phosphorylation Unit, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dow Street Dundee DD15EH, Scotland, UK.
| | | |
Collapse
|
24
|
Abstract
Dysregulated activity of phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin complex 1 (mTORC1) is characteristic feature of hamartoma syndromes. Hamartoma syndromes, dominantly inherited cancer predisposition disorders, affect multiple organs and are manifested by benign tumors consisting of various cell types native to the tissues in which they arise. In the past few years, three inherited hamartoma syndromes, Cowden syndrome (CS), tuberous sclerosis complex (TSC) syndrome, and Peutz-Jeghens syndrome (PJS), have all been linked to a common biochemical pathway: the hyperactivation of PI3K/mTORC1 intracellular signaling. Three tumor suppressors, PTEN (phosphatases and tensin homolog), tuberous sclerosis complex TSC1/TSC2, and LKB1, are negative regulators of PI3K/mTORC1 signaling; disease-related inactivation of these tumor suppressors results in the development of PTEN-associated hamartoma syndromes, TSC and PJS, respectively. The goal of this review is to provide a roadmap for navigating the inherently complex regulation of PI3K/mTORC1 signaling while highlighting the progress that has been made in elucidating the cellular and molecular mechanisms of hamartoma syndromes and identificating potential therapeutic targets for their treatment. Importantly, because the PI3K/mTORC1 pathway is activated in the majority of common human cancers, the identification of novel molecular target(s) for the treatment of hamartoma syndromes may have a broader translational potential, and is critically important not only for therapeutic intervention in hamartoma disorders, but also for the treatment of cancers.
Collapse
Affiliation(s)
- Vera P Krymskaya
- Department of Medicine, and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104-3403, USA.
| | | |
Collapse
|
25
|
Medoff BD, Okamoto Y, Leyton P, Weng M, Sandall BP, Raher MJ, Kihara S, Bloch KD, Libby P, Luster AD. Adiponectin deficiency increases allergic airway inflammation and pulmonary vascular remodeling. Am J Respir Cell Mol Biol 2009; 41:397-406. [PMID: 19168697 DOI: 10.1165/rcmb.2008-0415oc] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Obesity is associated with an increased incidence and severity of asthma, as well as other lung disorders, such as pulmonary hypertension. Adiponectin (APN), an antiinflammatory adipocytokine, circulates at lower levels in the obese, which is thought to contribute to obesity-related inflammatory diseases. We sought to determine the effects of APN deficiency in a murine model of chronic asthma. Allergic airway inflammation was induced in APN-deficient mice (APN(-/-)) using sensitization without adjuvant followed by airway challenge with ovalbumin. The mice were then analyzed for changes in inflammation and lung remodeling. APN(-/-) mice in this model develop increased allergic airway inflammation compared with wild-type mice, with greater accumulation of eosinophils and monocytes in the airways associated with elevated lung chemokine levels. Surprisingly, APN(-/-) mice developed severe pulmonary arterial muscularization and pulmonary arterial hypertension in this model, whereas wild-type mice had only mild vascular remodeling and comparatively less pulmonary arterial hypertension. Our findings demonstrate that APN modulates allergic inflammation and pulmonary vascular remodeling in a model of chronic asthma. These data provide a possible mechanism for the association between obesity and asthma, and suggest a potential novel link between obesity, inflammatory lung disease, and pulmonary hypertension.
Collapse
Affiliation(s)
- Benjamin D Medoff
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, CNY 8301, 149 13th Street, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Burgess JK, Lee JH, Ge Q, Ramsay EE, Poniris MH, Parmentier J, Roth M, Johnson PRA, Hunt NH, Black JL, Ammit AJ. Dual ERK and phosphatidylinositol 3-kinase pathways control airway smooth muscle proliferation: differences in asthma. J Cell Physiol 2008; 216:673-9. [PMID: 18338817 DOI: 10.1002/jcp.21450] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hyperplasia of airway smooth muscle (ASM) within the bronchial wall of asthmatic patients has been well documented and is likely due to increased muscle proliferation. We have shown that ASM cells obtained from asthmatic patients proliferate faster than those obtained from non-asthmatic patients. In ASM from non-asthmatics, mitogens act via dual signaling pathways (both ERK- and PI 3-kinase-dependent) to control growth. In this study we are the first to examine whether dual pathways control the enhanced proliferation of ASM from asthmatics. When cells were incubated with 0.1% or 1% FBS, ERK activation was significantly greater in cells from asthmatic subjects (P < 0.05). In contrast, when cells were stimulated with 10% FBS, ERK activity was significantly greater in the non-asthmatic cells. However, cell proliferation in asthmatic cells was still significantly higher in cells stimulated by both 1% and 10% FBS. Pharmacological inhibition revealed that although dual proliferative pathways control ASM growth in cells from non-asthmatics stimulated with 10% FBS to an equal extent ([(3)H]-thymidine incorporation reduced to 57.2 +/- 6.9% by the PI 3-kinase inhibitor LY294002 and 57.8 +/- 1.1% by the ERK-pathway inhibitor U0126); in asthmatics, the presence of a strong proliferative stimulus (10% FBS) reduces ERK activation resulting in a shift to the PI 3-kinase pathway. The underlying mechanism appears to be upregulation of an endogenous MAPK inhibitor--MKP-1--that constrains ERK signaling in asthmatic cells under strong mitogenic stimulation. This study suggests that the PI 3-kinase pathway may be an attractive target for reversing hyperplasia in asthma.
Collapse
Affiliation(s)
- Janette K Burgess
- Respiratory Research Group, Discipline of Pharmacology, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|