1
|
Kciuk M, Yahya EB, Mohamed Ibrahim Mohamed M, Rashid S, Iqbal MO, Kontek R, Abdulsamad MA, Allaq AA. Recent Advances in Molecular Mechanisms of Cancer Immunotherapy. Cancers (Basel) 2023; 15:2721. [PMID: 37345057 DOI: 10.3390/cancers15102721] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer is among the current leading causes of death worldwide, despite the novel advances that have been made toward its treatment, it is still considered a major public health concern. Considering both the serious impact of cancer on public health and the significant side effects and complications of conventional therapeutic options, the current strategies towards targeted cancer therapy must be enhanced to avoid undesired toxicity. Cancer immunotherapy has become preferable among researchers in recent years compared to conventional therapeutic options, such as chemotherapy, surgery, and radiotherapy. The understanding of how to control immune checkpoints, develop therapeutic cancer vaccines, genetically modify immune cells as well as enhance the activation of antitumor immune response led to the development of novel cancer treatments. In this review, we address recent advances in cancer immunotherapy molecular mechanisms. Different immunotherapeutic approaches are critically discussed, focusing on the challenges, potential risks, and prospects involving their use.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Muhanad A Abdulsamad
- Department of Molecular Biology, Faculty of Science, Sabratha University, Sabratha 00218, Libya
| | - Abdulmutalib A Allaq
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| |
Collapse
|
2
|
Mathematical Prostate Cancer Evolution: Effect of Immunotherapy Based on Controlled Vaccination Strategy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:7970265. [PMID: 32411286 PMCID: PMC7201722 DOI: 10.1155/2020/7970265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 11/22/2019] [Accepted: 12/23/2019] [Indexed: 12/03/2022]
Abstract
Basic immunology research over several decades has led to an improved understanding of tumour recognition by components of the immune system and mechanism of tumour evasion from immune detection. These findings have ultimately led to creating antitumour immunotherapies in patients with different kind of cancer including prostate cancer. The increasing number of reports confirms that immune-based therapies have clinical benefit in patients with prostate cancer with potentially less toxicity in comparison with traditional systemic treatments including surgical resection, chemotherapy, or radiotherapy in various forms. This review focuses on the possibility of modulation of the optimal immunotherapy based on vaccination strategy adopted to individual patients in order to increase quality and quantity of their life.
Collapse
|
3
|
Ji L, Jiang X, Mao F, Tang Z, Zhong B. miR‑589‑5p is downregulated in prostate cancer and regulates tumor cell viability and metastasis by targeting CCL‑5. Mol Med Rep 2019; 20:1373-1382. [PMID: 31173214 DOI: 10.3892/mmr.2019.10334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 03/13/2019] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer is one of the most common human malignancies, which represents a serious threat to health, and microRNAs (miRNAs/miRs) have been reported to be closely associated with the progression and development of prostate cancer. The present study aimed to investigate the expression patterns, functions and underlying mechanisms of miR‑589‑5p in prostate cancer. The results demonstrated that the expression levels of miR‑589‑5p were downregulated in prostate cancer tissues and cell lines. Overexpression of miR‑589‑5p inhibited cell viability, migration and invasion in prostate cancer cells. Subsequently, chemokine (C‑C motif) ligand 5 (CCL‑5) was identified as a direct target gene of miR‑589‑5p, which was highly expressed at the mRNA and protein levels in prostate cancer tissues and cells. Furthermore, CCL‑5 mRNA was negatively correlated with miR‑589‑5p expression in prostate cancer tissues. Silencing CCL‑5 promoted the apoptosis, and inhibited the migration and invasion of prostate cancer cells. Taken together, these results indicated that miR‑589‑5p may act as a tumor suppressor in prostate cancer by targeting CCL‑5, thus suggesting that miR‑589‑5p may be a novel and reliable molecular marker for the diagnosis and prognosis of prostate cancer.
Collapse
Affiliation(s)
- Lu Ji
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xi Jiang
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Fei Mao
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Zhiwang Tang
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Bing Zhong
- Department of Urology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
4
|
Sang W, Zhang Z, Dai Y, Chen X. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem Soc Rev 2019; 48:3771-3810. [DOI: 10.1039/c8cs00896e] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review aims to summarize various synergistic combination cancer immunotherapy strategies based on nanomaterials.
Collapse
Affiliation(s)
- Wei Sang
- Cancer Centre
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Zhan Zhang
- Cancer Centre
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Yunlu Dai
- Cancer Centre
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine
- National Institute of Biomedical Imaging and Bioengineering
- National Institutes of Health
- Bethesda
- USA
| |
Collapse
|
5
|
Abstract
Cancer is one of the major leading death causes of diseases. Prevention and treatment of cancer is an important way to decrease the incidence of tumorigenesis and prolong patients' lives. Subversive achievements on cancer immunotherapy have recently been paid much attention after many failures in basic and clinical researches. Based on deep analysis of genomics and proteomics of tumor antigens, a variety of cancer vaccines targeting tumor antigens have been tested in preclinical and human clinical trials. Many therapeutic cancer vaccines alone or combination with other conventional treatments for cancer obtained spectacular efficacy, indicating the tremendously potential application in clinic. With the illustration of underlying mechanisms of cancer immune regulation, valid, controllable, and persistent cancer vaccines will play important roles in cancer treatment, survival extension and relapse and cancer prevention. This chapter mainly summarizes the recent progresses and developments on cancer vaccine research and clinical application, thus exploring the existing obstacles in cancer vaccine research and promoting the efficacy of cancer vaccine.
Collapse
|
6
|
Xi HB, Wang GX, Fu B, Liu WP, Li Y. Survivin and PSMA Loaded Dendritic Cell Vaccine for the Treatment of Prostate Cancer. Biol Pharm Bull 2015; 38:827-35. [PMID: 25787895 DOI: 10.1248/bpb.b14-00518] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dendritic cell (DC)-based vaccines are a promising therapeutic modality for cancer. Results from recent trials and approval of the first DC vaccine by the U.S. Food and Drugs Administration for prostate cancer have paved the way for DC-based vaccines. A total of 21 hormone refractory prostate cancer (HRPC) patients with a life expectancy >3 months were randomised into two groups. DC loaded with recombinant Prostate Specific Membrane Antigen (rPSMA) and recombinant Survivin (rSurvivin) peptides was administered as an subcutaneous (s.c.) injection (5×10(6) cells). Docetaxel (75 mg/m(2) intravenous (i.v.)) and prednisone (5 mg, bis in die (b.i.d.)) served as control. Clinical and immunological responses were evaluated. Primary endpoints were safety and feasibility; secondary endpoint was overall survival. Responses were evaluated on day 15, day 30, day 60, and day 90. DC vaccination was well tolerated with no signs of grade 2 toxicity. DC vaccination induced delayed-type hypersensitivity reactivity and an immune response in all patients. Objective Response Rate (ORR) by Response Evaluation Criteria in Solid Tumours (RECIST) was 72.7% (8/11) versus 45.4 (5/11) in the docetaxel arm and immune related response criteria (irRC) was 54.5% (6/11) compared with 27.2% (3/11) in the control arm. The DC arm showed stable disease (SD) in 6 patients, progressive disease (PD) in 3 patients, and partial remission (PR) in two patients compared to SD in 5 patients, PD in 6 patients, and PR in none in the docetaxel arm. There was a cellular response, disease stabilization, no adverse events, and partial remission with the rPSMA and rSurvivin primed DC vaccine.
Collapse
Affiliation(s)
- Hai-Bo Xi
- Department of Urology, The First Affiliated Hospital of Nanchang University
| | | | | | | | | |
Collapse
|
7
|
Lewis JS, Roy K, Keselowsky BG. Materials that harness and modulate the immune system. MRS BULLETIN 2014; 39:25-34. [PMID: 26997752 PMCID: PMC4793183 DOI: 10.1557/mrs.2013.310] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Recently, biomaterial scientists have married materials engineering and immunobiology to conceptualize new immunomodulatory materials. This special class of biomaterials can modulate and harness the innate properties of immune functionality for enhanced therapeutic efficacy. Generally, two fundamental strategies are followed in the design of immunomodulatory biomaterials: (1) immuno-evasive (immuno-mimetic, immuno-suppressing, or immuno-inert) biomaterials and (2) immuno-activating or immuno-enhancing biomaterials. This article highlights the development and application of a number of immunomodulatory materials, categorized by these two general approaches.
Collapse
|
8
|
|
9
|
Kim K, Kim SJ, Han D, Jin J, Yu J, Park KS, Yu HG, Kim Y. Verification of multimarkers for detection of early stage diabetic retinopathy using multiple reaction monitoring. J Proteome Res 2013; 12:1078-89. [PMID: 23368427 DOI: 10.1021/pr3012073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diabetic retinopathy (DR) is a complication of diabetes and 80% of diabetes mellitus (DM) patients whose DM duration is over 10 years can be expected to suffer with DR. The diagnosis of DR depends on an ophthalmological examination, and no molecular methods of screening DR status exist. Nonproliferative diabetic retinopathy (NPDR) is the early DR which is hard to be noticed in early NPDR, showing significant cause of adult blindness in type 2 diabetes patients. Protein biomarkers have been valuable in the diagnosis of disease and the use of multiple biomarkers has been suggested to overcome the low specificity of single ones. For biomarker development, multiple reaction monitoring (MRM) has been spotlighted as an alternative method to quantify target proteins with no need for immunoassay. In this study, 54 candidate DR marker proteins from a previous study were verified by MRM in plasma samples from NPDR patients in 3 stages (mild, moderate and severe; 15 cases each) and diabetic patients without retinopathy (15 cases) as a control. Notably, 27 candidate markers distinguished moderate NPDR from type 2 diabetic patients with no diabetic retinopathy, generating AUC values (>0.7). Specifically, 28 candidate proteins underwent changes in expression as type 2 diabetic patients with no diabetic retinopathy progressed to mild and moderate NPDR. Further, a combination of 4 markers from these 28 candidates had the improved specificity in distinguishing moderate NPDR from type 2 diabetic patients with no diabetic retinopathy, yielding a merged AUC value of nearly 1.0. We concluded that MRM is a fast, robust approach of multimarker panel determination and an assay platform that provides improved specificity compared with single biomarker assay systems.
Collapse
Affiliation(s)
- Kyunggon Kim
- Department of Biomedical Engineering, Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University College of Medicine, 28 Yongon-Dong, Seoul 110-799, Korea
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Williams BJ, Bhatia S, Adams LK, Boling S, Carroll JL, Li XL, Rogers DL, Korokhov N, Kovesdi I, Pereboev AV, Curiel DT, Mathis JM. Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector. PLoS One 2012; 7:e46981. [PMID: 23056548 PMCID: PMC3466199 DOI: 10.1371/journal.pone.0046981] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 09/11/2012] [Indexed: 11/18/2022] Open
Abstract
Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs) with prostate specific membrane antigen (PSMA) have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells). To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an Ad vector expressing interferon-gamma (Ad5-IFNγ). Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNγ as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNγ in the RM-1-PSMA model. These results suggest that a CD-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP Binding Cassette Transporter, Subfamily B, Member 3
- ATP-Binding Cassette Transporters/genetics
- Adenoviridae/genetics
- Adjuvants, Immunologic/metabolism
- Animals
- Antigen Presentation/genetics
- Antigen Presentation/immunology
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- CD40 Antigens/immunology
- CD40 Antigens/metabolism
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cell Survival/genetics
- Cell Survival/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/virology
- Genetic Vectors/genetics
- Glutamate Carboxypeptidase II/genetics
- Glutamate Carboxypeptidase II/metabolism
- HLA-A Antigens/genetics
- Humans
- Interferon-gamma/genetics
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/virology
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Targeted Therapy
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/immunology
- Prostatic Neoplasms/prevention & control
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
- Vaccination/methods
Collapse
Affiliation(s)
- Briana Jill Williams
- Gene Therapy Program, Departments of Urology, Biochemistry and Molecular Biology, and Cellular Biology and Anatomy, and the Feist-Weiller Cancer Center, LSU Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Shilpa Bhatia
- Gene Therapy Program, Departments of Urology, Biochemistry and Molecular Biology, and Cellular Biology and Anatomy, and the Feist-Weiller Cancer Center, LSU Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Lisa K. Adams
- Gene Therapy Program, Departments of Urology, Biochemistry and Molecular Biology, and Cellular Biology and Anatomy, and the Feist-Weiller Cancer Center, LSU Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Susan Boling
- Gene Therapy Program, Departments of Urology, Biochemistry and Molecular Biology, and Cellular Biology and Anatomy, and the Feist-Weiller Cancer Center, LSU Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Jennifer L. Carroll
- Gene Therapy Program, Departments of Urology, Biochemistry and Molecular Biology, and Cellular Biology and Anatomy, and the Feist-Weiller Cancer Center, LSU Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Xiao-Lin Li
- Gene Therapy Program, Departments of Urology, Biochemistry and Molecular Biology, and Cellular Biology and Anatomy, and the Feist-Weiller Cancer Center, LSU Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Donna L. Rogers
- Gene Therapy Program, Departments of Urology, Biochemistry and Molecular Biology, and Cellular Biology and Anatomy, and the Feist-Weiller Cancer Center, LSU Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Nikolay Korokhov
- VectorLogics, Inc., Birmingham, Alabama, United States of America
| | - Imre Kovesdi
- VectorLogics, Inc., Birmingham, Alabama, United States of America
| | - Alexander V. Pereboev
- Departments of Medicine and Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David T. Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - J. Michael Mathis
- Gene Therapy Program, Departments of Urology, Biochemistry and Molecular Biology, and Cellular Biology and Anatomy, and the Feist-Weiller Cancer Center, LSU Health Sciences Center, Shreveport, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
11
|
Dubrovska A, Kim C, Elliott J, Shen W, Kuo TH, Koo DI, Li C, Tuntland T, Chang J, Groessl T, Wu X, Gorney V, Ramirez-Montagut T, Spiegel DA, Cho CY, Schultz PG. A chemically induced vaccine strategy for prostate cancer. ACS Chem Biol 2011; 6:1223-31. [PMID: 21936526 DOI: 10.1021/cb200222s] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Here we report the design and evaluation of a bifunctional, small molecule switch that induces a targeted immune response against tumors in vivo. A high affinity ligand for prostate specific membrane antigen (PSMA) was conjugated to a hapten that binds dinitrophenyl (DNP)-specific antibodies. When introduced into hu-PBL-NOD/SCID mice previously immunized with a KLH-DNP immunogen, this conjugate induced a targeted antibody-dependent cellular cytotoxicity (ADCC) response to PSMA-expressing tumor cells in a mouse xenograft model. The ability to create a small molecule inducible antibody response against self-antigens using endogenous non-autoreactive antibodies may provide advantages over the autologous immune response generated by conventional vaccines in certain therapeutic settings.
Collapse
Affiliation(s)
- Anna Dubrovska
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chanhyuk Kim
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jimmy Elliott
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Weijun Shen
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Tun-Hsun Kuo
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dong-In Koo
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chun Li
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Tove Tuntland
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jonathan Chang
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Todd Groessl
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Xu Wu
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Vanessa Gorney
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Teresa Ramirez-Montagut
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - David A. Spiegel
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Charles Y. Cho
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Peter G. Schultz
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
12
|
Abstract
Various strategies have been used to generate cellular cancer vaccines with the expectation that they will become an effective part of the overall management of cancer patients. However, with few notable exceptions, immunization has not resulted in significant long-term therapeutic benefits. Tumor growth has continued and patient survival has been at best only modestly prolonged. One possible explanation is that as only a small proportion of the constituents of malignant cells are "tumor specific" and the vast majority are the products of nonantigenic, normal "housekeeping" genes, the immune response in patients immunized with cellular cancer vaccines is not sufficient to result in tumor rejection. Here, we review and characterize various types of cellular cancer vaccines. In addition, in a mouse breast cancer model system, we describe a unique strategy designed to enrich cellular vaccines for cells that induce tumor immunity. Numerous advantages and disadvantages of cancer immunotherapy with cellular vaccines are also presented.
Collapse
Affiliation(s)
- Edward P Cohen
- Department of Microbiology & Immunology, University of Illinois College of Medicine, 835 South Wolcott Ave., Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
13
|
Rajarubendra N, Lawrentschuk N, Bolton DM, Klotz L, Davis ID. Prostate cancer immunology - an update for Urologists. BJU Int 2010; 107:1046-51. [PMID: 21070575 DOI: 10.1111/j.1464-410x.2010.09820.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nieroshan Rajarubendra
- Department of Surgery, University of Melbourne, Austin Hospital, Urology Unit, Australia
| | | | | | | | | |
Collapse
|
14
|
|
15
|
Michael BD, Syndikus I, Clark A, Baborie A. Diffuse primary leptomeningeal melanocytosis in a patient receiving a novel cancer cell vaccine for prostate cancer. BMJ Case Rep 2010; 2010:2010/may04_1/bcr1120092495. [PMID: 22736604 DOI: 10.1136/bcr.11.2009.2495] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED A 75-year-old man, undergoing treatment for metastatic prostate cancer with a novel cancer cell vaccine, presented with a 4 week history of poor balance, gait disturbance and cognitive decline. Blood tests including HIV and onconeuronal and voltage gated potassium channel antibodies were normal. Computed tomography and two magnetic resonance images of the brain showed possible non-specific meningeal or vascular enhancement. Two cerebrospinal fluid analyses, including cytology, were negative, other than six lymphocytes in the former. Despite intravenous aciclovir and dexamethasone the patient deteriorated over 16 days, with worsening confusion and involuntary movements, and died. Postmortem examination showed that the leptomeninges overlying the brain and spinal cord were diffusely infiltrated by a melanocytosis with a focal area of melanomatosis. Moreover, there were two sites of metastases of a highly malignant clone present in the pulmonary parenchyma. TRIAL REGISTRATION NUMBER NCT00133224.
Collapse
|
16
|
Aurisicchio L, Ciliberto G. Patented cancer vaccines: the promising leads. Expert Opin Ther Pat 2010; 20:647-60. [DOI: 10.1517/13543771003720483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
DNA vaccines: developing new strategies against cancer. J Biomed Biotechnol 2010; 2010:174378. [PMID: 20368780 PMCID: PMC2846346 DOI: 10.1155/2010/174378] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/05/2010] [Indexed: 12/14/2022] Open
Abstract
Due to their rapid and widespread development, DNA vaccines have entered into a variety of human clinical trials for vaccines against various diseases including cancer. Evidence that DNA vaccines are well tolerated and have an excellent safety profile proved to be of advantage as many clinical trials combines the first phase with the second, saving both time and money. It is clear from the results obtained in clinical trials that such DNA vaccines require much improvement in antigen expression and delivery methods to make them sufficiently effective in the clinic. Similarly, it is clear that additional strategies are required to activate effective immunity against poorly immunogenic tumor antigens. Engineering vaccine design for manipulating antigen presentation and processing pathways is one of the most important aspects that can be easily handled in the DNA vaccine technology. Several approaches have been investigated including DNA vaccine engineering, co-delivery of immunomodulatory molecules, safe routes of administration, prime-boost regimen and strategies to break the immunosuppressive networks mechanisms adopted by malignant cells to prevent immune cell function. Combined or single strategies to enhance the efficacy and immunogenicity of DNA vaccines are applied in completed and ongoing clinical trials, where the safety and tolerability of the DNA platform are substantiated.
In this review on DNA vaccines, salient aspects on this topic going from basic research to the clinic are evaluated. Some representative DNA cancer vaccine studies are also discussed.
Collapse
|
18
|
Uemura H, Fujimoto K, Mine T, Uejima S, de Velasco MA, Hirao Y, Komatsu N, Yamada A, Itoh K. Immunological evaluation of personalized peptide vaccination monotherapy in patients with castration-resistant prostate cancer. Cancer Sci 2010; 101:601-8. [PMID: 20128819 PMCID: PMC11159476 DOI: 10.1111/j.1349-7006.2009.01459.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
We previously reported that personalized peptide vaccine (PPV) therapy in combination with leutenizing hormone-releasing hormone (LH-RH) analog and estramustine phosphate in certain cases is safe and capable of inducing both immune responses and clinical responses for metastatic castration-resistant prostate cancer (CRPC) patients. In the present study, PPV monotherapy was given to CRPC patients. Twenty-three patients with metastatic CRPC were treated with PPV without any additional treatment modalities, including LH-RH analogs. Samples were analyzed for peptide-specific cytotoxic T-lymphocyte (CTL) precursor analysis and peptide-reactive IgG. Toxicity and immunological and clinical responses were assessed on a three-monthly basis. Seventeen patients were available for immunological and clinical evaluation. The vaccines were well tolerated, with grade 3 erythema at injection sites in only one patient. Augmentation of CTL or IgG responses to at least one of the peptides was observed in six of 17 (35%) and 15 of 17 (88%) patients tested, respectively. Among 57 peptides used, 9 and 36 peptides induced CTL and IgG responses, respectively. Delayed-type hypersensitivity reaction was observed in eight of 17 patients. More than 30% prostate-specific antigen (PSA) decline was observed in four of 17 patients. Of these, one patient achieved a complete PSA response and another patient showed a partial PSA response with profound shrinking of lymph node metastases and prostate. The overall median survival time was 24 months (range, 5-37 months). These results suggest that PPV monotherapy appears to be safe and capable of inducing peptide-specific immune responses and clinical responses in CRPC patients. This trial was registered with University Hospital Medical Information Network (UMIN) number R000003339.
Collapse
Affiliation(s)
- Hirotsugu Uemura
- Department of Urology, Kinki University School of Medicine, Osaka-Sayama, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tahara H, Sato M, Thurin M, Wang E, Butterfield LH, Disis ML, Fox BA, Lee PP, Khleif SN, Wigginton JM, Ambs S, Akutsu Y, Chaussabel D, Doki Y, Eremin O, Fridman WH, Hirohashi Y, Imai K, Jacobson J, Jinushi M, Kanamoto A, Kashani-Sabet M, Kato K, Kawakami Y, Kirkwood JM, Kleen TO, Lehmann PV, Liotta L, Lotze MT, Maio M, Malyguine A, Masucci G, Matsubara H, Mayrand-Chung S, Nakamura K, Nishikawa H, Palucka AK, Petricoin EF, Pos Z, Ribas A, Rivoltini L, Sato N, Shiku H, Slingluff CL, Streicher H, Stroncek DF, Takeuchi H, Toyota M, Wada H, Wu X, Wulfkuhle J, Yaguchi T, Zeskind B, Zhao Y, Zocca MB, Marincola FM. Emerging concepts in biomarker discovery; the US-Japan Workshop on Immunological Molecular Markers in Oncology. J Transl Med 2009; 7:45. [PMID: 19534815 PMCID: PMC2724494 DOI: 10.1186/1479-5876-7-45] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 06/17/2009] [Indexed: 02/08/2023] Open
Abstract
Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations. Converging concepts were identified: enhanced knowledge of interferon-related pathways was found to be central to the understanding of immune-mediated tissue-specific destruction (TSD) of which tumor rejection is a representative facet. Although the expression of interferon-stimulated genes (ISGs) likely mediates the inflammatory process leading to tumor rejection, it is insufficient by itself and the associated mechanisms need to be identified. It is likely that adaptive immune responses play a broader role in tumor rejection than those strictly related to their antigen-specificity; likely, their primary role is to trigger an acute and tissue-specific inflammatory response at the tumor site that leads to rejection upon recruitment of additional innate and adaptive immune mechanisms. Other candidate systemic and/or tissue-specific biomarkers were recognized that might be added to the list of known entities applicable in immunotherapy trials. The need for a systematic approach to biomarker discovery that takes advantage of powerful high-throughput technologies was recognized; it was clear from the current state of the science that immunotherapy is still in a discovery phase and only a few of the current biomarkers warrant extensive validation. It was, finally, clear that, while current technologies have almost limitless potential, inadequate study design, limited standardization and cross-validation among laboratories and suboptimal comparability of data remain major road blocks. The institution of an interactive consortium for high throughput molecular monitoring of clinical trials with voluntary participation might provide cost-effective solutions.
Collapse
Affiliation(s)
- Hideaki Tahara
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Marimo Sato
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Magdalena Thurin
- Cancer Diagnosis Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, Maryland, 20852, USA
| | - Ena Wang
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Center for Human Immunology (CHI), NIH, Bethesda, Maryland, 20892, USA
| | - Lisa H Butterfield
- Departments of Medicine, Surgery and Immunology, Division of Hematology Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, 15213, USA
| | - Mary L Disis
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington, 98195, USA
| | - Bernard A Fox
- Earle A Chiles Research Institute, Robert W Franz Research Center, Providence Portland Medical Center, and Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, 97213, USA
| | - Peter P Lee
- Department of Medicine, Division of Hematology, Stanford University, Stanford, California, 94305, USA
| | - Samir N Khleif
- Cancer Vaccine Section, NCI, NIH, Bethesda, Maryland, 20892, USA
| | - Jon M Wigginton
- Discovery Medicine-Oncology, Bristol-Myers Squibb Inc., Princeton, New Jersey, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center of Cancer Research, NCI, NIH, Bethesda, Maryland, 20892, USA
| | - Yasunori Akutsu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Damien Chaussabel
- Baylor Institute for Immunology Research and Baylor Research Institute, Dallas, Texas, 75204, USA
| | - Yuichiro Doki
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Oleg Eremin
- Section of Surgery, Biomedical Research Unit, Nottingham Digestive Disease Centre, University of Nottingham, NG7 2UH, UK
| | - Wolf Hervé Fridman
- Centre de la Reserche des Cordeliers, INSERM, Paris Descarte University, 75270 Paris, France
| | | | - Kohzoh Imai
- Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - James Jacobson
- Cancer Diagnosis Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, Maryland, 20852, USA
| | - Masahisa Jinushi
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akira Kanamoto
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Kazunori Kato
- Department of Molecular Medicine, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - John M Kirkwood
- Departments of Medicine, Surgery and Immunology, Division of Hematology Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, 15213, USA
| | - Thomas O Kleen
- Cellular Technology Ltd, Shaker Heights, Ohio, 44122, USA
| | - Paul V Lehmann
- Cellular Technology Ltd, Shaker Heights, Ohio, 44122, USA
| | - Lance Liotta
- Department of Molecular Pathology and Microbiology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, 10900, USA
| | - Michael T Lotze
- Illman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Michele Maio
- Medical Oncology and Immunotherapy, Department. of Oncology, University, Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
- Cancer Bioimmunotherapy Unit, Department of Medical Oncology, Centro di Riferimento Oncologico, IRCCS, Aviano, 53100, Italy
| | - Anatoli Malyguine
- Laboratory of Cell Mediated Immunity, SAIC-Frederick, Inc. NCI-Frederick, Frederick, Maryland, 21702, USA
| | - Giuseppe Masucci
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, 171 76, Sweden
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shawmarie Mayrand-Chung
- The Biomarkers Consortium (BC), Public-Private Partnership Program, Office of the Director, NIH, Bethesda, Maryland, 20892, USA
| | - Kiminori Nakamura
- Department of Molecular Medicine, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - Hiroyoshi Nishikawa
- Department of Cancer Vaccine, Department of Immuno-gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| | - A Karolina Palucka
- Baylor Institute for Immunology Research and Baylor Research Institute, Dallas, Texas, 75204, USA
| | - Emanuel F Petricoin
- Department of Molecular Pathology and Microbiology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, 10900, USA
| | - Zoltan Pos
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Center for Human Immunology (CHI), NIH, Bethesda, Maryland, 20892, USA
| | - Antoni Ribas
- Department of Medicine, Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, 90095, USA
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, IRCCS Foundation, Istituto Nazionale Tumori, Milan, 20100, Italy
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Shiku
- Department of Cancer Vaccine, Department of Immuno-gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| | - Craig L Slingluff
- Department of Surgery, Division of Surgical Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, 22908, USA
| | - Howard Streicher
- Cancer Therapy Evaluation Program, DCTD, NCI, NIH, Rockville, Maryland, 20892, USA
| | - David F Stroncek
- Cell Therapy Section (CTS), Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, Maryland, 20892, USA
| | - Hiroya Takeuchi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Minoru Toyota
- Department of Biochemistry, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | - Hisashi Wada
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Xifeng Wu
- Department of Epidemiology, University of Texas, MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Julia Wulfkuhle
- Department of Molecular Pathology and Microbiology, Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, 10900, USA
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | | | - Yingdong Zhao
- Biometric Research Branch, NCI, NIH, Bethesda, Maryland, 20892, USA
| | | | - Francesco M Marincola
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Center for Human Immunology (CHI), NIH, Bethesda, Maryland, 20892, USA
| |
Collapse
|