1
|
Ren QX, Zhuang QS, Shen GL. Expression and significance of pin1 in the wound healing. Arch Dermatol Res 2024; 316:235. [PMID: 38795154 DOI: 10.1007/s00403-024-03030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/27/2024]
Abstract
The aim of this study is to delineate the expression patterns of prolyl cis-trans isomerase NIMA-interacting protein 1 (Pin1), Glial cell-derived neurotrophic factor (GDNF), and Angiotensin II (ANG II) during the process of wound repair, and to ascertain the effects of Pin1, GDNF, and ANG II on the healing of wounds in a rat model. A total of 18 rats were allocated into three groups-sham (control), DMSO (vehicle control), and Pin1 inhibitor (treatment with juglone)-with six animals in each group. An animal model of wound healing was established, followed by the intraperitoneal administration of juglone. Tissue samples from the wounds were subsequently collected for histopathological evaluation. Expression levels of Pin1, GDNF, and Ang II were quantified. In addition, an in vitro model of wound healing was created using human umbilical vein endothelial cells (HUVEC), to assess cell proliferation, migration, and tube formation under conditions of juglone pre-treatment. The expression levels of Pin1, GDNF, and ANG II were notably elevated on 7-, and 10- days post-wound compared to those measured on 3-day. Contrastingly, pre-treatment with juglone significantly inhibited the expression of these molecules. Histological analyses, including HE (Hematoxylin and Eosin), Masson's trichrome, and EVG (Elastic van Gieson) staining, demonstrated that vascular angiogenesis, as well as collagen and elastin deposition, were substantially reduced in the juglone pre-treated group when compared to the normal group. Further, immunohistochemical analysis revealed a considerable decrease in CD31 expression in the juglone pre-treatment group relative to the normal control group. Pin1 serves as a pivotal facilitator of wound repair. The findings indicate that the modulation of Pin1, GDNF, and ANG II expression impacts the wound healing process in rats, suggesting potential targets for therapeutic intervention in human wound repair.
Collapse
Affiliation(s)
- Qing-Xian Ren
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, China
| | - Qian-Shu Zhuang
- Department of Endocrinology, Tengzhou Central People's Hospital, 181 Xingyun Road, Tengzhou, China
| | - Guo-Liang Shen
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, China.
| |
Collapse
|
2
|
Haim N, Kaufman JP, Gurevich M. The Use of Active Coagulation Whole Blood-An Innovative Treatment Strategy for Hard-To-Heal Wounds. Am Surg 2024; 90:710-716. [PMID: 37878333 DOI: 10.1177/00031348231207293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
BACKGROUND Deep and tunneling wounds are a challenge to apply and maintain most advanced wound dressings to promote effective healing. An autologous whole blood clot is a topical treatment and has been found to be safe and effective in healing cutaneous wounds. The active coagulation whole blood (ACWB) clot treatment, using the patient's own blood, is used to treat deep and tunneling wounds, by mixing the blood with coagulation components and applying it into the wound cavity allowing the clot to re-form inside the wound. We aimed to explore ACWB treatment in hard-to-heal wounds. METHODS 5 patients with multiple comorbidities, exhibiting surgical abdominal wound, chronic pilonidal sinus, stage 4 sacral pressure ulcer with exposed bone, post-amputation surgical site wound, and non-healing wound dehiscence at the site of a prior hip replacement, were all treated with the ACWB clot treatment. RESULTS Complete wound healing was observed in 4/5 cases. In the fifth case, there was a 70% reduction in the depth and surface area of the abdominal surgical wound. DISCUSSION The ACWB treatment was found to be effective in deep wounds with cavities and exposed structures. ACWB, in its flowable form, can effectively provide coverage of the deepest interstices of the wound's cavities by virtue of its liquid properties, forming a fibrin matrix, mimicking the role of the extracellular matrix. The flowable formulation of ACWB treatment safely and efficiently provides coverage of the entirety of the wound surface to improve the time and process of complex wound surface healing.
Collapse
Affiliation(s)
- Nadav Haim
- Department of Surgery, Shamir Medical Center, Be'er Ya'akov, Israel
| | - Jarrod P Kaufman
- Premier Surgical, Department of Surgery at Temple University School of Medicine, Brick, NJ, USA
| | - Maxim Gurevich
- Diabetic Foot Unit, Orthopedic B Department, Hillel Yaffe Medical Center, Hadera, Israel
| |
Collapse
|
3
|
Lin Z, Shibuya Y, Imai Y, Oshima J, Sasaki M, Sasaki K, Aihara Y, Khanh VC, Sekido M. Therapeutic Potential of Adipose-Derived Stem Cell-Conditioned Medium and Extracellular Vesicles in an In Vitro Radiation-Induced Skin Injury Model. Int J Mol Sci 2023; 24:17214. [PMID: 38139042 PMCID: PMC10743562 DOI: 10.3390/ijms242417214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Radiotherapy (RT) is one of three major treatments for malignant tumors, and one of its most common side effects is skin and soft tissue injury. However, the treatment of these remains challenging. Several studies have shown that mesenchymal stem cell (MSC) treatment enhances skin wound healing. In this study, we extracted human dermal fibroblasts (HDFs) and adipose-derived stem cells (ADSCs) from patients and generated an in vitro radiation-induced skin injury model with HDFs to verify the effect of conditioned medium derived from adipose-derived stem cells (ADSC-CM) and extracellular vesicles derived from adipose-derived stem cells (ADSC-EVs) on the healing of radiation-induced skin injury. The results showed that collagen synthesis was significantly increased in wounds treated with ADSC-CM or ADSC-EVs compared with the control group, which promoted the expression of collagen-related genes and suppressed the expression of inflammation-related genes. These findings indicated that treatment with ADSC-CM or ADSC-EVs suppressed inflammation and promoted extracellular matrix deposition; treatment with ADSC-EVs also promoted fibroblast proliferation. In conclusion, these results demonstrate the effectiveness of ADSC-CM and ADSC-EVs in the healing of radiation-induced skin injury.
Collapse
Affiliation(s)
- Zhixiang Lin
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
| | - Yoichiro Shibuya
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
| | - Yukiko Imai
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
| | - Junya Oshima
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
| | - Masahiro Sasaki
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
- Department of Plastic and Reconstructive Surgery, Mito Saiseikai General Hospital, Mito 311-4145, Ibaraki, Japan
| | - Kaoru Sasaki
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
| | - Yukiko Aihara
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
| | - Vuong Cat Khanh
- Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Mitsuru Sekido
- Department of Plastic and Reconstructive Surgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan (Y.I.); (M.S.)
| |
Collapse
|
4
|
Wang B, Zhang J, Li G, Xu C, Yang L, Zhang J, Wu Y, Liu Y, Liu Z, Wang M, Li J, Tang X, Liu B. N-acetyltransferase 10 promotes cutaneous wound repair via the NF-κB-IL-6 axis. Cell Death Discov 2023; 9:324. [PMID: 37644005 PMCID: PMC10465497 DOI: 10.1038/s41420-023-01628-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
Cutaneous wound healing, an integral part for protection of skin barrier, is a complex biological process and intimately associated with keratinocyte migration. However, mechanisms regulating keratinocyte migration in the process of cutaneous wound repair remain largely unknown. Here, we found that N-acetyltransferase 10 (NAT10) is essential for cutaneous wound repair in an in vivo skin wound healing model-a significant delay of wound repair in Nat10 haploinsufficient mice and a remarkable inhibition of keratinocyte migration by NAT10 knockdown in an in vitro keratinocyte migration model. We further demonstrate that loss of NAT10 expression attenuates the wound-induced IL-6/IL-8 expression through inhibiting NF-κB/p65 activity in keratinocytes. By deeply digging, silencing NAT10 compromises the level of nuclear p65 by facilitating its poly-ubiquitination, thus accelerates its degradation in the nucleus. Notably, we detected a strong positive correlation between the expression of NAT10 and relevant NF-kB/p65-IL6 signaling activity in mouse wound skin tissues. Overall, our study reveals an important role of NAT10 on cutaneous wound repair by potentiating NF-κB/p65-IL-6/8-STAT3 signaling. Targeting NAT10 might be a potential strategy for the treatment of skin wound dysfunctions and related diseases.
Collapse
Affiliation(s)
- Ben Wang
- Department of Dermatology, Hunan Key Laboratory of Aging Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jin Zhang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Guo Li
- Department of Dermatology, Hunan Key Laboratory of Aging Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chenzhong Xu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Langmei Yang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Jie Zhang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Yalan Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ye Liu
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zuojun Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Ming Wang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Ji Li
- Department of Dermatology, Hunan Key Laboratory of Aging Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolong Tang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China.
- School of Biomedical Sciences, Hunan University, Changsha, China.
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China.
| |
Collapse
|
5
|
Johnson JM, Takebe Y, Zhang G, Ober R, McLuckie A, Niedt GW, Johnson LL. Blocking RAGE improves wound healing in diabetic pigs. Int Wound J 2023; 20:678-686. [PMID: 35945908 PMCID: PMC9927915 DOI: 10.1111/iwj.13909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/16/2022] [Indexed: 11/29/2022] Open
Abstract
Receptor for Advanced Glycated End-products (RAGE) is highly expressed in diabetes and impairs wound healing. We proposed that administering an antibody that blocks RAGE will hasten the healing of dorsal wounds in diabetic pigs compared with a non-immune IgG. Two purpose-bred diabetic (D) Yucatan minipigs (Sinclair, Auxvasse MO) each underwent 12 2 × 2 cm full thickness dorsal wounds: four wounds received decellularized porcine skin patches (Xylyx Bio, Bklyn NY): four anti-RAGE Ab (CR-3) infused patches, four saline infused patches and four wounds were left open. One pig received anti-RAGE Ab (CR-3) 1 mg/kg IM q 10 days and other received non-immune IgG. Wounds were measured at 2 and 4 weeks followed by euthanasia and wound harvesting. At 2 weeks few of the patches appeared to be incorporated into the wound. By 4 weeks all patches in pigs treated systemically with CR-3 were detached and the wounds almost healed. For all 24 wounds for both pigs regardless of presence of patch or type of patch, the average IgG treated pig wound size at 4 weeks was 69.2 ± 14.6% of initial size and the average CR-3 treated pig wound size was 40.9 ± 11.3% of initial size (P = 0.0002). Quantitative immunohistology showed greater staining for collagen in the CR-3 treated wounds compared with IgG treated. Staining was positive for RAGE, Mac, and IL-6 in the IgG treated wounds and negative in the CR-3 treated wounds. From these pilot experiments, we conclude that a RAGE blocking antibody given parenterally improved wound healing in a diabetic pig while patches were not effective.
Collapse
Affiliation(s)
- Jordan M Johnson
- Departments of Medicine, Pathology, and Veterinary MedicineColumbia UniversityNew York CityNYUSA
| | - Yared Takebe
- Departments of Medicine, Pathology, and Veterinary MedicineColumbia UniversityNew York CityNYUSA
| | - Geping Zhang
- Departments of Medicine, Pathology, and Veterinary MedicineColumbia UniversityNew York CityNYUSA
| | - Rebecca Ober
- Departments of Medicine, Pathology, and Veterinary MedicineColumbia UniversityNew York CityNYUSA
| | - Alicia McLuckie
- Departments of Medicine, Pathology, and Veterinary MedicineColumbia UniversityNew York CityNYUSA
| | - George W Niedt
- Departments of Medicine, Pathology, and Veterinary MedicineColumbia UniversityNew York CityNYUSA
| | - Lynne L Johnson
- Departments of Medicine, Pathology, and Veterinary MedicineColumbia UniversityNew York CityNYUSA
| |
Collapse
|
6
|
Tarricone A, De La Mata K, Chen S, Krishnan P, Landau S, Soave R. Relationship Between pH Shifts and Rate of Healing in Chronic Nonhealing Venous Stasis Lower-Extremity Wounds. J Foot Ankle Surg 2021; 59:748-752. [PMID: 32151549 DOI: 10.1053/j.jfas.2020.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/26/2019] [Accepted: 01/28/2020] [Indexed: 02/03/2023]
Abstract
Venous stasis ulcers represent the majority of lower-extremity ulcers and place a considerable financial burden on the American health care system. Current standard of care therapies remain sub-optimal with 50% of venous stasis ulcers remaining unhealed after 4 months. Sixteen consecutive wounds were enrolled across 8 participants at a single center and underwent pH-driven therapy in addition to standard care as dictated by physicians. Following wound debridement, the pH of the wound bed was measured using pH strips. If acidic, normal saline was used to rinse the wound at every dressing change. If alkaline, nonsterile gauze was soaked in 0.25% acetic acid and applied to the wound for a minimum of 30 seconds. Participants were followed for 4 weeks with research staff observing compliance throughout. All 16 wounds had an alkaline pH at baseline, with an average pH of 8.25 ± 0.55 (range 7.5 to 9). Average area of the wound at the time of enrollment was (mean ± standard deviation) 285.48 ± 43.68 mm2, and average age of the wound was 37.5 ± 20.3 months (range 3 to 72). A simple linear regression model found a moderate relationship between pH and the rate of healing of chronic nonhealing venous stasis lower-extremity wounds (correlation coefficient = 0.61). For every 1-unit change in pH, we can expect to see a change in wound size of 116.05 mm2. This is the first US-based, open-label, prospective study that examined the effect of pH on the rate of healing in chronic nonhealing venous stasis ulcer lowerextremity wounds.
Collapse
Affiliation(s)
- Arthur Tarricone
- MS4, New York College of Podiatric Medicine, New York, NY; Endovascular Biostatistician, Icahn School of Medicine at Mount Sinai, New York, NY.
| | | | - Simon Chen
- Associate Researcher, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Prakash Krishnan
- Clinical Associate Professor of Medicine, New York College of Podiatric Medicine, New York, NY; Director of Endovascular Intervention of The Mount Sinai Network (Cardiology), Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Ronald Soave
- Professor of Medicine and Surgery, New York College of Podiatric Medicine, New York, NY; Dean of Clinical Education, New York College of Podiatric Medicine, New York, NY
| |
Collapse
|
7
|
Kurdi BA, Ababneh NA, Abuharfeil N, Al Demour S, Awidi AS. Use of conditioned media (CM) and xeno-free serum substitute on human adipose-derived stem cells (ADSCs) differentiation into urothelial-like cells. PeerJ 2021; 9:e10890. [PMID: 33850639 PMCID: PMC8019311 DOI: 10.7717/peerj.10890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023] Open
Abstract
Background Congenital abnormalities, cancers as well as injuries can cause irreversible damage to the urinary tract, which eventually requires tissue reconstruction. Smooth muscle cells, endothelial cells, and urothelial cells are the major cell types required for the reconstruction of lower urinary tract. Adult stem cells represent an accessible source of unlimited repertoire of untransformed cells. Aim Fetal bovine serum (FBS) is the most vital supplement in the culture media used for cellular proliferation and differentiation. However, due to the increasing interest in manufacturing xeno-free stem cell-based cellular products, optimizing the composition of the culture media and the serum-type used is of paramount importance. In this study, the effects of FBS and pooled human platelet (pHPL) lysate were assessed on the capacity of human adipose-derived stem cells (ADSCs) to differentiate into urothelial-like cells. Also, we aimed to compare the ability of both conditioned media (CM) and unconditioned urothelial cell media (UCM) to induce urothelial differentiation of ADCS in vitro. Methods ADSCs were isolated from human lipoaspirates and characterized by flow cytometry for their ability to express the most common mesenchymal stem cell (MSCs) markers. The differentiation potential was also assessed by differentiating them into osteogenic and adipogenic cell lineages. To evaluate the capacity of ADSCs to differentiate towards the urothelial-like lineage, cells were cultured with either CM or UCM, supplemented with either 5% pHPL, 2.5% pHPL or 10% FBS. After 14 days of induction, cells were utilized for gene expression and immunofluorescence analysis. Results ADSCs cultured in CM and supplemented with FBS exhibited the highest upregulation levels of the urothelial cell markers; cytokeratin-18 (CK-18), cytokeratin-19 (CK-19), and Uroplakin-2 (UPK-2), with a 6.7, 4.2- and a 2-folds increase in gene expression, respectively. Meanwhile, the use of CM supplemented with either 5% pHPL or 2.5% pHPL, and UCM supplemented with either 5% pHPL or 2.5% pHPL showed low expression levels of CK-18 and CK-19 and no upregulation of UPK-2 level was observed. In contrast, the use of UCM with FBS has increased the levels of CK-18 and CK-19, however to a lesser extent compared to CM. At the cellular level, CK-18 and UPK-2 were only detected in CM/FBS supplemented group. Growth factor analysis revealed an increase in the expression levels of EGF, VEGF and PDGF in all of the differentiated groups. Conclusion Efficient ADSCs urothelial differentiation is dependent on the use of conditioned media. The presence of high concentrations of proliferation-inducing growth factors present in the pHPL reduces the efficiency of ADSCs differentiation towards the urothelial lineage. Additionally, the increase in EGF, VEGF and PDGF during the differentiation implicates them in the mechanism of urothelial cell differentiation.
Collapse
Affiliation(s)
- Ban Al- Kurdi
- Cell Therapy Center, University of Jordan, Amman, Jordan.,Department of Hematology and Oncology, Jordan University Hospital, Amman, Jordan
| | | | - Nizar Abuharfeil
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Saddam Al Demour
- Department of Urology, School of medicine, University of Jordan, Amman, Jordan, University of Jordan, Amman, Jordan
| | - Abdalla S Awidi
- Cell Therapy Center, University of Jordan, Amman, Jordan.,Department of Hematology and Oncology, Jordan University Hospital, Amman, Jordan
| |
Collapse
|
8
|
Sharma P, Kumar A, Dey AD, Behl T, Chadha S. Stem cells and growth factors-based delivery approaches for chronic wound repair and regeneration: A promise to heal from within. Life Sci 2021; 268:118932. [PMID: 33400933 DOI: 10.1016/j.lfs.2020.118932] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
The sophisticated chain of cellular and molecular episodes during wound healing includes cell migration, cell proliferation, deposition of extracellular matrix, and remodelling and are onerous to replicate. Encapsulation of growth factors (GFs) and Stem cell-based (SCs) has been proclaimed to accelerate healing by transforming every phase associated with wound healing to enhance skin regeneration. Therapeutic application of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (PSCs) provides aid in wound fixing, tissue integrity restoration and function of impaired tissue. Several scientific studies have established the essential role GFs in wound healing and their reduced degree in the chronic wound. The overall limitation includes half-life, unfriendly microhabitat abundant with protease, and inadequate delivery approaches results in decreased delivery of effective amounts in a suitable time-based fashion. Advancements in the area of reformative medicine as well as tissue engineering have offered techniques competent of dispensing SCs and GFs in site-oriented manner. The progress in nanotechnology-based approaches attracts researcher to study and evaluate the potential of this SCs and GFs based therapy in chronic wounds. These techniques embrace the polymeric regime viz., nano-formulations, hydrogels, liposomes, scaffolds, nanofibers, metallic nanoparticles, lipid-based nanoparticles and dendrimers that have established better retort through targeting tissues when GFs and SCs are transported via these humans made devices. Assumed the current problems, improvements in delivery approaches and difficulties offered by chronic wounds, we hope to show that encapsulation of SCs and GFs loaded nanoformulations therapies is the rational next step in improving wound care.
Collapse
Affiliation(s)
- Preety Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Swati Chadha
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
9
|
Ashraff S, Siddiqui MA, Santos D, Carline T. Prediction of stump healing in lower limb amputation: a narrative review. J Wound Care 2019; 28:S18-S25. [PMID: 31825767 DOI: 10.12968/jowc.2019.28.sup12.s18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Both types of diabetes, as well as different forms of acquired diabetes, are associated with diabetic peripheral neuropathy. Diabetic foot ulcers (DFU) is the condition most commonly related to somatic peripheral neuropathy, often leading to gangrene and limb amputation. Independent from large-vessel disease, sensory loss may result in DFU development and even amputation. The crucial part of any lower limb amputation is the stump healing process, which represents the central goal of postoperative management. Despite the importance attributed to this process, a standard set of guidelines regarding efficient healing methods is yet to be formulated. Health professionals are faced with the challenge of assessing the different risk factors and deciding which has a greater influence on the stump healing rate. There is currently an insufficient number of studies regarding factors effecting lower limb amputation. The main purpose of this review is to discuss the markers that can be helpful in the prediction of stump healing in patients who have undergone lower limb amputation.
Collapse
Affiliation(s)
| | - Muhammad A Siddiqui
- Research and Performance Support, Saskatchewan Health Authority, Regina, Canada
| | - Derek Santos
- School of Health Sciences, Queen Margaret University, Edinburgh, UK
| | - Thomas Carline
- School of Health Sciences, Queen Margaret University, Edinburgh, UK
| |
Collapse
|
10
|
Pallaske F, Pallaske A, Herklotz K, Boese-Landgraf J. The significance of collagen dressings in wound management: a review. J Wound Care 2019; 27:692-702. [PMID: 30332361 DOI: 10.12968/jowc.2018.27.10.692] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Clinical experience and research has improved our understanding of wound healing which, in turn, has enabled health professionals to aid wound healing and manufacturers to develop modern wound dressings. The significant role of collagen in wound healing has led to the development of numerous products on the basis of this biological material. The main focus of this review is to provide a critical appraisal of publications about collagen and acellular collagen dressings with a fleece-like or spongy structure. It is intended for clinicians and researchers, and aims to keep them up-to-date in the complex field of interactive, collagen-based wound dressings, including their manufacture, combination possibilities, mechanisms of action, performance in the promotion of wound healing and indications. Despite the small number of clinical studies, the importance of acellular collagen dressings with a fleece- or sponge-like structure is likely to increase in the future. As there is no ideal wound dressing, the knowledge attained is meant to support health professionals in selecting the right product, and pave the way for new applications and clinical studies.
Collapse
Affiliation(s)
- Frank Pallaske
- Developer of Wound Dressings; medichema GmbH, Weststraße 57, 09112 Chemnitz, DE
| | - Anett Pallaske
- Resident Physician; Hospital of Internal Medicine II of the Kreiskrankenhaus Stollberg gGmbH, Jahnsdorfer Straße 7, 09366 Stollberg, DE
| | - Kurt Herklotz
- Microscopy expert; Institute of Biosciences of the Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, DE
| | - Joachim Boese-Landgraf
- Prof. Dr. med., former Head of the Hospital of General and Visceral Surgery, Klinikum Chemnitz gGmbH, Flemmingstraße 2, 09116 Chemnitz, DE
| |
Collapse
|
11
|
Wang L, Wang F, Zhao L, Yang W, Wan X, Yue C, Mo Z. Mesenchymal Stem Cells Coated by the Extracellular Matrix Promote Wound Healing in Diabetic Rats. Stem Cells Int 2019; 2019:9564869. [PMID: 30833970 PMCID: PMC6369500 DOI: 10.1155/2019/9564869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/20/2018] [Accepted: 11/11/2018] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To investigate the effects of mesenchymal stem cells (MSCs) coated by the extracellular matrix (ECM) on wound healing in diabetic rats. METHODS Mesenchymal stem cells were cocultured with ECM. Cell viabilities were evaluated using MTT assay. The diabetes model was established using both STZ and high-glucose/fat methods in SD rats. A wound area was made on the middle of the rats' back. MSCs or ECM-MSCs were used to treat the rats. HE staining and CD31 immunohistochemistry were used to detect the skin thickness and angiogenesis. Western blotting and qRT-PCR were conducted to determine the level of VEGF-α, PDGF, and EGF. RESULTS It was observed that treatment of ECM had no significant effects on the cell viability of ECM-MSCs. Wound area assay showed that both MSCs and ECM-MSCs could enhance the wound healing of diabetic rats and ECM-MSCs could further promote the effects. Both MSCs and ECM-MSCs could enhance angiogenesis and epithelialization of the wounds, as well as the expression of VEGF-α, PDGF, and EGF in wound tissues, while ECM-MSC treatment showed more obvious effects. CONCLUSION Mesenchymal stem cells coated by the extracellular matrix could promote wound healing in diabetic rats. Our study may offer a novel therapeutic method for impaired diabetic wound healing.
Collapse
Affiliation(s)
- Linhao Wang
- Department of Endocrinology and Metabolism, Third Xiangya Hospital of Central South University, China
| | - Fang Wang
- Department of Endocrinology and Metabolism, Third Xiangya Hospital of Central South University, China
| | - Liling Zhao
- Department of Endocrinology and Metabolism, Third Xiangya Hospital of Central South University, China
| | - Wenjun Yang
- Department of Endocrinology and Metabolism, Third Xiangya Hospital of Central South University, China
| | - Xinxing Wan
- Department of Endocrinology and Metabolism, Third Xiangya Hospital of Central South University, China
| | - Chun Yue
- Department of Endocrinology and Metabolism, Third Xiangya Hospital of Central South University, China
| | - Zhaohui Mo
- Department of Endocrinology and Metabolism, Third Xiangya Hospital of Central South University, China
| |
Collapse
|
12
|
Chen CY, Rao SS, Ren L, Hu XK, Tan YJ, Hu Y, Luo J, Liu YW, Yin H, Huang J, Cao J, Wang ZX, Liu ZZ, Liu HM, Tang SY, Xu R, Xie H. Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis. Am J Cancer Res 2018; 8:1607-1623. [PMID: 29556344 PMCID: PMC5858170 DOI: 10.7150/thno.22958] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022] Open
Abstract
Chronic non-healing wounds represent one of the most common complications of diabetes and need advanced treatment strategies. Exosomes are key mediators of cell paracrine action and can be directly utilized as therapeutic agents for tissue repair and regeneration. Here, we explored the effects of exosomes from human urine-derived stem cells (USC-Exos) on diabetic wound healing and the underlying mechanism. Methods: USCs were characterized by flow cytometry and multipotent differentiation potential analyses. USC-Exos were isolated from the conditioned media of USCs and identified by transmission electron microscopy and flow cytometry. A series of functional assays in vitro were performed to assess the effects of USC-Exos on the activities of wound healing-related cells. Protein profiles in USC-Exos and USCs were examined to screen the candidate molecules that mediate USC-Exos function. The effects of USC-Exos on wound healing in streptozotocin-induced diabetic mice were tested by measuring wound closure rates, histological and immunofluorescence analyses. Meanwhile, the role of the candidate protein in USC-Exos-induced regulation of angiogenic activities of endothelial cells and diabetic wound healing was assessed. Results: USCs were positive for CD29, CD44, CD73 and CD90, but negative for CD34 and CD45. USCs were able to differentiate into osteoblasts, adipocytes and chondrocytes. USC-Exos exhibited a cup- or sphere-shaped morphology with a mean diameter of 51.57 ± 2.93 nm and positive for CD63 and TSG101. USC-Exos could augment the functional properties of wound healing-related cells including the angiogenic activities of endothelial cells. USC-Exos were enriched in the proteins that are involved in regulation of wound healing-related biological processes. Particularly, a pro-angiogenic protein called deleted in malignant brain tumors 1 (DMBT1) was highly expressed in USC-Exos. Further functional assays showed that DMBT1 protein was required for USC-Exos-induced promotion of angiogenic responses of cultured endothelial cells, as well as angiogenesis and wound healing in diabetic mice. Conclusion: Our findings suggest that USC-Exos may represent a promising strategy for diabetic soft tissue wound healing by promoting angiogenesis via transferring DMBT1 protein.
Collapse
|
13
|
Wu S, Applewhite AJ, Niezgoda J, Snyder R, Shah J, Cullen B, Schultz G, Harrison J, Hill R, Howell M, Speyrer M, Utra H, de Leon J, Lee W, Treadwell T. Oxidized Regenerated Cellulose/Collagen Dressings: Review of Evidence and Recommendations. Adv Skin Wound Care 2017; 30:S1-S18. [PMID: 29049055 PMCID: PMC5704727 DOI: 10.1097/01.asw.0000525951.20270.6c] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/06/2017] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Healthcare systems are being challenged to manage increasing numbers of nonhealing wounds. Wound dressings are one of the first lines of defense in wound management, and numerous options exist. The oxidized regenerated cellulose (ORC)/collagen dressing may offer healthcare providers a robust and cost-effective tool for use in a variety of wounds. DESIGN A multidisciplinary panel meeting was convened to discuss the use of ORC/collagen dressings in wound care and provide practice recommendations. A literature search was conducted to provide a brief review of the peer-reviewed studies published between January 2000 and March 2016 to inform the meeting. SETTING A 2-day panel meeting convened in February 2017. PARTICIPANTS Healthcare providers with experience using ORC/collagen dressings. This multidisciplinary panel of 15 experts in wound healing included podiatrists, wound care specialists (doctors, certified wound care nurses, and research scientists), and an orthopedist. RESULTS The literature search identified 58 articles, a majority of which were low levels of evidence (69.3% were level 3 or lower). Panel members identified wound types, such as abrasions, burns, stalled wounds, diabetic foot ulcers, and pressure injuries, where ORC/collagen dressing use could be beneficial. Panel members then provided recommendations and technical pearls for the use of ORC/collagen dressings in practice. Barriers to ORC/collagen dressing use were discussed, and potential resolutions were offered. CONCLUSIONS An ORC/collagen dressing can be a critical tool for clinicians to help manage a variety of wounds. Clinical and economic studies comparing standard-of-care dressings and plain collagen dressings to ORC/collagen dressings are needed.
Collapse
Affiliation(s)
- Stephanie Wu
- Stephanie Wu, DPM, MS, is Professor of Surgery, Dr William M. School College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, Center for Lower Extremity Ambulatory Research (CLEAR), North Chicago, Illinois. Andrew J. Applewhite, MD, CSWP, is Medical Director and Physician, Comprehensive Wound Care and Hyperbaric Center at Baylor University Medical Center, Dallas, Texas. Jeffrey Niezgoda, MD, FACHM, MAPWCA, CHWS, is President and Chief Medical Officer of Advancing the Zenith of Healthcare, Milwaukee, Wisconsin. Robert Snyder, DPM, MSc, is Professor and Director of Clinical Research, Barry University School of Podiatric Medicine, North Miami Beach, Florida. Jayesh Shah, MD, is President, South Texas Wound Associated PA, San Antonio, Texas. Breda Cullen, PhD, is R&D Program Director, Systagenix, Gargrave, United Kingdom. Gregory Schultz, PhD, is Professor, University of Florida College of Medicine, Gainesville, Florida. Janis Harrison, BSN, RN, CWOCN, CFCN, is Partner and Chief Clinical Consultant to Harrison WOC Services LLC, Thurston, Nebraska. Rosemary Hill, RN, CWOCN, CETN(C), is Enterostomal Therapist, Lions Gate Hospital, North Vancouver, British Columbia, Canada. Melania Howell, RN, CWOCN, is Wound Care Consultant, Dynamic Wound Care Solutions LLC, Turlock, California. Marcus Speyrer, RN, CWS, is Chief Operating Officer, The Wound Treatment Center LLC, Opelousas General Health System, Opelousas, Louisiana. Howard Utra, BSN, RN, CWCN, is Registered Nurse, Innovated Healing Systems, Tampa, Florida. Jean de Leon, MD, FAPWCA, is Professor, University of Texas Southwestern Medical Center, Dallas, Texas. Wayne Lee, MD, is in private practice, Hill Country Orthopaedic Surgery & Sports Medicine, San Antonio, Texas. Terry Treadwell, MD, is Medical Director, Institute for Advanced Wound Care at Baptist Medical Center, Montgomery, Alabama. ACKNOWLEDGMENTS: The authors thank Ricardo Martinez and Julie M. Robertson (ACELITY) for manuscript preparation and editing. Drs Wu, Applewhite, Niezgoda, Snyder, Shah, Schultz, de Leon, Lee, and Treadwell; Ms Harrison, Hill, and Howell; and Mr Speyrer and Mr Utra are consultants for ACELITY. Dr Cullen is an employee of Systagenix, an ACELITY Company. The panel meeting was sponsored by ACELITY
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hyldig K, Riis S, Pennisi CP, Zachar V, Fink T. Implications of Extracellular Matrix Production by Adipose Tissue-Derived Stem Cells for Development of Wound Healing Therapies. Int J Mol Sci 2017; 18:ijms18061167. [PMID: 28561757 PMCID: PMC5485991 DOI: 10.3390/ijms18061167] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/17/2017] [Accepted: 05/26/2017] [Indexed: 01/01/2023] Open
Abstract
The synthesis and deposition of extracellular matrix (ECM) plays an important role in the healing of acute and chronic wounds. Consequently, the use of ECM as treatment for chronic wounds has been of special interest—both in terms of inducing ECM production by resident cells and applying ex vivo produced ECM. For these purposes, using adipose tissue-derived stem cells (ASCs) could be of use. ASCs are recognized to promote wound healing of otherwise chronic wounds, possibly through the reduction of inflammation, induction of angiogenesis, and promotion of fibroblast and keratinocyte growth. However, little is known regarding the importance of ASC-produced ECM for wound healing. In this review, we describe the importance of ECM for wound healing, and how ECM production by ASCs may be exploited in developing new therapies for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Kathrine Hyldig
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Simone Riis
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Cristian Pablo Pennisi
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Vladimir Zachar
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Trine Fink
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| |
Collapse
|
15
|
Harries RL, Bosanquet DC, Harding KG. Wound bed preparation: TIME for an update. Int Wound J 2017; 13 Suppl 3:8-14. [PMID: 27547958 DOI: 10.1111/iwj.12662] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/16/2016] [Indexed: 12/11/2022] Open
Abstract
While the overwhelming majority of wounds heal rapidly, a significant proportion fail to progress through the wound-healing process. These resultant chronic wounds cause considerable morbidity and are costly to treat. Wound bed preparation, summarised by the TIME (Tissue, Inflammation/infection, Moisture imbalance, Epithelial edge advancement) concept, is a systematic approach for assessing chronic wounds. Each of these components needs to be addressed and optimised to improve the chances of successful wound closure. We present an up-to-date literature review of the most important recent aspects of wound bed preparation. While there are many novel therapies that are available to the treating clinician, often, there are limited data on which to assess their clinical value, and a lack of appreciation for adequate wound bed preparation needed before expensive therapy is used to heal a wound.
Collapse
Affiliation(s)
- Rhiannon L Harries
- Royal College of Surgeons/Welsh Wound Initiative Research Fellow, Wound Healing Research Unit, School of Medicine, Cardiff University, Cardiff, UK
| | - David C Bosanquet
- South East Wales Vascular Network, University Hospital of Medicine, Cardiff, UK
| | - Keith G Harding
- Welsh Wound Innovation Initiative, Cardiff University, Cardiff, UK
| |
Collapse
|
16
|
The role of biophysical properties of provisional matrix proteins in wound repair. Matrix Biol 2016; 60-61:124-140. [PMID: 27534610 DOI: 10.1016/j.matbio.2016.08.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/15/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022]
Abstract
Wound healing is a complex, dynamic process required for maintaining homeostasis in an organism. Along with being controlled biochemically, wound healing is also controlled through the transduction of biophysical stimuli through cell interactions with the extracellular matrix (ECM). This review provides an overview of the ECM's role in the wound healing process and subsequently expands on the variety of roles biophysical phenomenon play.
Collapse
|
17
|
Ayuk SM, Abrahamse H, Houreld NN. The role of photobiomodulation on gene expression of cell adhesion molecules in diabetic wounded fibroblasts in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:368-74. [PMID: 27295416 DOI: 10.1016/j.jphotobiol.2016.05.027] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/30/2016] [Indexed: 02/07/2023]
Abstract
Cell adhesion molecules (CAMs) are cell surface glycoproteins that facilitate cell-cell contacts and adhesion with the extracellular matrix (ECM). Cellular adhesion is affected by various disease conditions, such as diabetes mellitus (DM) and inflammation. Photobiomodulation (PBM) stimulates biological processes and expression of these cellular molecules. The aim of this experimental work was to demonstrate the role of PBM at 830nm on CAMs in diabetic wounded fibroblast cells. Isolated human skin fibroblast cells were used. Normal (N-) and diabetic wounded (DW-) cells were irradiated with a continuous wave diode laser at 830nm with an energy density of 5J/cm(2). Real time reverse transcriptase polymerase chain reaction (RT-PCR) was used to determine the relative gene expression of 39 CAMs 48h post-irradiation. Normalized expression levels from irradiated cells were calculated relative to non-irradiated control cells according to the 2^(-ΔΔCt) method. Thirty-one genes were significantly regulated in N-cells (28 were genes up-regulated and three genes down-regulated), and 22 genes in DW-cells (five genes were up-regulated and 17 genes down-regulated). PBM induced a stimulatory effect on various CAMs namely cadherins, integrins, selectins and immunoglobulins, and hence may be used as a complementary therapy in advancing treatment of non-healing diabetic ulcers. The regulation of CAMs as well as evaluating the role of PBM on the molecular effects of these genes may expand knowledge and prompt further research into the cellular mechanisms in diabetic wound healing that may lead to valuable clinical outcomes.
Collapse
Affiliation(s)
- Sandra M Ayuk
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.0. Box 17011, Doornfontein 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.0. Box 17011, Doornfontein 2028, South Africa.
| | - Nicolette N Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.0. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
18
|
Romanelli M, Gilligan AM, Waycaster CR, Dini V. Difficult-to-heal wounds of mixed arterial/venous and venous etiology: a cost-effectiveness analysis of extracellular matrix. CLINICOECONOMICS AND OUTCOMES RESEARCH 2016; 8:153-61. [PMID: 27217787 PMCID: PMC4862353 DOI: 10.2147/ceor.s104067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Importance Difficult-to-heal wounds pose clinical and economic challenges, and cost-effective treatment options are needed. Objective The aim of this study is to determine the cost-effectiveness of extracellular matrix (ECM) relative to standard of care (SC) on wound closure for the treatment of mixed arterial/venous (A/V) or venous leg ulcers (VLUs). Design, setting, and participants A two-stage Markov model was used to predict the expected costs and outcomes of wound closure for ECM and SC. Outcome data used in the analysis were taken from an 8-week randomized clinical trial that directly compared ECM and SC. Patients were followed up for an additional 6 months to assess wound closure. Forty-eight patients completed the study; 25 for ECM and 23 for SC. SC was defined as a standard moist wound dressing. Transition probabilities for the Markov states were estimated from the clinical trial. Main outcomes and measures The economic outcome of interest was direct cost per closed-wound week. Resource utilization was based on the treatment regimen used in the clinical trial. Costs were derived from standard cost references. The payer’s perspective was taken. Results ECM-treated wounds closed, on average, after 5.4 weeks of treatment, compared with 8.3 weeks for SC wounds (P=0.02). Furthermore, complete wound closure was significantly higher in patients treated with ECM (P<0.05), with 20 wounds closed in the ECM group (80%) and 15 wounds closed in the SC group (65%). After 8 months, patients treated with ECM had substantially higher closed-wound weeks compared with SC (26.0 weeks versus 22.0 weeks, respectively). Expected direct costs per patient were $2,527 for ECM and $2,540 for SC (a cost savings of $13). Conclusion and relevance ECM yielded better clinical outcomes at a slightly lower cost in patients with mixed A/V and VLUs. ECM is an effective treatment for wound healing and should be considered for use in the management of mixed A/V and VLUs.
Collapse
Affiliation(s)
| | - Adrienne M Gilligan
- Department of Life Sciences, Truven Health Analytics, Fort Worth, TX, USA; Department of Pharmacotherapy, University of North Texas Health Sciences Center, Fort Worth, TX, USA
| | - Curtis R Waycaster
- Department of Pharmacotherapy, University of North Texas Health Sciences Center, Fort Worth, TX, USA; Department of Market Access, Smith and Nephew Inc., Fort Worth, TX, USA
| | - Valentina Dini
- Department of Dermatology, University of Pisa, Pisa, Italy
| |
Collapse
|
19
|
Abstract
There is increasing pressure from industry to use advanced wound care products and technologies. Many are very expensive but promise to reduce overall costs associated with wound care. Compelling anecdotal evidence is provided that inevitably shows wounds that failed all other treatments but responded positively to the subject product. Evidence-based medicine is the standard by which physician-scientists must make their clinical care decisions. In an attempt to provide policy makers with the most current evidence on advanced wound care products, the Department of Veteran Affairs conducted an Evidence-based Synthesis Program review of advanced wound care products. This paper suggests how to take this information and apply it to policy to drive evidence-based care to improve outcomes and fiduciary responsibility.
Collapse
Affiliation(s)
- Jeffrey M. Robbins
- Podiatry Service, Veterans Affairs Central Office, Podiatry Section, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH
| | - Jeremiah Dillon
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH
| |
Collapse
|
20
|
Hayek S, Atiyeh B, Zgheib E. Stewart-Bluefarb syndrome: review of the literature and case report of chronic ulcer treatment with heparan sulphate (Cacipliq20®). Int Wound J 2015; 12:169-72. [PMID: 23556996 PMCID: PMC7950802 DOI: 10.1111/iwj.12074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 11/29/2022] Open
Abstract
Stewart-Bluefarb syndrome (SBS), also known as acroangiodermatitis or pseudo-Kaposi, is a condition rarely encountered. It involves skin lesions that are clinically similar to Kaposi sarcoma but are histologically different, and are usually secondary to an underlying arteriovenous fistula. Treatment of this disease usually involves the correction of the underlying vascular abnormality, with the mainstay of therapy ranging from compression devices for venous stasis, limited oral medications (dapsone and erythromycin) and local wound care including topical steroids. Different methods of treatment showed varied success but none is ideal. We report a case of a lower extremity ulcer in a 22-year-old male recently diagnosed with SBS successfully treated with heparan sulphate (Cacipliq20®).
Collapse
Affiliation(s)
- Shady Hayek
- Division of Plastic and Reconstructive Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | | | | |
Collapse
|
21
|
Ma H, O'Donnell TF, Rosen NA, Iafrati MD. The real cost of treating venous ulcers in a contemporary vascular practice. J Vasc Surg Venous Lymphat Disord 2014; 2:355-61. [DOI: 10.1016/j.jvsv.2014.04.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/27/2014] [Indexed: 10/25/2022]
|
22
|
Harding K, Aldons P, Edwards H, Stacey M, Finlayson K, Gibb M, Jenkins L, Shooter G, Lonkhuyzen DV, Lynam E, Heinrichs E, Upton Z. Effectiveness of an acellular synthetic matrix in the treatment of hard-to-heal leg ulcers. Int Wound J 2014; 11:129-37. [PMID: 23834253 PMCID: PMC7950675 DOI: 10.1111/iwj.12115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hard-to-heal leg ulcers are a major cause of morbidity in the elderly population. Despite improvements in wound care, some wounds will not heal and they present a significant challenge for patients and health care providers. A multi-centre cohort study was conducted to evaluate the effectiveness and safety of a synthetic, extracellular matrix protein as an adjunct to standard care in the treatment of hard-to-heal venous or mixed leg ulcers. Primary effectiveness criteria were (i) reduction in wound size evaluated by percentage change in wound area and (ii) healing assessed by number of patients healed by end of the 12 week study. Pain reduction was assessed as a secondary effectiveness criteria using VAS. A total of 45 patients completed the study and no difference was observed between cohorts for treatment frequency. Healing was achieved in 35·6% and wound size decreased in 93·3% of patients. Median wound area percentage reduction was 70·8%. Over 50% of patients reported pain on first visit and 87·0% of these reported no pain at the end of the study. Median time to first reporting of no pain was 14 days after treatment initiation. The authors consider the extracellular synthetic matrix protein an effective and safe adjunct to standard care in the treatment of hard-to-heal leg ulcers.
Collapse
Affiliation(s)
- Keith Harding
- Wound Healing Research Unit, Institute for Translation, Innovation, Methodologies and Engagement (TIME)Cardiff UniversityCardiffUK
| | - Pat Aldons
- The Prince Charles HospitalChermsideAustralia
| | - Helen Edwards
- School of Nursing and MidwiferyQueensland University of TechnologyBrisbaneAustralia
| | - Michael Stacey
- Department of SurgeryFremantle Hospital, The University of Western AustraliaFremantleAustralia
| | - Kathleen Finlayson
- School of Nursing and MidwiferyQueensland University of TechnologyBrisbaneAustralia
| | - Michelle Gibb
- School of Nursing and MidwiferyQueensland University of TechnologyBrisbaneAustralia
| | - Liz Jenkins
- The Prince Charles HospitalChermsideAustralia
| | - Gary Shooter
- Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneAustralia
| | - Derek Van Lonkhuyzen
- Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneAustralia
| | - Emily Lynam
- Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneAustralia
| | | | - Zee Upton
- Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneAustralia
| |
Collapse
|
23
|
McCallon SK, Weir D, Lantis JC. Optimizing Wound Bed Preparation With Collagenase Enzymatic Debridement. J Am Coll Clin Wound Spec 2014; 6:14-23. [PMID: 26442207 PMCID: PMC4566869 DOI: 10.1016/j.jccw.2015.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Difficult-to-heal and chronic wounds affect tens of millions of people worldwide. In the U.S. alone, the direct cost for their treatment exceeds $25 billion. Yet despite advances in wound research and treatment that have markedly improved patient care, wound healing is often delayed for weeks or months. For venous and diabetic ulcers, complete wound closure is achieved in as few as 25%-50% of chronic or hard-to-heal wounds. Wound bed preparation and the consistent application of appropriate and effective debridement techniques are recommended for the optimized treatment of chronic wounds. The TIME paradigm (Tissue, Inflammation/infection, Moisture balance and Edge of wound) provides a model to remove barriers to healing and optimize the healing process. While we often think of debridement as an episodic event that occurs in specific care giver/patient interface. There is the possibility of a maintenance debridement in which the chronic application of a medication can assist in both the macroscopic and microscopic debridement of a wound. We review the various debridement therapies available to clinicians in the United States, and explore the characteristics and capabilities of clostridial collagenase ointment (CCO), a type of enzymatic debridement, that potentially allows for epithelialization while debriding. It appears that in the case of CCO it may exert this influences by removal of the necrotic plug while promoting granulation and sustaining epithelialization. It is also easily combined with other methods of debridement, is selective to necrotic tissue, and has been safely used in various populations. We review the body of evidence has indicated that this concept of maintenance debridement, especially when combined episodic debridement may add a cost an efficacious, safe and cost-effective choice for debridement of cutaneous ulcers and burn wounds and it will likely play an expanding role in all phases of wound bed preparation.
Collapse
Affiliation(s)
- Stanley K. McCallon
- Department of Physical Therapy, Louisiana State University Health Sciences Center, School of Allied Health Professions, Shreveport, LA, USA
| | - Dorothy Weir
- Osceola Regional Medical Center, Kissimmee, FL, USA
| | - John C. Lantis
- Division Vascular/Endovascular Surgery, Division of Clinical Surgical Research, Mt Sinai St. Luke's and Roosevelt Hospital Center, New York, NY, USA
| |
Collapse
|
24
|
Olczyk P, Mencner Ł, Komosinska-Vassev K. The role of the extracellular matrix components in cutaneous wound healing. BIOMED RESEARCH INTERNATIONAL 2014; 2014:747584. [PMID: 24772435 PMCID: PMC3977088 DOI: 10.1155/2014/747584] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 11/25/2022]
Abstract
Wound healing is the physiologic response to tissue trauma proceeding as a complex pathway of biochemical reactions and cellular events, secreted growth factors, and cytokines. Extracellular matrix constituents are essential components of the wound repair phenomenon. Firstly, they create a provisional matrix, providing a structural integrity of matrix during each stage of healing process. Secondly, matrix molecules regulate cellular functions, mediate the cell-cell and cell-matrix interactions, and serve as a reservoir and modulator of cytokines and growth factors' action. Currently known mechanisms, by which extracellular matrix components modulate each stage of the process of soft tissue remodeling after injury, have been discussed.
Collapse
Affiliation(s)
- Pawel Olczyk
- Department of Community Pharmacy, Medical University of Silesia, ul. Kasztanowa 3, 41-200 Sosnowiec, Poland
| | - Łukasz Mencner
- Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Silesia, ul. Jednosci 8, 41-200 Sosnowiec, Poland
| | - Katarzyna Komosinska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Silesia, ul. Jednosci 8, 41-200 Sosnowiec, Poland
| |
Collapse
|
25
|
Hayek S, Dibo S, Baroud J, Ibrahim A, Barritault D. Refractory sickle cell leg ulcer: is heparan sulphate a new hope? Int Wound J 2014; 13:35-8. [PMID: 24618185 DOI: 10.1111/iwj.12217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 11/26/2022] Open
Abstract
Patients with sickle cell disease are known to have recurrent lower extremity ulcers that have a high pain score and are resistant to conventional means of wound therapy. This study reports the successful use of synthetic heparan sulphate (Cacipliq20(®) , OTR3, Paris, France) in the treatment of a sickle cell ulcer that had failed to respond to several other means of treatment. Therapeutic success was assessed by complete wound coverage and vast improvement in pain score. This is the first study to report use of heparan sulphate in sickle cell ulcers.
Collapse
Affiliation(s)
- Shady Hayek
- Plastic and Reconstructive Surgery, Private Practice, American University of Beirut - Medical Center, Beirut, Lebanon
| | - Saad Dibo
- Plastic and Reconstructive Surgery, Private Practice, American University of Beirut - Medical Center, Beirut, Lebanon
| | - Joe Baroud
- Plastic and Reconstructive Surgery, Private Practice, American University of Beirut - Medical Center, Beirut, Lebanon
| | - Amir Ibrahim
- Plastic and Reconstructive Surgery, Private Practice, American University of Beirut - Medical Center, Beirut, Lebanon
| | - Denis Barritault
- Laboratoire CRRET CNRS, University Paris Est Creteil, Paris, France
| |
Collapse
|
26
|
Rizzi SC, Upton Z, Bott K, Dargaville TR. Recent advances in dermal wound healing: biomedical device approaches. Expert Rev Med Devices 2014; 7:143-54. [DOI: 10.1586/erd.09.57] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Histomorphometric Analysis of Early Epithelialization and Dermal Changes in Mid–Partial-Thickness Burn Wounds in Humans Treated With Porcine Small Intestinal Submucosa and Silver-Containing Hydrofiber. J Burn Care Res 2014; 35:e330-7. [DOI: 10.1097/bcr.0000000000000015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
RUKSHA TG, AKSENENKO MB, KLIMINA GM, NOVIKOVA LV. Extracellular matrix of the skin: role in the development of dermatological diseases. VESTNIK DERMATOLOGII I VENEROLOGII 2013. [DOI: 10.25208/vdv578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Extracellular matrix is a system of proteins and polysaccharides maintaining the structural integrity of an organ or tissue. At the same time, in addition to its “classical” function extracellular matrix components regulate many important processes including participation in the signal transmission, regulation of cell division and differentiation, which makes extracellular matrix molecules a prospective target for treatment of a lot of diseases.
Collapse
|
29
|
Shooter GK, Van Lonkhuyzen DR, Croll TI, Cao Y, Xie Y, Broadbent JA, Stupar D, Lynam EC, Upton Z. A pre-clinical functional assessment of an acellular scaffold intended for the treatment of hard-to-heal wounds. Int Wound J 2013; 12:160-8. [PMID: 23556541 DOI: 10.1111/iwj.12073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/21/2013] [Accepted: 02/27/2013] [Indexed: 11/25/2022] Open
Abstract
The majority of the population experience successful wound-healing outcomes; however, 1-3% of those aged over 65 years experience delayed wound healing and wound perpetuation. These hard-to-heal wounds contain degraded and dysfunctional extracellular matrix (ECM); yet, the integrity of this structure is critical in the processes of normal wound healing. Here, we evaluated a novel synthetic matrix protein for its ability to act as an acellular scaffold that could replace dysfunctional ECM. In this regard, the synthetic protein was subjected to adsorption and diffusion assays using collagen and human dermal tissues; evaluated for its ability to influence keratinocyte and fibroblast attachment, migration and proliferation and assessed for its ability to influence in vivo wound healing in a porcine model. Critically, these experiments demonstrate that the matrix protein adsorbed to collagen and human dermal tissue but did not diffuse through human dermal tissue within a 24-hour observation period, and facilitated cell attachment, migration and proliferation. In a porcine wound-healing model, significantly smaller wound areas were observed in the test group compared with the control group following the third treatment. These data provide evidence that the synthetic matrix protein has the ability to function as an acellular scaffold for wound-healing purposes.
Collapse
Affiliation(s)
- Gary K Shooter
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD,, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Konttinen YT, Kaivosoja E, Stegaev V, Wagner HD, Levón J, Tiainen VM, Mackiewicz Z. Extracellular Matrix and Tissue Regeneration. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
31
|
Roy Chowdhury R, Aachoui Y, Ghosh SK. Effects of small intestinal submucosa (SIS) on the murine innate immune microenvironment induced by heat-killed Staphylococcus aureus. PLoS One 2012. [PMID: 23189134 PMCID: PMC3506582 DOI: 10.1371/journal.pone.0048724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The use of biological scaffold materials for wound healing and tissue remodeling has profoundly impacted regenerative medicine and tissue engineering. The porcine-derived small intestinal submucosa (SIS) is a licensed bioscaffold material regularly used in wound and tissue repair, often in contaminated surgical fields. Complications and failures due to infection of this biomaterial have therefore been a major concern and challenge. SIS can be colonized and infected by wound-associated bacteria, particularly Staphylococcus aureus. In order to address this concern and develop novel intervention strategies, the immune microenvironment orchestrated by the combined action of S. aureus and SIS should be critically evaluated. Since the outcome of tissue remodeling is largely controlled by the local immune microenvironment, we assessed the innate immune profile in terms of cytokine/chemokine microenvironment and inflammasome-responsive genes. BALB/c mice were injected intra-peritoneally with heat-killed S. aureus in the presence or absence of SIS. Analyses of cytokines, chemokines and microarray profiling of inflammasome-related genes were done using peritoneal lavages collected 24 hours after injection. Results showed that unlike SIS, the S. aureus-SIS interactome was characterized by a Th1-biased immune profile with increased expressions of IFN-γ, IL-12 and decreased expressions of IL-4, IL-13, IL-33 and IL-6. Such modulation of the Th1/Th2 axis can greatly facilitate graft rejections. The S. aureus-SIS exposure also augmented the expressions of pro-inflammatory cytokines like IL-1β, Tnf-α, CD30L, Eotaxin and Fractalkine. This heightened inflammatory response caused by S. aureus contamination could enormously affect the biocompatibility of SIS. However, the mRNA expressions of many inflammasome-related genes like Nlrp3, Aim2, Card6 and Pycard were down-regulated by heat-killed S. aureus with or without SIS. In summary, our study explored the innate immune microenvironment induced by the combined exposure of SIS and S. aureus. These results have practical implications in developing strategies to contain infection and promote successful tissue repair.
Collapse
Affiliation(s)
- Roshni Roy Chowdhury
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
- * E-mail: (RRC); (YA); (SKG)
| | - Youssef Aachoui
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
- * E-mail: (RRC); (YA); (SKG)
| | - Swapan K. Ghosh
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
- * E-mail: (RRC); (YA); (SKG)
| |
Collapse
|
32
|
A lipocalin-derived Peptide modulating fibroblasts and extracellular matrix proteins. J Toxicol 2012; 2012:325250. [PMID: 22737165 PMCID: PMC3379166 DOI: 10.1155/2012/325250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/23/2012] [Accepted: 04/15/2012] [Indexed: 02/06/2023] Open
Abstract
Lipocalin family members have been implicated in development, regeneration, and pathological processes, but their roles are unclear. Interestingly, these proteins are found abundant in the venom of the Lonomia obliqua caterpillar. Lipocalins are β-barrel proteins, which have three conserved motifs in their amino acid sequence. One of these motifs was shown to be a sequence signature involved in cell modulation. The aim of this study is to investigate the effects of a synthetic peptide comprising the lipocalin sequence motif in fibroblasts. This peptide suppressed caspase 3 activity and upregulated Bcl-2 and Ki-67, but did not interfere with GPCR calcium mobilization. Fibroblast responses also involved increased expression of proinflammatory mediators. Increase of extracellular matrix proteins, such as collagen, fibronectin, and tenascin, was observed. Increase in collagen content was also observed in vivo. Results indicate that modulation effects displayed by lipocalins through this sequence motif involve cell survival, extracellular matrix remodeling, and cytokine signaling. Such effects can be related to the lipocalin roles in disease, development, and tissue repair.
Collapse
|
33
|
Groah SL, Libin A, Spungen M, Nguyen KL, Woods E, Nabili M, Ramella-Roman J, Barritault D. Regenerating matrix-based therapy for chronic wound healing: a prospective within-subject pilot study. Int Wound J 2011; 8:85-95. [PMID: 21078132 PMCID: PMC7950993 DOI: 10.1111/j.1742-481x.2010.00748.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to determine whether a skin-specific bioengineered regenerating agent (RGTA) heparan sulphate mimetic (CACIPLIQ20) improves chronic wound healing. The design of this article is a prospective within-subject study. The setting was an urban hospital. Patients were 16 African-American individuals (mean age 42 years) with 22 wounds (mean duration 2.5 years) because of either pressure, diabetic, vascular or burn wounds. Two participants each were lost to follow-up or removed because of poor compliance, resulting in 18 wounds analysed. Sterile gauze was soaked with CACIPLIQ20 saline solution, placed on the wound for 5 min, then removed twice weekly for 4 weeks. Wounds were otherwise treated according to the standard of care. Twenty-two percent of wounds fully healed during the treatment period. Wounds showed a 15.2-18.1% decrease in wound size as measured by the vision engineering research group (VERG) digital wound measurement system and total PUSH scores, respectively, at 4 weeks (P = 0.014 and P = 0.003). At 8 weeks there was an 18-26% reduction in wound size (P = 0.04) in the remaining patients. Wound-related pain measured by the visual analogue pain scale and the wound pain scale declined 60% (P = 0.024) and 70% (P = 0.001), respectively. Patient and clinician satisfaction remained positive throughout the treatment period. It is concluded that treatment with CACIPLIQ20 significantly improved wound-related pain and may facilitate wound healing. Patient and clinician satisfaction remained high throughout the trial.
Collapse
Affiliation(s)
- Suzanne L Groah
- SCI Research Center, National Rehabilitation Hospital, Washington, DC 20010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Wong VW, Rustad KC, Galvez MG, Neofytou E, Neofyotou E, Glotzbach JP, Januszyk M, Major MR, Sorkin M, Longaker MT, Rajadas J, Gurtner GC. Engineered pullulan-collagen composite dermal hydrogels improve early cutaneous wound healing. Tissue Eng Part A 2010; 17:631-44. [PMID: 20919949 DOI: 10.1089/ten.tea.2010.0298] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
New strategies for skin regeneration are needed to address the significant medical burden caused by cutaneous wounds and disease. In this study, pullulan-collagen composite hydrogel matrices were fabricated using a salt-induced phase inversion technique, resulting in a structured yet soft scaffold for skin engineering. Salt crystallization induced interconnected pore formation, and modification of collagen concentration permitted regulation of scaffold pore size. Hydrogel architecture recapitulated the reticular distribution of human dermal matrix while maintaining flexible properties essential for skin applications. In vitro, collagen hydrogel scaffolds retained their open porous architecture and viably sustained human fibroblasts and murine mesenchymal stem cells and endothelial cells. In vivo, hydrogel-treated murine excisional wounds demonstrated improved wound closure, which was associated with increased recruitment of stromal cells and formation of vascularized granulation tissue. In conclusion, salt-induced phase inversion techniques can be used to create modifiable pullulan-collagen composite dermal scaffolds that augment early wound healing. These novel biomatrices can potentially serve as a structured delivery template for cells and biomolecules in regenerative skin applications.
Collapse
Affiliation(s)
- Victor W Wong
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A 2009; 14:1835-42. [PMID: 18950271 DOI: 10.1089/ten.tea.2007.0264] [Citation(s) in RCA: 551] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophage phenotype can be characterized as proinflammatory (M1) or immunomodulatory and tissue remodeling (M2). The present study used a rat model to determine the macrophage phenotype at the site of implantation of two biologic scaffolds that were derived from porcine small intestinal submucosa (SIS) and that differed mainly according to their method of processing: the Restore device (SIS) and the CuffPatch device (carbodiimide crosslinked form of porcine-derived SIS (CDI-SIS)). An autologous tissue graft was used as a control implant. Immunohistologic methods were used to identify macrophage surface markers CD68 (pan macrophages), CD80 and CCR7 (M1 profile), and CD163 (M2 profile) during the remodeling process. All graft sites were characterized by the dense population of CD68+ mononuclear cells present during the first 4 weeks. The SIS device elicited a predominantly CD163+ response (M2 profile, p < 0.001) and showed constructive remodeling at 16 weeks. The CDI-SIS device showed a predominately CD80+ and CCR7+ response (M1 profile, p < 0.03), and at 16 weeks was characterized by chronic inflammation. The autologous tissue graft showed a predominately CD163+ response (M2) at 1 week, with a dual M1/M2 population (CD80+, CCR7+, and CD163+) by 2 and 4 weeks and moderately well organized connective tissue by 16 weeks. The processing methods used during the manufacturing of a biologic scaffold can have a profound influence upon the macrophage phenotype profile and downstream remodeling events. Routine histologic examination alone is inadequate to determine the phenotype of mononuclear cells that participate in the host response to the scaffold.
Collapse
Affiliation(s)
- Stephen F Badylak
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | | | | | | | | |
Collapse
|
37
|
Romanelli M, Dini V, Vowden P, Agren MS. Amelogenin, an extracellular matrix protein, in the treatment of venous leg ulcers and other hard-to-heal wounds: experimental and clinical evidence. Clin Interv Aging 2008; 3:263-72. [PMID: 18686749 PMCID: PMC2546471 DOI: 10.2147/cia.s1846] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Amelogenins are extracellular matrix proteins that, under physiological conditions, self-assemble into globular aggregates up to micron-sizes. Studies with periodontal fibroblasts indicate that attachment to these structures increases the endogenous secretion of multiple growth factors and cell proliferation. Pre-clinical and clinical studies indicate that cutaneous wounds benefit from treatment with amelogenins. A randomized controlled trial (RCT) involving patients with hard-to-heal venous leg ulcers (VLUs) (ie, ulcers with a surface area ≥10 cm2 and duration of ≥6 months) showed that the application of amelogenin (Xelma®, Molnlycke Health Care, Gothenburg, Sweden) as an adjunct treatment to compression results in significant reduction in ulcer size, improvement in the state of ulcers, reduced pain, and a larger proportion of ulcers with low levels of exudate, compared with treatment with compression alone. Amelogenin therapy was also shown to be safe to use in that there were no significant differences in adverse events noted between patients treated with amelogenin plus compression and those treated with compression alone. Case study evaluations indicate that the benefits of amelogenin therapy demonstrated in the RCT are being repeated in “real life” situations and that amelogenin therapy may also have a role to play in the treatment of other wound types such as diabetic foot ulcers.
Collapse
|
38
|
Bioactivity of Small Intestinal Submucosa and Oxidized Regenerated Cellulose/Collagen. Adv Skin Wound Care 2008; 21:479-86. [DOI: 10.1097/01.asw.0000323561.14144.19] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|