1
|
Martens DS, Lammertyn EJ, Goeminne PC, Colpaert K, Proesmans M, Vanaudenaerde BM, Nawrot TS, Dupont LJ. Leukocyte telomere length and attrition in association with disease severity in cystic fibrosis patients. Aging (Albany NY) 2024; 16:11809-11823. [PMID: 39213174 PMCID: PMC11386922 DOI: 10.18632/aging.206093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
Cystic fibrosis (CF) is characterized by chronic airway inflammation and premature aging. The link with leukocyte telomere length (LTL) as a marker of biological aging is unclear. We studied disease severity and LTL in 168 CF patients of which 85 patients had a second retrospective LTL assessment. A higher FEV1 was associated with longer LTL, with a stronger effect in men (5.08% longer LTL) compared to women (0.41% longer LTL). A higher FEV1/FVC ratio was associated with 7.05% (P=0.017) longer LTL in men. CF asthma, as defined by the treatment with inhaled corticosteroids, was associated with -6.65% shorter LTL (P=0.028). Men homozygous for the ΔF508 genotype showed a -10.48% (P=0.026) shorter LTL compared to heterozygotes. A genotype-specific non-linear association between LTL shortening and chronological age was observed. Stronger age-related LTL shortening was observed in patients homozygous for the ΔF508 genotype (P-interaction= 0.044). This work showed that disease severity in CF patients negatively influences LTL, with slightly more pronounced effects in men. The homozygous genotype for ΔF508 may play a role in LTL attrition in CF patients. Understanding factors in CF patients that accelerate biological aging provides insights into mechanisms that can extend the overall life quality in CF-diseased.
Collapse
Affiliation(s)
- Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Elise J Lammertyn
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | | | - Kristine Colpaert
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Marijke Proesmans
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, Leuven, Flanders, Belgium
| | - Bart M Vanaudenaerde
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Lieven J Dupont
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Lucas JA, Kaufmann J, Jones M, Garg A, Ezekiel-Herrera D, Puro J, Marino M, Heintzman J. Role of ethnicity/language in documented rates of pediatric asthma prescription refills. J Asthma 2023; 60:360-367. [PMID: 35259312 PMCID: PMC9485292 DOI: 10.1080/02770903.2022.2051545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Medication maintenance is critical in the management of asthma. We investigated the differences in electronic health record (EHR) documentation of medication refills for Spanish- and English-speaking Latino children and non-Hispanic white children by examining rates of albuterol rescue inhaler refills from 2005 to 2017, and and inhaled corticosteroid refills from 2015 to 2017 in a multi-state network of community health centers (CHCs). METHODS We used data from the ADVANCE network of CHCs. Our sample consisted of children aged 3-17, with a diagnosis of asthma and either albuterol or inhaled corticosteroid prescriptions (n = 39,162; n = 4,738 children, respectively). Negative binomial regression was used to calculate rates of refills per prescription adjusted for relevant patient-level covariates. Analyses stratified by asthma severity were also conducted. RESULTS English-speaking Latino children had lower rates of albuterol refills compared with non-Hispanic white children (rate ratio [RR] = 0.88, 95% confidence interval [CI]: 0.80-0.98), a trend that persisted among children with moderate/severe persistent asthma severity (RR = 0.85, 95% CI: 0.76-0.95). Spanish-speaking Latino and non-Hispanic white children had similar albuterol refills. Inhaled corticosteroid refill rates were comparable between all groups. CONCLUSIONS In a multi-state network, these findings suggest that CHCs deliver equitable asthma care related to prescription refills between their Latino and white patients, but there is still opportunity for providers to ensure that their English-speaking Latino patients have access to necessary emergency asthma medication.
Collapse
Affiliation(s)
- Jennifer A. Lucas
- Department of Family Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jorge Kaufmann
- Department of Family Medicine, Oregon Health & Science University, Portland, OR, USA
| | | | - Arvin Garg
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA
| | - David Ezekiel-Herrera
- Department of Family Medicine, Oregon Health & Science University, Portland, OR, USA
| | | | - Miguel Marino
- Department of Family Medicine, Oregon Health & Science University, Portland, OR, USA;,Division of Biostatistics, School of Public Health, Oregon Health & Science University—Portland State University, Portland, OR, USA
| | - John Heintzman
- Department of Family Medicine, Oregon Health & Science University, Portland, OR, USA;,OCHIN, Inc, Portland, OR, USA
| |
Collapse
|
3
|
Latiers F, Vandenabeele M, Poncin W, Reychler G. Prevalence and risk factors of musculoskeletal pain in patients with chronic obstructive pulmonary disease: A systematic review. CLINICAL RESPIRATORY JOURNAL 2021; 15:1286-1301. [PMID: 34459145 DOI: 10.1111/crj.13443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/14/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This systematic review aimed to discuss the prevalence and the risk factors of the musculoskeletal pain in chronic obstructive pulmonary disease (COPD). DATA SOURCE AND STUDY SELECTION Four databases were analysed (Scopus, PubMed, Cochrane and EMBASE). We excluded systematic reviews, meta-analyses, conference abstracts and case reports. Two authors independently checked for the eligibility of the relevant articles. The risk of bias was evaluated using the Newcastle Ottawa Quality Assessment Scale and the Joanna Briggs Institute critical appraisal checklist. The selection and evaluation of studies followed the PRISMA guidelines. RESULTS Twenty studies were retrieved, including from 21 to 7952 patients with COPD. The prevalence of pain was highly heterogeneous across studies: 7-89.7%. Pain was mostly reported in the lumbar (7-69%) and cervical spine (11-48.3%) and the chest (44-82.8%). The main risk factors for developing pain were old age, sex (female), level of physical activity (low) and comorbidities. CONCLUSION Pain is a very common symptom in patients with COPD. Despite this, few clinical trials have investigated the pain. It appears to be located primarily in the lumbar, cervical and thoracic regions and facilitated by being a female, a low level of physical activity, comorbidity(ies) and old age.
Collapse
Affiliation(s)
- Fabien Latiers
- Service de Chirurgie Thoracique et Vasculaire, Cliniques Universitaires Saint-Luc, Brussels, Belgium.,Faculté des Sciences de la Motricité, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.,Secteur de Kinésithérapie et Ergothérapie, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Marie Vandenabeele
- Faculté des Sciences de la Motricité, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - William Poncin
- Secteur de Kinésithérapie et Ergothérapie, Cliniques universitaires Saint-Luc, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL & Dermatologie, Université Catholique de Louvain, Brussels, Belgium.,Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Gregory Reychler
- Secteur de Kinésithérapie et Ergothérapie, Cliniques universitaires Saint-Luc, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL & Dermatologie, Université Catholique de Louvain, Brussels, Belgium.,Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
4
|
Girón Moreno RM, García-Clemente M, Diab-Cáceres L, Martínez-Vergara A, Martínez-García MÁ, Gómez-Punter RM. Treatment of Pulmonary Disease of Cystic Fibrosis: A Comprehensive Review. Antibiotics (Basel) 2021; 10:486. [PMID: 33922413 PMCID: PMC8144952 DOI: 10.3390/antibiotics10050486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease that causes absence or dysfunction of a protein named transmembrane conductance regulatory protein (CFTR) that works as an anion channel. As a result, the secretions of the organs where CFTR is expressed are very viscous, so their functionality is altered. The main cause of morbidity is due to the involvement of the respiratory system as a result of recurrent respiratory infections by different pathogens. In recent decades, survival has been increasing, rising by around age 50. This is due to the monitoring of patients in multidisciplinary units, early diagnosis with neonatal screening, and advances in treatments. In this chapter, we will approach the different therapies used in CF for the treatment of symptoms, obstruction, inflammation, and infection. Moreover, we will discuss specific and personalized treatments to correct the defective gene and repair the altered protein CFTR. The obstacle for personalized CF treatment is to predict the drug response of patients due to genetic complexity and heterogeneity of uncommon mutations.
Collapse
Affiliation(s)
- Rosa María Girón Moreno
- Servicio de Neumología, Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain; (R.M.G.M.); (R.M.G.-P.)
| | - Marta García-Clemente
- Servicio de Neumología, Hospital Universitario Central de Asturias, C/Avenida de Roma S/n, 33011 Oviedo, Spain
| | - Layla Diab-Cáceres
- Servicio de Neumología, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | | | | | - Rosa Mar Gómez-Punter
- Servicio de Neumología, Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain; (R.M.G.M.); (R.M.G.-P.)
| |
Collapse
|
5
|
Acosta N, Thornton CS, Surette MG, Somayaji R, Rossi L, Rabin HR, Parkins MD. Azithromycin and the microbiota of cystic fibrosis sputum. BMC Microbiol 2021; 21:96. [PMID: 33784986 PMCID: PMC8008652 DOI: 10.1186/s12866-021-02159-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/01/2021] [Indexed: 01/04/2023] Open
Abstract
Background Azithromycin is commonly prescribed drug for individuals with cystic fibrosis (CF), with demonstrated benefits in reducing lung function decline, exacerbation occurrence and improving nutrition. As azithromycin has antimicrobial activity against components of the uncultured microbiome and increasingly the CF microbiome is implicated in disease pathogenesis – we postulated azithromycin may act through its manipulation. Herein we sought to determine if the CF microbiome changed following azithromycin use and if clinical benefit observed during azithromycin use associated with baseline community structure. Results Drawing from a prospectively collected biobank we identified patients with sputum samples prior to, during and after initiating azithromycin and determined the composition of the CF microbial community by sequencing the V3-V4 region of the 16S rRNA gene. We categorized patients as responders if their rate of lung function decline improved after azithromycin initiation. Thirty-eight adults comprised our cohort, nine who had not utilized azithromycin in at least 3 years, and 29 who were completely naïve. We did not observe a major impact in the microbial community structure of CF sputum in the 2 years following azithromycin usage in either alpha or beta-diversity metrics. Seventeen patients (45%) were classified as Responders – demonstrating reduced lung function decline after azithromycin. Responders who were naïve to azithromycin had a modest clustering effect distinguishing them from those who were non-Responders, and had communities enriched with several organisms including Stenotrophomonas, but not Pseudomonas. Conclusions Azithromycin treatment did not associate with subsequent large changes in the CF microbiome structure. However, we found that baseline community structure associated with subsequent azithromycin response in CF adults. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02159-5.
Collapse
Affiliation(s)
- Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada
| | - Christina S Thornton
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada
| | - Michael G Surette
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Ranjani Somayaji
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada.,Department of Medicine, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada
| | - Laura Rossi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Harvey R Rabin
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada.,Department of Medicine, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada. .,Department of Medicine, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada.
| |
Collapse
|
6
|
Komalla V, Mehta M, Achi F, Dua K, Haghi M. The Potential for Phospholipids in the Treatment of Airway Inflammation: An Unexplored Solution. Curr Mol Pharmacol 2021; 14:333-349. [PMID: 33557743 DOI: 10.2174/1874467214666210208114439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 11/22/2022]
Abstract
Asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) are major inflammatory respiratory diseases. Current mainstay therapy for asthma, and chronic obstructive pulmonary disease are corticosteroids, which have well-established side effect profiles. Phospholipids (PLs) are ubiquitous, diverse compounds with varying functions such as their structural role incell membrane, energy storage, and cell signaling.Recent advances in understanding PLs role as inflammatory mediators in the body as well as their widespread long-standing use as carrier molecules in drug delivery demonstrate the potential application of phospholipids in modulating inflammatory conditions. This review briefly explains the main mechanisms of inflammation in chronic respiratory diseases, currentanti-inflammatory treatments and areas of unmet need. The structural features, roles of endogenous and exogenous phospholipids, including their use as pharmaceutical excipients are reviewed. Current research on the immunomodulatory properties of PLs and their potentialapplication in inflammatory diseasesis the major section of this review. Considering the roles of PLs as inflammatory mediators and their safety profile established in pharmaceutical formulations, these small molecules demonstrate great potential as candidates in respiratory inflammation. Future studies need to focus on the immunomodulatory properties and the underlying mechanisms of phospholipids in respiratory inflammatory diseases.
Collapse
Affiliation(s)
- Varsha Komalla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Chippendale NSW 2008. Australia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Chippendale NSW 2008. Australia
| | - Fatima Achi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Chippendale NSW 2008. Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Chippendale NSW 2008. Australia
| | - Mehra Haghi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Chippendale NSW 2008. Australia
| |
Collapse
|
7
|
Leukocyte Telomere Length Is Not Reduced in Children and Adults with Cystic Fibrosis but Associates with Clinical Characteristics-A Cross-Sectional Study. J Clin Med 2021; 10:jcm10040590. [PMID: 33557298 PMCID: PMC7915028 DOI: 10.3390/jcm10040590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
We hypothezied that telomere length is considerably altered in cystic fibrosis (CF) patients compared to healthy subjects (HS), and that leukocyte telomere length variation reflects the severity of CF. Relative telomere length (RTL) was assessed by qPCR in 70 children aged 5-10 (34 CF; 36 HS) and 114 adults aged 18-45 (53 CF; 61 HS). Telomere length was similar in CF and HS (median (interquartile range): 0.799 (0.686-0.950) vs. 0.831 (0.707-0.986); p = 0.5283) both in children and adults. In adults, women had longer telomeres than men (0.805 (0.715-0.931) vs. 0.703 (0.574-0.790); p = 0.0002). Patients treated with inhaled corticosteroids had a shorter RTL compared to those without steroid therapy (0.765 (0.664-0.910) vs. 0.943 (0.813-1.191); p = 0.0007) and this finding remained significant after adjusting for gender, age, BMI, and child/adult status (p = 0.0003). Shorter telomeres were independently associated with the presence of comorbidities (0.763 (0.643-0.905) vs. 0.950 (0.783-1.130); p = 0.0006) and antibiotic treatment at the moment of blood sampling (0.762 (0.648-0.908) vs. 0.832 (0.748-1.129); p = 0.0172). RTL correlated with number of multiple-day hospitalizations (rho = -0.251; p = 0.0239), as well as number of hospitalization days (rho = -0.279; p = 0.0113). Leukocyte RTL in children and adults with CF was not shorter than in healthy controls, and did not seem to have any potential as a predictor of CF survival. However, it inversely associated with the investigated clinical characteristics.
Collapse
|
8
|
Checa J, Aran JM. Airway Redox Homeostasis and Inflammation Gone Awry: From Molecular Pathogenesis to Emerging Therapeutics in Respiratory Pathology. Int J Mol Sci 2020; 21:E9317. [PMID: 33297418 PMCID: PMC7731288 DOI: 10.3390/ijms21239317] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023] Open
Abstract
As aerobic organisms, we are continuously and throughout our lifetime subjected to an oxidizing atmosphere and, most often, to environmental threats. The lung is the internal organ most highly exposed to this milieu. Therefore, it has evolved to confront both oxidative stress induced by reactive oxygen species (ROS) and a variety of pollutants, pathogens, and allergens that promote inflammation and can harm the airways to different degrees. Indeed, an excess of ROS, generated intrinsically or from external sources, can imprint direct damage to key structural cell components (nucleic acids, sugars, lipids, and proteins) and indirectly perturb ROS-mediated signaling in lung epithelia, impairing its homeostasis. These early events complemented with efficient recognition of pathogen- or damage-associated recognition patterns by the airway resident cells alert the immune system, which mounts an inflammatory response to remove the hazards, including collateral dead cells and cellular debris, in an attempt to return to homeostatic conditions. Thus, any major or chronic dysregulation of the redox balance, the air-liquid interface, or defects in epithelial proteins impairing mucociliary clearance or other defense systems may lead to airway damage. Here, we review our understanding of the key role of oxidative stress and inflammation in respiratory pathology, and extensively report current and future trends in antioxidant and anti-inflammatory treatments focusing on the following major acute and chronic lung diseases: acute lung injury/respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and cystic fibrosis.
Collapse
Affiliation(s)
| | - Josep M. Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| |
Collapse
|
9
|
Turner MJ, Dauletbaev N, Lands LC, Hanrahan JW. The Phosphodiesterase Inhibitor Ensifentrine Reduces Production of Proinflammatory Mediators in Well Differentiated Bronchial Epithelial Cells by Inhibiting PDE4. J Pharmacol Exp Ther 2020; 375:414-429. [PMID: 33012706 DOI: 10.1124/jpet.120.000080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel that impair airway salt and fluid secretion. Excessive release of proinflammatory cytokines and chemokines by CF bronchial epithelium during airway infection leads to chronic inflammation and a slow decline in lung function; thus, there is much interest in finding safe and effective treatments that reduce inflammation in CF. We showed previously that the cyclic nucleotide phosphodiesterase (PDE) inhibitor ensifentrine (RPL554; Verona Pharma) stimulates the channel function of CFTR mutants with abnormal gating and also those with defective trafficking that are partially rescued using a clinically approved corrector drug. PDE inhibitors also have known anti-inflammatory effects; therefore, we examined whether ensifentrine alters the production of proinflammatory cytokines in CF bronchial epithelial cells. Ensifentrine reduced the production of monocyte chemoattractant protein-1 and granulocyte monocyte colony-stimulating factor (GM-CSF) during challenge with interleukin-1β Comparing the effect of ensifentrine with milrinone and roflumilast, selective PDE3 and PDE4 inhibitors, respectively, demonstrated that the anti-inflammatory effect of ensifentrine was mainly due to inhibition of PDE4. Beneficial modulation of GM-CSF was further enhanced when ensifentrine was combined with low concentrations of the β 2-adrenergic agonist isoproterenol or the corticosteroid dexamethasone. The results indicate that ensifentrine may have beneficial anti-inflammatory effects in CF airways particularly when used in combination with β 2-adrenergic agonists or corticosteroids. SIGNIFICANCE STATEMENT: Airway inflammation that is disproportionate to the burden of chronic airway infection causes much of the pathology in the cystic fibrosis (CF) lung. We show here that ensifentrine beneficially modulates the release of proinflammatory factors in well differentiated CF bronchial epithelial cells that is further enhanced when combined with β2-adrenergic agonists or low-concentration corticosteroids. The results encourage further clinical testing of ensifentrine, alone and in combination with β2-adrenergic agonists or low-concentration corticosteroids, as a novel anti-inflammatory therapy for CF.
Collapse
Affiliation(s)
- Mark J Turner
- Departments of Physiology (M.J.T., J.W.H.) and Pediatrics (N.D.) and Cystic Fibrosis Translational Research Centre (M.J.T., L.C.L., J.W.H), McGill University, Montréal, Québec, Canada; Pediatric Respiratory Medicine, Montreal Children's Hospital, Montréal, Québec, Canada (N.D., L.C.L.); Research Institute - McGill University Health Centre, Montréal, Québec, Canada (L.C.L., J.W.H.); Department of Internal, Respiratory Translational Laboratory, Respiratory and Critical Care Medicine, Philipps-University of Marburg, Marburg, Germany (N.D.); and Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan (N.D.)
| | - Nurlan Dauletbaev
- Departments of Physiology (M.J.T., J.W.H.) and Pediatrics (N.D.) and Cystic Fibrosis Translational Research Centre (M.J.T., L.C.L., J.W.H), McGill University, Montréal, Québec, Canada; Pediatric Respiratory Medicine, Montreal Children's Hospital, Montréal, Québec, Canada (N.D., L.C.L.); Research Institute - McGill University Health Centre, Montréal, Québec, Canada (L.C.L., J.W.H.); Department of Internal, Respiratory Translational Laboratory, Respiratory and Critical Care Medicine, Philipps-University of Marburg, Marburg, Germany (N.D.); and Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan (N.D.)
| | - Larry C Lands
- Departments of Physiology (M.J.T., J.W.H.) and Pediatrics (N.D.) and Cystic Fibrosis Translational Research Centre (M.J.T., L.C.L., J.W.H), McGill University, Montréal, Québec, Canada; Pediatric Respiratory Medicine, Montreal Children's Hospital, Montréal, Québec, Canada (N.D., L.C.L.); Research Institute - McGill University Health Centre, Montréal, Québec, Canada (L.C.L., J.W.H.); Department of Internal, Respiratory Translational Laboratory, Respiratory and Critical Care Medicine, Philipps-University of Marburg, Marburg, Germany (N.D.); and Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan (N.D.)
| | - John W Hanrahan
- Departments of Physiology (M.J.T., J.W.H.) and Pediatrics (N.D.) and Cystic Fibrosis Translational Research Centre (M.J.T., L.C.L., J.W.H), McGill University, Montréal, Québec, Canada; Pediatric Respiratory Medicine, Montreal Children's Hospital, Montréal, Québec, Canada (N.D., L.C.L.); Research Institute - McGill University Health Centre, Montréal, Québec, Canada (L.C.L., J.W.H.); Department of Internal, Respiratory Translational Laboratory, Respiratory and Critical Care Medicine, Philipps-University of Marburg, Marburg, Germany (N.D.); and Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan (N.D.)
| |
Collapse
|
10
|
Komalla V, Allam VSRR, Kwok PCL, Sheikholeslami B, Owen L, Jaffe A, Waters SA, Mohammad S, Oliver BG, Chen H, Haghi M. A phospholipid-based formulation for the treatment of airway inflammation in chronic respiratory diseases. Eur J Pharm Biopharm 2020; 157:47-58. [PMID: 33065219 DOI: 10.1016/j.ejpb.2020.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/06/2020] [Accepted: 09/26/2020] [Indexed: 12/20/2022]
Abstract
Inflammation, the major hallmark of all chronic respiratory diseases is generally managed by inhaled corticosteroids. However, long term high dose treatment can result in significant side effects. Hence, there is a medical need for non-steroidal anti-inflammatory therapies to address airway inflammation. Phospholipids have been shown to reduce inflammation in several inflammatory conditions; however, their clinical translation has been limited to liposomal formulations traditionally used as drug carriers and their biological activity has not been investigated. Here we report the first application of empty liposomes as an anti-inflammatory treatment in airway inflammation. In the current study, liposomes (UTS-001) were prepared from cholesterol and a synthetic phospholipid (DOPC). The formulation was characterised in terms of size, charge, polydispersity index, morphology and stability as colloidal suspension and freeze-dried nanoparticles. Time-dependant uptake of UTS-001 in airway epithelial cells was observed which was inhibited by nystatin demonstrating that the uptake is via the caveolae pathway. In-vitro, in primary nasal epithelial cells, UTS-001 treatment successfully attenuated IL-6 levels following TNF-α stimulation. Consistent with the in-vitro findings, in-vivo, in the ovalbumin model of allergic airway inflammation, UTS-001 significantly reduced total immune cell counts in bronchoalveolar lavage fluid and reduced airway hyperresponsiveness in response to increasing doses of methacholine challenge. Therefore, our results establish UTS-001 as a potential anti-inflammatory treatment that may be useful as a therapeutic for lung inflammatory diseases.
Collapse
Affiliation(s)
- Varsha Komalla
- Graduate School of Health, University of Technology Sydney, Chippendale, NSW 2008, Australia; Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW 2037, Australia
| | - Venkata Sita Rama Raju Allam
- Graduate School of Health, University of Technology Sydney, Chippendale, NSW 2008, Australia; Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW 2037, Australia
| | - Philip Chi Lip Kwok
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Behjat Sheikholeslami
- Graduate School of Health, University of Technology Sydney, Chippendale, NSW 2008, Australia
| | - Louisa Owen
- School of Women's and Children's Health, Faculty of Medicine, The University of New South Wales, Kensington, NSW 2052, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, NSW, Australia; Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Adam Jaffe
- School of Women's and Children's Health, Faculty of Medicine, The University of New South Wales, Kensington, NSW 2052, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, NSW, Australia; Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Shafagh A Waters
- School of Women's and Children's Health, Faculty of Medicine, The University of New South Wales, Kensington, NSW 2052, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, NSW, Australia; Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Shiva Mohammad
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Brian Gregory Oliver
- Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW 2037, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Hui Chen
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Mehra Haghi
- Graduate School of Health, University of Technology Sydney, Chippendale, NSW 2008, Australia.
| |
Collapse
|
11
|
Di Pietro C, Öz HH, Murray TS, Bruscia EM. Targeting the Heme Oxygenase 1/Carbon Monoxide Pathway to Resolve Lung Hyper-Inflammation and Restore a Regulated Immune Response in Cystic Fibrosis. Front Pharmacol 2020; 11:1059. [PMID: 32760278 PMCID: PMC7372134 DOI: 10.3389/fphar.2020.01059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
In individuals with cystic fibrosis (CF), lung hyper-inflammation starts early in life and is perpetuated by mucus obstruction and persistent bacterial infections. The continuous tissue damage and scarring caused by non-resolving inflammation leads to bronchiectasis and, ultimately, respiratory failure. Macrophages (MΦs) are key regulators of immune response and host defense. We and others have shown that, in CF, MΦs are hyper-inflammatory and exhibit reduced bactericidal activity. Thus, MΦs contribute to the inability of CF lung tissues to control the inflammatory response or restore tissue homeostasis. The non-resolving hyper-inflammation in CF lungs is attributed to an impairment of several signaling pathways associated with resolution of the inflammatory response, including the heme oxygenase-1/carbon monoxide (HO-1/CO) pathway. HO-1 is an enzyme that degrades heme groups, leading to the production of potent antioxidant, anti-inflammatory, and bactericidal mediators, such as biliverdin, bilirubin, and CO. This pathway is fundamental to re-establishing cellular homeostasis in response to various insults, such as oxidative stress and infection. Monocytes/MΦs rely on abundant induction of the HO-1/CO pathway for a controlled immune response and for potent bactericidal activity. Here, we discuss studies showing that blunted HO-1 activation in CF-affected cells contributes to hyper-inflammation and defective host defense against bacteria. We dissect potential cellular mechanisms that may lead to decreased HO-1 induction in CF cells. We review literature suggesting that induction of HO-1 may be beneficial for the treatment of CF lung disease. Finally, we discuss recent studies highlighting how endogenous HO-1 can be induced by administration of controlled doses of CO to reduce lung hyper-inflammation, oxidative stress, bacterial infection, and dysfunctional ion transport, which are all hallmarks of CF lung disease.
Collapse
Affiliation(s)
| | | | | | - Emanuela M. Bruscia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
12
|
Bouvet GF, Voisin G, Cyr Y, Bascunana V, Massé C, Berthiaume Y. DNA Methylation Regulates RGS2-induced S100A12 Expression in Airway Epithelial Cells. Am J Respir Cell Mol Biol 2019; 59:601-613. [PMID: 29944393 DOI: 10.1165/rcmb.2016-0164oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RGS2 is a key modulator of stress in human airway epithelial cells, especially of hyperresponsiveness and mucin hypersecretion, both of which are features of cystic fibrosis (CF). Because its expression can be modulated through the DNA methylation pathway, we hypothesize that RGS2 is downregulated by DNA hypermethylation in CF airway epithelial cells. This downregulation would then lead to an enhanced inflammatory response. We demonstrated RGS2 transcript and protein downregulation in cultured airway epithelial cells from patients with CF and validated our findings in two CF epithelial cell lines. A methylated DNA immunoprecipitation array showed the presence of methylated cytosine on 13 gene promoters in CF. Among these genes, we confirmed that the RGS2 promoter was hypermethylated by using bisulfite conversion coupled with a methylation-specific PCR assay. Finally, we showed that downregulation of RGS2 in non-CF cells increased the expression of S100A12, a proinflammatory marker. These results highlight the importance of epigenetic regulation in gene expression in CF and show that RGS2 might modulate the inflammatory response in CF through DNA methylation control.
Collapse
Affiliation(s)
| | - Gregory Voisin
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Yannick Cyr
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | | | - Chantal Massé
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| | - Yves Berthiaume
- Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| |
Collapse
|
13
|
Targeting Cytokines as Evolving Treatment Strategies in Chronic Inflammatory Airway Diseases. Int J Mol Sci 2018; 19:ijms19113402. [PMID: 30380761 PMCID: PMC6275012 DOI: 10.3390/ijms19113402] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/25/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022] Open
Abstract
Cytokines are key players in the initiation and propagation of inflammation in chronic inflammatory airway diseases such as chronic obstructive pulmonary disease (COPD), bronchiectasis and allergic asthma. This makes them attractive targets for specific novel anti-inflammatory treatment strategies. Recently, both interleukin-1 (IL-1) and IL-6 have been associated with negative health outcomes, mortality and a pro-inflammatory phenotype in COPD. IL-6 in COPD was shown to correlate negatively with lung function, and IL-1beta was induced by cigarette smoke in the bronchial epithelium, causing airway inflammation. Furthermore, IL-8 has been shown to be a pro-inflammatory marker in bronchiectasis, COPD and allergic asthma. Clinical trials using specific cytokine blockade therapies are currently emerging and have contributed to reduce exacerbations and steroid use in COPD. Here, we present a review of the current understanding of the roles of cytokines in the pathophysiology of chronic inflammatory airway diseases. Furthermore, outcomes of clinical trials in cytokine blockade as novel treatment strategies for selected patient populations with those diseases will be discussed.
Collapse
|
14
|
Elborn JS, Ahuja S, Springman E, Mershon J, Grosswald R, Rowe SM. EMPIRE-CF: A phase II randomized placebo-controlled trial of once-daily, oral acebilustat in adult patients with cystic fibrosis - Study design and patient demographics. Contemp Clin Trials 2018; 72:86-94. [PMID: 30056216 DOI: 10.1016/j.cct.2018.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Inflammation causes irreparable damage in the cystic fibrosis (CF) lung. Despite high standards of care and the advent of new therapies, inflammation continues to cause significant loss of lung function and morbidity. Acebilustat is a once-daily, oral molecule with anti-inflammatory activity through the inhibition of LTA4 hydrolase and modulation of LTB4. It has potential to reduce lung function decline and pulmonary exacerbations in patients with CF and is currently being tested in a Phase II multicenter, randomized, double-blind, placebo-controlled, parallel-group study (EMPIRE-CF). Strict inclusion criteria based on modeling of the Cystic Fibrosis Foundation Patient Registry data were selected to enrich the trial with patients most likely to benefit from chronic anti-inflammatory therapy that reduces lung function decline. 200 patients between 18 and 30 years of age, with an FEV1 percent predicted (pp) ≥50%, and ≥1 exacerbation in the past year have been enrolled. Patients are randomized 1:1:1 to placebo, acebilustat 50 mg or 100 mg for 48 weeks, taken concomitantly with their current standard of care, and stratified based on concomitant CFTR modulator use, baseline FEV1pp (50% to 75% and >75%), and number of exacerbations in the past year (1 or >1). The primary endpoints are absolute change from baseline in FEV1pp and safety outcomes. Secondary endpoints include rate of pulmonary exacerbations and time to first pulmonary exacerbation. Biomarkers of inflammation will also be assessed. EMPIRE-CF is expected to identify the optimal patient population, dose, duration and endpoints for future acebilustat trials, and widen understanding of the drug's efficacy in patients with CF.
Collapse
Affiliation(s)
- J Stuart Elborn
- National Heart and Lung Institute, Imperial College and Royal Brompton Hospital, London, UK.
| | - Sanjeev Ahuja
- Celtaxsys, Inc., 201 17th St NW #530, Atlanta, GA, USA.
| | | | - John Mershon
- Celtaxsys, Inc., 201 17th St NW #530, Atlanta, GA, USA.
| | | | - Steven M Rowe
- Departments of Medicine, Pediatrics, Cell Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
15
|
Association of High-Dose Ibuprofen Use, Lung Function Decline, and Long-Term Survival in Children with Cystic Fibrosis. Ann Am Thorac Soc 2018; 15:485-493. [DOI: 10.1513/annalsats.201706-486oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
16
|
Sheikh Z, Ong HX, Pozzoli M, Young PM, Traini D. Is there a role for inhaled anti-inflammatory drugs in cystic fibrosis treatment? Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2018.1409110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zara Sheikh
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Hui Xin Ong
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Michele Pozzoli
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Paul M Young
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Daniela Traini
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
17
|
Naguib ML, Koura HM, Mahmoud MM, Mohamed AS, Wissa SS. Bone mineral density and its contributing factors in Egyptian children with cystic fibrosis. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2016. [DOI: 10.4103/1687-8426.184372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Abstract
Cystic fibrosis (CF) lung disease is characterized by persistent and unresolved inflammation, with elevated proinflammatory and decreased anti-inflammatory cytokines, and greater numbers of immune cells. Hyperinflammation is recognized as a leading cause of lung tissue destruction in CF. Hyper-inflammation is not solely observed in the lungs of CF patients, since it may contribute to destruction of exocrine pancreas and, likely, to defects in gastrointestinal tract tissue integrity. Paradoxically, despite the robust inflammatory response, and elevated number of immune cells (such as neutrophils and macrophages), CF lungs fail to clear bacteria and are more susceptible to infections. Here, we have summarized the current understanding of immune dysregulation in CF, which may drive hyperinflammation and impaired host defense.
Collapse
Affiliation(s)
- Emanuela M Bruscia
- Section of Respiratory Medicine, Department of Pediatrics, Yale University School of Medicine, 330 Cedar Street, FMP, Room#524, New Haven, CT 06520, USA.
| | - Tracey L Bonfield
- Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, Case Western Reserve University School of Medicine, 0900 Euclid Avenue, Cleveland, OH 44106-4948, USA.
| |
Collapse
|
19
|
Phloridzin derivatives inhibiting pro-inflammatory cytokine expression in human cystic fibrosis IB3-1 cells. Eur J Pharm Sci 2015. [PMID: 26209880 DOI: 10.1016/j.ejps.2015.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cystic Fibrosis (CF) is the most diffuse autosomal recessive genetic disease affecting Caucasians. A persistent recruitment of neutrophils in the bronchi of CF patients contributes to exacerbate the airway tissue damage, suggesting that modulation of chemokine expression may be an important target for the patient's well being thus the identification of innovative anti-inflammatory drugs is considered a longterm goal to prevent progressive tissue deterioration. Phloridzin, isolated from Malus domestica by a selective molecular imprinting extraction, and its structural analogues, Phloridzin heptapropionate (F1) and Phloridzin tetrapropionate (F2), were initially investigated because of their ability to reduce IL-6 and IL-8 expression in human CF bronchial epithelial cells (IB3-1) stimulated with TNF-α. Release of these cytokines by CF cells was shown to be controlled by the Transcription Factor (TF) NF-kB. The results of the present investigation show that of all the derivatives tested, Phloridzin tetrapropionate (F2) is the most interesting and has greatest potential as it demonstrates inhibitory effects on the expression and production of different cytokines involved in CF inflammation processes, including RANTES, VEGF, GM-CSF, IL-12, G-CSF, MIP-1b, IL-17, IL-10 and IP-10, without any correlated anti-proliferative and pro-apoptotic effects.
Collapse
|
20
|
Cantin AM, Hartl D, Konstan MW, Chmiel JF. Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. J Cyst Fibros 2015; 14:419-30. [PMID: 25814049 DOI: 10.1016/j.jcf.2015.03.003] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/08/2015] [Accepted: 03/08/2015] [Indexed: 11/16/2022]
Abstract
Lung disease is the major cause of morbidity and mortality in patients with cystic fibrosis (CF). Although CF lung disease is primarily an infectious disorder, the associated inflammation is both intense and ineffective at clearing pathogens. Persistent high-intensity inflammation leads to permanent structural damage of the CF airways and impaired lung function that eventually results in respiratory failure and death. Several defective inflammatory responses have been linked to cystic fibrosis transmembrane conductance regulator (CFTR) deficiency including innate and acquired immunity dysregulation, cell membrane lipid abnormalities, various transcription factor signaling defects, as well as altered kinase and toll-like receptor responses. The inflammation of the CF lung is dominated by neutrophils that release oxidants and proteases, particularly elastase. Neutrophil elastase in the CF airway secretions precedes the appearance of bronchiectasis, and correlates with lung function deterioration and respiratory exacerbations. Anti-inflammatory therapies are therefore of particular interest for CF lung disease but must be carefully studied to avoid suppressing critical elements of the inflammatory response and thus worsening infection. This review examines the role of inflammation in the pathogenesis of CF lung disease, summarizes the results of past clinical trials and explores promising new anti-inflammatory options.
Collapse
Affiliation(s)
- André M Cantin
- Pulmonary Division, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, Canada.
| | - Dominik Hartl
- CF Center, Children's Hospital of the University of Tübingen, Tübingen, Germany
| | - Michael W Konstan
- Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - James F Chmiel
- Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
21
|
Noni M, Katelari A, Dimopoulos G, Kourlaba G, Spoulou V, Alexandrou-Athanassoulis H, Doudounakis SE, Tzoumaka-Bakoula C. Inhaled corticosteroids and Aspergillus fumigatus isolation in cystic fibrosis. Med Mycol 2014; 52:715-22. [PMID: 25056962 DOI: 10.1093/mmy/myu038] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aspergillus fumigatus isolation in cultures from respiratory specimens of patients with cystic fibrosis (CF) is quite common; however, the role of A. fumigatus as a pathogen and whether its presence is associated with progression of pulmonary disease remain unclear. We investigated the association between inhaled corticosteroids and the recovery of A. fumigatus by performing a retrospective cohort study of CF patients born between 1988 and 1996. The patients' medical records from their first visit to the CF Center until December 2010 were reviewed. Outcomes were the occurrence of A. fumigatus first isolation, chronic colonization, or the last visit at the CF Center. A number of possible confounders were included in the multivariate logistic regression analysis in order to identify an independent association between inhaled corticosteroids and colonization status. A total of 121 patients were included in the study. Thirty-nine patients (32.2%) had at least one positive culture and 14 (11.6%) developed chronic colonization. Multivariate logistic regression analysis was used to determine the independent effect of inhaled corticosteroids on the odds of first isolation (odds ratio [OR], 1.165; 95% confidence interval [CI], 1.015-1.337; P = 0.029) and chronic colonization (OR, 1.180; 95% CI, 1.029-1.353; P = 0.018). In conclusion, A. fumigatus first isolation and chronic colonization are associated with the duration of inhaled corticosteroid treatment.
Collapse
Affiliation(s)
- Maria Noni
- Department of Cystic Fibrosis, "Aghia Sophia" Children's Hospital, Medical School, University of Athens, Athens, Greece
| | - Anna Katelari
- Department of Cystic Fibrosis, "Aghia Sophia" Children's Hospital, Medical School, University of Athens, Athens, Greece
| | - George Dimopoulos
- Department of Critical Care, University Hospital "Attikon," Medical School, University of Athens, Athens, Greece
| | - Georgia Kourlaba
- Department of Cystic Fibrosis, "Aghia Sophia" Children's Hospital, Medical School, University of Athens, Athens, Greece
| | - Vana Spoulou
- Department of Infectious Diseases, "Aghia Sophia" Children's Hospital, Athens, Greece
| | | | | | - Chryssa Tzoumaka-Bakoula
- Department of Pediatrics, "P & A Kyriakou" Children's Hospital, Medical School, University of Athens, Athens, Greece
| |
Collapse
|
22
|
Kent BD, Lane SJ, van Beek EJ, Dodd JD, Costello RW, Tiddens HAWM. Asthma and cystic fibrosis: a tangled web. Pediatr Pulmonol 2014; 49:205-13. [PMID: 24420817 DOI: 10.1002/ppul.22934] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 09/06/2013] [Indexed: 01/04/2023]
Abstract
Successfully diagnosing concomitant asthma in people with cystic fibrosis (CF) is a challenging proposition, and the utility of conventional diagnostic criteria of asthma in CF populations remains uncertain. Nonetheless, the accurate identification of individuals with CF and asthma allows appropriate tailoring of therapy, and should reduce the unnecessary use of asthma medication in broader CF cohorts. In this review, we discuss the diagnostic challenge posed by asthma in CF, both in terms of clinical evaluation, and of interpretation of pulmonary function testing and non-invasive markers of airway inflammation. We also examine how the role of cross-sectional thoracic imaging in CF and asthma can assist in the diagnosis of asthma in these patients. Finally, we critically appraise the evidence base behind the use of asthma medications in CF populations, with a particular focus on the use of inhaled corticosteroids and bronchodilators. As shall be discussed, the gaps in the current literature make further high-quality research in this field imperative.
Collapse
Affiliation(s)
- Brian D Kent
- Department of Respiratory Medicine, Adelaide & Meath Hospital, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
23
|
Guerrini A, Mancini I, Maietti S, Rossi D, Poli F, Sacchetti G, Gambari R, Borgatti M. Expression of Pro-inflammatory Interleukin-8 is Reduced by Ayurvedic Decoctions. Phytother Res 2014; 28:1173-81. [DOI: 10.1002/ptr.5109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 01/13/2023]
Affiliation(s)
| | - Irene Mancini
- Department of Life Sciences and Biotechnology; University of Ferrara; Italy
| | - Silvia Maietti
- Department of Life Sciences and Biotechnology; University of Ferrara; Italy
| | - Damiano Rossi
- Department of Life Sciences and Biotechnology; University of Ferrara; Italy
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnology; University of Bologna; Italy
| | - Gianni Sacchetti
- Department of Life Sciences and Biotechnology; University of Ferrara; Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology; University of Ferrara; Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology; University of Ferrara; Italy
| |
Collapse
|
24
|
Chmiel JF, Konstan MW, Elborn JS. Antibiotic and anti-inflammatory therapies for cystic fibrosis. Cold Spring Harb Perspect Med 2013; 3:a009779. [PMID: 23880054 DOI: 10.1101/cshperspect.a009779] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cystic fibrosis (CF) lung disease is characterized by chronic bacterial infection and an unremitting inflammatory response, which are responsible for most of CF morbidity and mortality. The median expected survival has increased from <6 mo in 1940 to >38 yr now. This dramatic improvement, although not great enough, is due to the development of therapies directed at secondary disease pathologies, especially antibiotics. The importance of developing treatments directed against the vigorous inflammatory response was realized in the 1990s. New therapies directed toward the basic defect are now visible on the horizon. However, the impact of these drugs on downstream pathological consequences is unknown. It is likely that antibiotics and anti-inflammatory drugs will remain an important part of the maintenance regimen for CF in the foreseeable future. Current and future antibiotic and anti-inflammatory therapies for CF are reviewed.
Collapse
Affiliation(s)
- James F Chmiel
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, Ohio 44106
| | | | | |
Collapse
|
25
|
Lannan EA, Galliher-Beckley AJ, Scoltock AB, Cidlowski JA. Proinflammatory actions of glucocorticoids: glucocorticoids and TNFα coregulate gene expression in vitro and in vivo. Endocrinology 2012; 153:3701-12. [PMID: 22673229 PMCID: PMC3404340 DOI: 10.1210/en.2012-1020] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Synthetic glucocorticoids are widely used for treatment of many inflammatory diseases. However, long-term glucocorticoid treatment can cause a variety of negative side effects. A genome-wide microarray analysis was performed in human lung A549 cells to identify genes regulated by both the antiinflammatory steroid dexamethasone (Dex) and the proinflammatory cytokine TNFα. Unexpectedly, we discovered that numerous genes were coregulated by treatment with both Dex and TNFα. We evaluated the mechanism of coregulation of one of these genes, serpinA3 (α-1 antichymotrypsin), a secreted, acute phase protein strongly associated with numerous inflammatory diseases. Up-regulation of serpinA3 requires the presence of both the glucocorticoid receptor and TNFα soluble receptor 1. Treatment with Dex or TNFα resulted in a 10- to 25-fold increase of serpinA3 mRNA, whereas coadministration of Dex and TNFα led to a synergistic increase in serpinA3 mRNA. The naturally occurring glucocorticoid, cortisol, also resulted in a synergistic increase in serpinA3 mRNA levels in A549 cells. Furthermore, in vivo treatment of C57BL/6 mice with Dex and TNFα resulted in coregulation of serpinA3 mRNA levels in both lung and liver tissues. Finally, chromatin immunoprecipitation analyses suggest that glucocorticoid receptor binding to the serpinA3 transcriptional start site can be enhanced by the combination of Dex plus TNFα treatment of A549 cells. These studies demonstrate that glucocorticoids and proinflammatory compounds can coregulate genes associated with human disease. This discovery may underlie the basis of some of the adverse effects associated with long-term glucocorticoid therapy.
Collapse
Affiliation(s)
- Erica A Lannan
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, 111 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
26
|
Hampton TH, Ballok AE, Bomberger JM, Rutkowski MR, Barnaby R, Coutermarsh B, Conejo-Garcia JR, O'Toole GA, Stanton BA. Does the F508-CFTR mutation induce a proinflammatory response in human airway epithelial cells? Am J Physiol Lung Cell Mol Physiol 2012; 303:L509-18. [PMID: 22821996 DOI: 10.1152/ajplung.00226.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the clinical setting, mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene enhance the inflammatory response in the lung to Pseudomonas aeruginosa (P. aeruginosa) infection. However, studies on human airway epithelial cells in vitro have produced conflicting results regarding the effect of mutations in CFTR on the inflammatory response to P. aeruginosa, and there are no comprehensive studies evaluating the effect of P. aeruginosa on the inflammatory response in airway epithelial cells with the ΔF508/ΔF508 genotype and their matched CF cell line rescued with wild-type (wt)-CFTR. CFBE41o- cells (ΔF508/ΔF508) and CFBE41o- cells complemented with wt-CFTR (CFBE-wt-CFTR) have been used extensively as an experimental model to study CF. Thus the goal of this study was to examine the effect of P. aeruginosa on gene expression and cytokine/chemokine production in this pair of cells. P. aeruginosa elicited a more robust increase in cytokine and chemokine expression (e.g., IL-8, CXCL1, CXCL2 and TNF-α) in CFBE-wt-CFTR cells compared with CFBE-ΔF508-CFTR cells. These results demonstrate that CFBE41o- cells complemented with wt-CFTR mount a more robust inflammatory response to P. aeruginosa than CFBE41o-ΔF508/ΔF508-CFTR cells. Taken together with other published studies, our data demonstrate that there is no compelling evidence to support the view that mutations in CFTR induce a hyperinflammatory response in human airway epithelial cells in vivo. Although the lungs of patients with CF have abundant levels of proinflammatory cytokines and chemokines, because the lung is populated by immune cells and epithelial cells there is no way to know, a priori, whether airway epithelial cells in the CF lung in vivo are hyperinflammatory in response to P. aeruginosa compared with non-CF lung epithelial cells. Thus studies on human airway epithelial cell lines and primary cells in vitro that propose to examine the effect of mutations in CFTR on the inflammatory response to P. aeruginosa have uncertain clinical significance with regard to CF.
Collapse
Affiliation(s)
- Thomas H Hampton
- Dept. of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Corilagin is a potent inhibitor of NF-kappaB activity and downregulates TNF-alpha induced expression of IL-8 gene in cystic fibrosis IB3-1 cells. Int Immunopharmacol 2012; 13:308-15. [PMID: 22561123 DOI: 10.1016/j.intimp.2012.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 04/04/2012] [Accepted: 04/18/2012] [Indexed: 01/21/2023]
Abstract
Corilagin (beta-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-d-glucose), a gallotannin identified in several plants, including Phyllanthus urinaria, has been shown to exhibit versatile medicinal activities. As far as possible anti-inflammatory effects of corilagin, only few reports are available, and the potential use of corilagin as possible therapeutic molecule for cystic fibrosis has not been evaluated. In the present paper we report experiments aimed at determining the activity of corilagin on nuclear factor kappaB (NF-kappaB) binding to DNA target and on the expression of the major pro-inflammatory gene involved in cystic fibrosis, interleukin-8 (IL-8). Both IL-8 mRNA content and IL-8 protein secretion were analyzed in cystic fibrosis bronchial IB3-1 cells stimulated by tumor necrosis factor-alpha (TNF-alpha), one of the most potent pro-inflammatory agents. The data obtained demonstrate that corilagin binds to NF-kappaB, inhibits NF-kappaB/DNA interactions and affects IL-8 gene expression in TNF-alpha treated IB3-1 cells. In addition, corilagin inhibits TNF-alpha induced secretion of MCP-1 and RANTES, exhibiting low or no effect on the release of G-CSF, IL-6 and VEGF. Therefore, corilagin might be of interest for experimental anti-inflammatory therapy of cystic fibrosis.
Collapse
|
28
|
de Benedictis FM, Bush A. Corticosteroids in respiratory diseases in children. Am J Respir Crit Care Med 2012; 185:12-23. [PMID: 21920920 DOI: 10.1164/rccm.201107-1174ci] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We review recent advances in the use of corticosteroids (CS) in pediatric lung disease. CS are frequently used, systemically or by inhalation. Their mechanisms of action in pulmonary diseases are ill defined. CS exert direct inhibitory effects on many inflammatory cells through genomic mechanisms. There is a time lag before clinical response, and the washout of effects is also prolonged. Prompt relief in some conditions, such as croup, may be related to airway mucosal vasoconstriction through a nongenomic mechanism. CS have proven beneficial roles in the treatment of asthma, croup, allergic bronchopulmonary aspergillosis, and subglottic hemangioma. In some conditions, such as bronchiolitis, cystic fibrosis, and bronchopulmonary dysplasia, their use is controversial and is not recommended routinely. In other conditions, such as tuberculosis, interstitial lung disease, acute lung aspiration, and acute respiratory distress syndrome, CS are often used empirically despite the lack of clear evidence of their benefit. New drug regimens, including the more flexible use of inhaled corticosteroids and long-acting β-agonists in asthma, the lack of efficacy of oral corticosteroids in preschool children with acute wheeze, the severe complications of systemic dexamethasone used to prevent bronchopulmonary dysplasia and thus more restricted use, and the beneficial effect of pulse high-dose intravenous methylprednisolone in patients with allergic bronchopulmonary aspergillosis or cystic fibrosis are among the major recent developments. There is concern about adverse effects, especially growth and adrenal suppression, induced by systemic CS in children. These have been reduced, but not eliminated, with the use of the inhaled route. The benefits must be weighed against the potential detrimental effects.
Collapse
|
29
|
Abstract
Inflammation is a major component of the vicious cycle characterizing cystic fibrosis (CF) pulmonary disease. If untreated, this inflammatory process irreversibly damages the airways, leading to bronchiectasis and ultimately respiratory failure. Anti-inflammatory drugs for CF lung disease appear to have beneficial effects on disease progression. These agents include oral corticosteroids and ibuprofen, as well as azithromycin, which, in addition to its antimicrobial effects, also possess anti-inflammatory properties. Inhaled corticosteroids, antioxidants, nutritional supplements, and protease inhibitors have a limited impact on the disease. Adverse effects limit therapy with oral corticosteroids and ibuprofen. Azithromycin appears to be safe and effective, and is thus the most promising anti-inflammatory therapy available for patients with CF. Pharmacologic therapy with anti-inflammatory agents should be started early in the disease course, before extensive irreversible lung damage has occurred. To optimize anti-inflammatory therapy, it is necessary to understand the mechanism of action of these agents in the CF lung, to determine which of these agents would provide the most benefit to patients with CF, and to determine which therapies should be initiated at what age or stage of lung disease.
Collapse
Affiliation(s)
- Tacjana Pressler
- CF Centre Copenhagen, Department of Paediatrics, University Hospital Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
30
|
Prota L, Santoro A, Bifulco M, Aquino RP, Mencherini T, Russo P. Leucine enhances aerosol performance of Naringin dry powder and its activity on cystic fibrosis airway epithelial cells. Int J Pharm 2011; 412:8-19. [DOI: 10.1016/j.ijpharm.2011.03.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/24/2011] [Accepted: 03/27/2011] [Indexed: 10/18/2022]
|
31
|
Belcher C, Vij N. Protein processing and inflammatory signaling in Cystic Fibrosis: challenges and therapeutic strategies. Curr Mol Med 2010; 10:82-94. [PMID: 20205681 PMCID: PMC3114428 DOI: 10.2174/156652410791065408] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 10/22/2009] [Indexed: 01/23/2023]
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) that regulates epithelial surface fluid secretion in respiratory and gastrointestinal tracts. The deletion of phenylalanine at position 508 (DeltaF508) in CFTR is the most common mutation that results in a temperature sensitive folding defect, retention of the protein in the endoplasmic reticulum (ER), and subsequent degradation by the proteasome. ER associated degradation (ERAD) is a major quality control pathway of the cell. The majority (99%) of the protein folding, DeltaF508-, mutant of CFTR is known to be degraded by this pathway to cause CF. Recent studies have revealed that inhibition of DeltaF508-CFTR ubiquitination and proteasomal degradation can increase its cell surface expression and may provide an approach to treat CF. The finely tuned balance of ER membrane interactions determine the cytosolic fate of newly synthesized CFTR. These ER membrane interactions induce ubiquitination and proteasomal targeting of DeltaF508- over wild type- CFTR. We discuss here challenges and therapeutic strategies targeting protein processing of DeltaF508-CFTR with the goal of rescuing functional DeltaF508-CFTR to the cell surface. It is evident from recent studies that CFTR plays a critical role in inflammatory response in addition to its well-described ion transport function. Previous studies in CF have focused only on improving chloride efflux as a marker for promising treatment. We propose that methods quantifying the therapeutic efficacy and recovery from CF should not include only changes in chloride efflux, but also recovery of the chronic inflammatory signaling, as evidenced by positive changes in inflammatory markers (in vitro and ex vivo), lung function (pulmonary function tests, PFT), and chronic lung disease (state of the art molecular imaging, in vivo). This will provide novel therapeutics with greater opportunities of potentially attenuating the progression of the chronic CF lung disease.
Collapse
Affiliation(s)
- C.N. Belcher
- Department of Pediatrics, Eudowood Division of Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - N. Vij
- Department of Pediatrics, Eudowood Division of Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|