1
|
Wang Y, Sholeh M, Yang L, Shakourzadeh MZ, Beig M, Azizian K. Global trends of ceftazidime-avibactam resistance in gram-negative bacteria: systematic review and meta-analysis. Antimicrob Resist Infect Control 2025; 14:10. [PMID: 39934901 DOI: 10.1186/s13756-025-01518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The emergence of antimicrobial resistance in Gram-negative bacteria (GNB) is a major global concern. Ceftazidime-avibactam (CAZ-AVI) has been identified as a potential treatment option for complicated infections. OBJECTIVES This meta-analysis aimed to evaluate the global resistance proportions of GNB to CAZ-AVI comprehensively. METHODS Studies were searched in Scopus, PubMed, and EMBASE (until September 2024), and statistical analyses were conducted using STATA software (version 20.0). RESULTS CAZ-AVI resistance proportions were determined in 136 studies, with 25.8% (95% CI 22.2-29.7) for non-fermentative gram-negative bacilli and 6.1% (95% CI 4.9-7.4) for Enterobacterales. The CAZ-AVI resistance proportion significantly increased from 5.6% (95% CI 4.1-7.6) of 221,278 GNB isolates in 2015-2020 to 13.2% (95% CI 11.4-15.2) of 285,978 GNB isolates in 2021-2024. Regionally, CAZ-AVI resistance was highest in Asia 19.3% (95% CI 15.7-24.23.4), followed by Africa 13.6% (95% CI 5.6-29.2), Europe 11% (95% CI 7.8-15.2), South America 6.1% (95% CI 3.2-11.5) and North America 5.3% (95% CI 4.2-6.7). Among GNB resistance profiles, colistin-resistant isolates and XDR isolates exhibited the highest resistance proportions (37.1%, 95% CI 14-68 and 32.1%, 95% CI 18.5-49.6), respectively), followed by carbapenem-resistant isolates and MDR isolates [(25.8%, 95% CI 22.6-29.3) and (13%, 95% CI 9.6, 17.3)]. CONCLUSION A high proportion of GNB isolates from urinary tract infections remained susceptible to CAZ-AVI, indicating its potential as a suitable treatment option. However, the increasing resistance trends among GNB are concerning and warrant continuous monitoring to maintain CAZ-AVI's effectiveness against GNB infections.
Collapse
Affiliation(s)
- Yang Wang
- Nanchuan District Center for Disease Control and Prevention, Chongqing, 408400, China
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - LunDi Yang
- Nanchuan District Center for Disease Control and Prevention, Chongqing, 408400, China.
| | - Matin Zafar Shakourzadeh
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgān, Iran
| | - Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Khalil Azizian
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Zoonosis Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
2
|
Gundeslioglu OO, Haytoglu Z, Gumus HH, Ekinci F, Kibar F, Cay U, Alabaz D, Ozlu F, Horoz OO, Yıldızdas RD. Clinical experience with ceftazidime/avibactam for the treatment of extensively drug-resistant or pandrug-resistant Klebsiella pneumoniae in neonates and children. Eur J Clin Microbiol Infect Dis 2024; 43:2361-2369. [PMID: 39352616 DOI: 10.1007/s10096-024-04948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/17/2024] [Indexed: 12/01/2024]
Abstract
PURPOSE Klebsiella pneumoniae is a significant cause of healthcare-associated infections, resulting in high morbidity and mortality rates due to limited treatment options. In this study, we aimed to evaluate the treatment outcomes and the safety of Ceftazidime-avibactam in infections caused by extensively drug-resistant or pandrug-resistant Klebsiella pneumoniae in pediatric patients. METHODS This study included pediatric patients who received ceftazidime-avibactam treatment due to extensively drug-resistant or pandrug-resistant Klebsiella pneumoniae infections, monitored in the pediatric intensive care, neonatal intensive care, and pediatric wards of Cukurova University Faculty of Medicine between 2022 and 2023. Patients' microbiological responses, clinical responses, medication side effects, and 30-day survival rates were evaluated. RESULTS Eleven pediatric patients were included in the study, of whom nine were male (81.8%). The median age at the initiation of ceftazidime-avibactam treatment was 15 months (range: 14 days-183 months). Sepsis was diagnosed in 9 patients (81.8%). Two premature infants (27 and 35 weeks) were admitted to the neonatal ICU. Regarding the Klebsiella pneumoniae strains, 10 (91%) were extensively drug-resistant (XDR), and 1 (9%) was pandrug-resistant (PDR). Eight strains (72.7%) were carbapenem-resistant, and 9 (81.8%) were colistin-resistant. Microbiological response was noted in 8 patients (72.7%), clinical response was evident in 6 patients (54.5%). The 30-day survival rate was 54.5%, with six patients surviving. CONCLUSION In our study, ceftazidime-avibactam has been identified as a significant treatment option for resistant Klebsiella pneumoniae infection in critically ill children and premature infants with sepsis and organ failure, and it has been found to be well tolerated.
Collapse
Affiliation(s)
- Ozlem Ozgur Gundeslioglu
- Faculty of Medicine, Cukurova University, Adana, Turkey.
- Department of Pediatric Infectious Diseases, Balcalı Hospital, Sarıçam, Adana, Turkey.
| | - Zeliha Haytoglu
- Faculty of Medicine, Cukurova University, Adana, Turkey
- Department of Pediatrics, Balcalı Hospital, Sarıçam, Adana, Turkey
| | - Hatice Hale Gumus
- Faculty of Medicine, Cukurova University, Adana, Turkey
- Department of Medical Microbiology, Cukurova University Balcalı Hospital Central Laboratory, Adana, Turkey
| | - Faruk Ekinci
- Faculty of Medicine, Cukurova University, Adana, Turkey
- Department of Pediatric Intensive Care, Balcalı Hospital, Sarıçam, Adana, Turkey
| | - Filiz Kibar
- Faculty of Medicine, Cukurova University, Adana, Turkey
- Department of Medical Microbiology, Cukurova University Balcalı Hospital Central Laboratory, Adana, Turkey
| | - Ummuhan Cay
- Faculty of Medicine, Cukurova University, Adana, Turkey
- Department of Pediatric Infectious Diseases, Balcalı Hospital, Sarıçam, Adana, Turkey
| | - Derya Alabaz
- Faculty of Medicine, Cukurova University, Adana, Turkey
- Department of Pediatric Infectious Diseases, Balcalı Hospital, Sarıçam, Adana, Turkey
| | - Ferda Ozlu
- Faculty of Medicine, Cukurova University, Adana, Turkey
- Department of Neonatology, Balcalı Hospital, Sarıçam, Adana, Turkey
| | - Ozden Ozgur Horoz
- Faculty of Medicine, Cukurova University, Adana, Turkey
- Department of Pediatric Intensive Care, Balcalı Hospital, Sarıçam, Adana, Turkey
| | - Rıza Dincer Yıldızdas
- Faculty of Medicine, Cukurova University, Adana, Turkey
- Department of Pediatric Intensive Care, Balcalı Hospital, Sarıçam, Adana, Turkey
| |
Collapse
|
3
|
Klein N, Jantsch J, Simon M, Rödel J, Becker SL, Serr A, Steinmann J, Ehrentraut SF, Mollitor E, Hischebeth GTR. In vitro activity of ceftazidime-avibactam/aztreonam combination against MBL-producing Pseudomonas aeruginosa strains. Infection 2024:10.1007/s15010-024-02425-4. [PMID: 39556165 DOI: 10.1007/s15010-024-02425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/26/2024] [Indexed: 11/19/2024]
Abstract
PURPOSE The emergence of multidrug-resistant P. aeruginosa isolates poses a challenge to healthcare systems worldwide. Rising numbers in deaths, duration of hospitalization as well as failing treatments prove the hazards posed by these pathogens. This and the lack of promising therapeutic options highlight the urgency of antibiotic drug development. As interim solution or alternative to the development of new antibiotic drugs, investigation of novel combinations of existing antibiotic drugs can be an economic and swift approach. Therefore, this study addresses the evaluation of in vitro activity of the antibiotic combination of ceftazidime-avibactam/aztreonam against MBL-producing P. aeruginosa strains. METHODS We tested 153 isolates from six university hospitals via microdilution against their susceptibility to meropenem, aztreonam, ceftazime-avibactam and the minimal inhibitory concentration of the combination of ceftazidime-avibactam/aztreonam. 64 isolates produced carbapenemases of which 61 were VIM-, 2 NDM- and 1 OXA-producer. RESULTS We were able to show that the synergetic effects of this regimen with an avibactam concentration of 4 mg/l and an aztreonam concentration of 16 mg/l could successfully lower the number of MBL-producing isolates that showed a high minimal inhibitory concentration compared to a carbapenemase-negative control group in vitro. CONCLUSION The antibiotic combination consisting of ceftazidime-avibactam/aztreonam represents a possible approach to the treatment of patients infected with multidrug-resistant P. aeruginosa isolates.
Collapse
Affiliation(s)
- Niklas Klein
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070, Koblenz, Germany.
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, 93053, Regensburg, Germany
- Institute for Medical Microbiology, Immunology, and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, 50937, Cologne, Germany
| | - Michaela Simon
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, 93053, Regensburg, Germany
- Institute for Medical Microbiology, Immunology, and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, 50937, Cologne, Germany
| | - Jürgen Rödel
- Institute of Medical Microbiology, Jena University Hospital, 07743, Jena, Germany
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421, Homburg, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, 66123, Saarbrücken, Germany
| | - Annerose Serr
- Department for Medical Microbiology and Hygiene, University Hospital Freiburg, 79104, Freiburg, Germany
| | - Joerg Steinmann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Klinikum Nürnberg, 90419, Nuremberg, Germany
| | - Stefan F Ehrentraut
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Ernst Mollitor
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127, Bonn, Germany
| | - Gunnar T R Hischebeth
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127, Bonn, Germany
| |
Collapse
|
4
|
Mishra A, Cosic I, Loncarevic I, Cosic D, Fletcher HM. Inhibition of β-lactamase function by de novo designed peptide. PLoS One 2023; 18:e0290845. [PMID: 37682912 PMCID: PMC10490870 DOI: 10.1371/journal.pone.0290845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
Antimicrobial resistance is a great public health concern that is now described as a "silent pandemic". The global burden of antimicrobial resistance requires new antibacterial treatments, especially for the most challenging multidrug-resistant bacteria. There are various mechanisms by which bacteria develop antimicrobial resistance including expression of β-lactamase enzymes, overexpression of efflux pumps, reduced cell permeability through downregulation of porins required for β-lactam entry, or modifications in penicillin-binding proteins. Inactivation of the β-lactam antibiotics by β-lactamase enzymes is the most common mechanism of bacterial resistance to these agents. Although several effective small-molecule inhibitors of β-lactamases such as clavulanic acid and avibactam are clinically available, they act only on selected class A, C, and some class D enzymes. Currently, none of the clinically approved inhibitors can effectively inhibit Class B metallo-β-lactamases. Additionally, there is increased resistance to these inhibitors reported in several bacteria. The objective of this study is to use the Resonant Recognition Model (RRM), as a novel strategy to inhibit/modulate specific antimicrobial resistance targets. The RRM is a bio-physical approach that analyzes the distribution of energies of free electrons and posits that there is a significant correlation between the spectra of this energy distribution and related protein biological activity. In this study, we have used the RRM concept to evaluate the structure-function properties of a group of 22 β-lactamase proteins and designed 30-mer peptides with the desired RRM spectral periodicities (frequencies) to function as β-lactamase inhibitors. In contrast to the controls, our results indicate 100% inhibition of the class A β-lactamases from Escherichia coli and Enterobacter cloacae. Taken together, the RRM model can likely be utilized as a promising approach to design β-lactamase inhibitors for any specific class. This may open a new direction to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Arunima Mishra
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, United States America
| | - Irena Cosic
- AMALNA Consulting, Black Rock, Melbourne, VIC, Australia
| | | | - Drasko Cosic
- AMALNA Consulting, Black Rock, Melbourne, VIC, Australia
| | - Hansel M. Fletcher
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, United States America
| |
Collapse
|
5
|
Tait JR, Harper M, Cortés-Lara S, Rogers KE, López-Causapé C, Smallman TR, Lang Y, Lee WL, Zhou J, Bulitta JB, Nation RL, Boyce JD, Oliver A, Landersdorfer CB. Ceftolozane-Tazobactam against Pseudomonas aeruginosa Cystic Fibrosis Clinical Isolates in the Hollow-Fiber Infection Model: Challenges Imposed by Hypermutability and Heteroresistance. Antimicrob Agents Chemother 2023; 67:e0041423. [PMID: 37428034 PMCID: PMC10433881 DOI: 10.1128/aac.00414-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/20/2023] [Indexed: 07/11/2023] Open
Abstract
Pseudomonas aeruginosa remains a challenge in chronic respiratory infections in cystic fibrosis (CF). Ceftolozane-tazobactam has not yet been evaluated against multidrug-resistant hypermutable P. aeruginosa isolates in the hollow-fiber infection model (HFIM). Isolates CW41, CW35, and CW44 (ceftolozane-tazobactam MICs of 4, 4, and 2 mg/L, respectively) from adults with CF were exposed to simulated representative epithelial lining fluid pharmacokinetics of ceftolozane-tazobactam in the HFIM. Regimens were continuous infusion (CI; 4.5 g/day to 9 g/day, all isolates) and 1-h infusions (1.5 g every 8 hours and 3 g every 8 hours, CW41). Whole-genome sequencing and mechanism-based modeling were performed for CW41. CW41 (in four of five biological replicates) and CW44 harbored preexisting resistant subpopulations; CW35 did not. For replicates 1 to 4 of CW41 and CW44, 9 g/day CI decreased bacterial counts to <3 log10 CFU/mL for 24 to 48 h, followed by regrowth and resistance amplification. Replicate 5 of CW41 had no preexisting subpopulations and was suppressed below ~3 log10 CFU/mL for 120 h by 9 g/day CI, followed by resistant regrowth. Both CI regimens reduced CW35 bacterial counts to <1 log10 CFU/mL by 120 h without regrowth. These results corresponded with the presence or absence of preexisting resistant subpopulations and resistance-associated mutations at baseline. Mutations in ampC, algO, and mexY were identified following CW41 exposure to ceftolozane-tazobactam at 167 to 215 h. Mechanism-based modeling well described total and resistant bacterial counts. The findings highlight the impact of heteroresistance and baseline mutations on the effect of ceftolozane-tazobactam and limitations of MIC to predict bacterial outcomes. The resistance amplification in two of three isolates supports current guidelines that ceftolozane-tazobactam should be utilized together with another antibiotic against P. aeruginosa in CF.
Collapse
Affiliation(s)
- Jessica R. Tait
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Marina Harper
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Sara Cortés-Lara
- Servicio de Microbiología, Hospital Universitario Son Espases-IdISBa, Palma de Mallorca, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Kate E. Rogers
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Carla López-Causapé
- Servicio de Microbiología, Hospital Universitario Son Espases-IdISBa, Palma de Mallorca, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Thomas R. Smallman
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Yinzhi Lang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Wee Leng Lee
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jieqiang Zhou
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Jürgen B. Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Roger L. Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - John D. Boyce
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitario Son Espases-IdISBa, Palma de Mallorca, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Cornelia B. Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Agarwal V, Yadav TC, Tiwari A, Varadwaj P. Detailed investigation of catalytically important residues of class A β-lactamase. J Biomol Struct Dyn 2023; 41:2046-2073. [PMID: 34986744 DOI: 10.1080/07391102.2021.2023645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An increasing global health challenge is antimicrobial resistance. Bacterial infections are often treated by using β-lactam antibiotics. But several resistance mechanisms have evolved in clinically mutated bacteria, which results in resistance against such antibiotics. Among which production of novel β-lactamase is the major one. This results in bacterial resistance against penicillin, cephalosporin, and carbapenems, which are considered to be the last resort of antibacterial treatment. Hence, β-lactamase enzymes produced by such bacteria are called extended-spectrum β-lactamase and carbapenemase enzymes. Further, these bacteria have developed resistance against many β-lactamase inhibitors as well. So, investigation of important residues that play an important role in altering and expanding the spectrum activity of these β-lactamase enzymes becomes necessary. This review aims to gather knowledge about the role of residues and their mutations in class A β-lactamase, which could be responsible for β-lactamase mediated resistance. Class A β-lactamase enzymes contain most of the clinically significant and expanded spectrum of β-lactamase enzymes. Ser70, Lys73, Ser130, Glu166, and Asn170 residues are mostly conserved and have a role in the enzyme's catalytic activity. In-depth investigation of 69, 130, 131, 132, 164, 165, 166, 170, 171, 173, 176, 178, 179, 182, 237, 244, 275 and 276 residues were done along with its kinetic analysis for knowing its significance. Further, detailed information from many previous studies was gathered to know the effect of mutations on the kinetic activity of class A β-lactamase enzymes with β-lactam antibiotics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vidhu Agarwal
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Jhalwa, Uttar Pradesh, India
| | - Tara Chand Yadav
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Akhilesh Tiwari
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Jhalwa, Uttar Pradesh, India
| | - Pritish Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Jhalwa, Uttar Pradesh, India
| |
Collapse
|
7
|
Valencia E, Olarte W, Galvis M, Sastoque F. REVISIÓN, CARACTERIZACIÓN Y ANÁLISIS BIOINFORMÁTICO DE NUEVA DELHI METALO-β-LACTAMASA-1 (NDM-1) Y SUS VARIANTES. REVISTA DE LA FACULTAD DE CIENCIAS 2023; 12:59-76. [DOI: 10.15446/rev.fac.cienc.v12n1.104338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Tanto la enzima NDM-1, como sus variantes reportadas, presentan multiresistencia a distintos antibióticos para el tratamiento de patologías de tipo infeccioso. El presente trabajo muestra una revisión del mecanismo hidrolítico que sigue la enzima, un análisis bioinformático de la NDM-1 a NDM-16, algunas características genéticas, mutaciones y estudio del sitio activo. Se encontró que las 16 variantes presentan 14 mutaciones, utilizando como plantilla, la secuencia aminoacídica de NDM-1; además se establece la posibilidad de tomar estructuras de medicamentos como D-captopril para diseñar prototipos de mayor actividad y biodisponibilidad, así como baja toxicidad.
Collapse
|
8
|
Affiliation(s)
- Vaishali Thakkur
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Chandan Kumar Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nisanth N. Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
9
|
Dihydroxyphenyl-substituted thiosemicarbazone: A potent scaffold for the development of metallo-β-lactamases inhibitors and antimicrobial. Bioorg Chem 2022; 127:105928. [PMID: 35717802 DOI: 10.1016/j.bioorg.2022.105928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/21/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022]
Abstract
The superbug infection mediated by metallo-β-lactamases (MβLs) has grown into anemergent health threat, and development of MβL inhibitors is an ideal strategy to combat the infection. In this work, twenty-five thiosemicarbazones 1a-e, 2a-e, 3a-e, 4a-d, 5a-d and 6a-b were synthesized and assayed against MβLs ImiS, NDM-1 and L1. The gained molecules specifically inhibited NDM-1 and ImiS, exhibiting an IC50 value in the range of 0.37-21.35 and 0.45-8.76 µM, and 2a was found to be the best inhibitor, with an IC50 of 0.37 and 0.45 µM, respectively, using meropenem (MER) as substrate. Enzyme kinetics and dialysis tests revealed and confirmed by ITC that 2a is a time-and dose-dependent inhibitor of ImiS and NDM-1, it competitively and reversibly inhibited ImiS with a Ki value of 0.29 µM, but irreversibly inhibited NDM-1. Structure-activity relationship disclosed that the substitute dihydroxylbenzene significantly enhanced inhibitory activity of thiosemicarbazones on ImiS and NDM-1. Most importantly, 1a-e, 2a-e and 3a-b alone more strongly sterilized E. coli-ImiS and E. coli-NDM-1 than the MER, displaying a MIC value in the range of 8-128 μg/mL, and 2a was found to be the best reagent with a MIC of 8 and 32 μg/mL. Also, 2a alone strongly sterilized the clinical isolates EC01, EC06-EC08, EC24 and K. pneumonia-KPC-NDM, showing a MIC value in the range of 16-128 μg/mL, and exhibited synergistic inhibition with MER on these bacteria tested, resulting in 8-32-fold reduction in MIC of MER. SEM images shown that the bacteria E. coli-ImiS, E. coli-NDM-1, EC24, K. pneumonia-KPC and K. pneumonia-KPC-NDM treated with 2a (64 μg/mL) suffered from distortion, emerging adhesion between individual cells and crumpled membranes. Mice tests shown that monotherapy of 2a evidently limited growth of EC24 cells, and in combination with MER, it significantly reduced the bacterial load in liver and spleen. Docking studies suggest that the 2,4-dihydroxylbenzene of 2a acts as zinc-binding group with the Zn(II) and the residual amino acids in CphA active center, tightly anchoring the inhibitor at active site. This work offered a promising scaffold for the development of MβLs inhibitors, specifically the antimicrobial for clinically drug-resistant isolates.
Collapse
|
10
|
Aromatic Schiff bases confer inhibitory efficacy against New Delhi metallo-β-lactamase-1 (NDM-1). Bioorg Chem 2022; 126:105910. [PMID: 35653899 DOI: 10.1016/j.bioorg.2022.105910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022]
Abstract
The irregular use of antibiotics has created a natural selection pressure for bacteria to adapt resistance. Bacterial resistance caused by metallo-β-lactamases (MβLs) has been the most prevalent in terms of posing a threat to human health. The New Delhi metallo-β-lactamase-1 (NDM-1) has been shown to be capable of hydrolyzing almost all β-lactams. In this work, eight aromatic Schiff bases 1-8 were prepared and identified by enzyme kinetic assays to be the potent inhibitors of NDM-1 (except 4). These molecules exhibited a more than 95 % inhibition, and an IC50 value in the range of 0.13-19 μM on the target enzyme, and 3 was found to be the most effective inhibitor (IC50 = 130 nM). Analysis of structure-activity relationship revealed that the o-hydroxy phenyl improved the inhibitory activity of Schiff bases on NDM-1. The inhibition mode assays including isothermal titration calorimetry (ITC) disclosed that both compounds 3 and 5 exhibited a reversibly mixed inhibition on NDM-1, with a Ki value of 1.9 and 10.8 μM, respectively. Antibacterial activity tests indicated that a dose of 64 μg·mL-1 Schiff bases resulted in 2-128-fold reduction in MICs of cefazolin on E. coli producing NDM-1 (except 4). Cytotoxicity assays showed that both Schiff bases 3 and 5 have low cytotoxicity on the mouse fibroblast (L929) cells at a concentration of up to 400 μM. Docking studies suggested that the hydroxyl group interacts with Gln123 and Glu152 of NDM-1, and the amino groups interact with the backbone amide groups of Glu152 and Asp223. This study provided a novel scaffold for the development of NDM-1 inhibitors.
Collapse
|
11
|
Wang Q, Huang M, Zhou S. Observation of clinical efficacy of the cefoperazone/sulbactam anti‐infective regimen in the treatment of multidrug‐resistant
Acinetobacter baumannii
lung infection. J Clin Pharm Ther 2022; 47:1020-1027. [PMID: 35285526 DOI: 10.1111/jcpt.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/01/2021] [Accepted: 01/25/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Qinxue Wang
- Department of Geriatrics ICU The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital) Nanjing China
| | - Min Huang
- Department of Geriatrics ICU The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital) Nanjing China
| | - Suming Zhou
- Department of Geriatrics ICU The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital) Nanjing China
| |
Collapse
|
12
|
Xiong L, Wang X, Wang Y, Yu W, Zhou Y, Chi X, Xiao T, Xiao Y. Molecular mechanisms underlying bacterial resistance to ceftazidime/avibactam. WIREs Mech Dis 2022; 14:e1571. [PMID: 35891616 PMCID: PMC9788277 DOI: 10.1002/wsbm.1571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 12/30/2022]
Abstract
Ceftazidime/avibactam (CAZ/AVI), a combination of ceftazidime and a novel β-lactamase inhibitor (avibactam) that has been approved by the U.S. Food and Drug Administration, the European Union, and the National Regulatory Administration in China. CAZ/AVI is used mainly to treat complicated urinary tract infections and complicated intra-abdominal infections in adults, as well as to treat patients infected with Carbapenem-resistant Enterobacteriaceae (CRE) susceptible to CAZ/AVI. However, increased clinical application of CAZ/AVI has resulted in the development of resistant strains. Mechanisms of resistance in most of these strains have been attributed to blaKPC mutations, which lead to amino acid substitutions in β-lactamase and changes in gene expression. Resistance to CAZ/AVI is also associated with reduced expression and loss of outer membrane proteins or overexpression of efflux pumps. In this review, the prevalence of CAZ/AVI-resistance bacteria, resistance mechanisms, and selection of detection methods of CAZ/AVI are demonstrated, aiming to provide scientific evidence for the clinical prevention and treatment of CAZ/AVI resistant strains, and provide guidance for the development of new drugs. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Luying Xiong
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Xueting Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Yuan Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Wei Yu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Yanzi Zhou
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Xiaohui Chi
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Tingting Xiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Yonghong Xiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina,Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| |
Collapse
|
13
|
Zhang J, Li G, Zhang G, Kang W, Duan S, Wang T, Li J, Huangfu Z, Yang Q, Xu Y, Jia W, Sun H. Performance Evaluation of the Gradient Diffusion Strip Method and Disk Diffusion Method for Ceftazidime-Avibactam Against Enterobacterales and Pseudomonas aeruginosa: A Dual-Center Study. Front Microbiol 2021; 12:710526. [PMID: 34603236 PMCID: PMC8481768 DOI: 10.3389/fmicb.2021.710526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/13/2021] [Indexed: 12/02/2022] Open
Abstract
Objectives: Ceftazidime–avibactam is a novel synthetic beta-lactam + beta-lactamase inhibitor combination. We evaluated the performance of the gradient diffusion strip method and the disk diffusion method for the determination of ceftazidime–avibactam against Enterobacterales and Pseudomonas aeruginosa. Methods: Antimicrobial susceptibility testing of 302 clinical Enterobacterales and Pseudomonas aeruginosa isolates from two centers were conducted by broth microdilution (BMD), gradient diffusion strip method, and disk diffusion method for ceftazidime–avibactam. Using BMD as a gold standard, essential agreement (EA), categorical agreement (CA), major error (ME), and very major error (VME) were determined according to CLSI guidelines. CA and EA rate > 90%, ME rate < 3%, and VME rate < 1.5% were considered as acceptable criteria. Polymerase chain reaction and Sanger sequencing were performed to determine the carbapenem resistance genes of all 302 isolates. Results: A total of 302 strains were enrolled, among which 182 strains were from center 1 and 120 strains were from center 2. A percentage of 18.21% (55/302) of the enrolled isolates were resistant to ceftazidime–avibactam. The CA rates of the gradient diffusion strip method for Enterobacterales and P. aeruginosa were 100% and 98.65% (73/74), respectively, and the EA rates were 97.37% (222/228) and 98.65% (73/74), respectively. The CA rates of the disk diffusion method for Enterobacterales and P. aeruginosa were 100% and 95.95% (71/74), respectively. No VMEs were found by using the gradient diffusion strip method, while the ME rate was 0.40% (1/247). No MEs were found by using the disk diffusion method, but the VME rate was 5.45% (3/55). Therefore, all the parameters of the gradient diffusion strip method were in line with acceptable criteria. For 31 blaKPC, 33 blaNDM, 7 blaIMP, and 2 blaVIM positive isolates, both CA and EA rates were 100%; no MEs or VMEs were detected by either method. For 15 carbapenemase-non-producing resistant isolates, the CA and EA rates of the gradient diffusion strips method were 100%. Whereas the CA rate of the disk diffusion method was 80.00% (12/15), the VME rate was 20.00% (3/15). Conclusion: The gradient diffusion strip method can meet the needs of clinical microbiological laboratories for testing the susceptibility of ceftazidime–avibactam drugs. However, the VME rate > 1.5% (5.45%) by the disk diffusion method. By comparison, the performance of the gradient diffusion strip method was better than that of the disk diffusion method.
Collapse
Affiliation(s)
- Jingjia Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Li
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ge Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Kang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Simeng Duan
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tong Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jin Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiru Huangfu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiwen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Jia
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hongli Sun
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Sakhrani VV, Ghosh RK, Hilario E, Weiss KL, Coates L, Mueller LJ. Toho-1 β-lactamase: backbone chemical shift assignments and changes in dynamics upon binding with avibactam. JOURNAL OF BIOMOLECULAR NMR 2021; 75:303-318. [PMID: 34218390 PMCID: PMC9122098 DOI: 10.1007/s10858-021-00375-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Backbone chemical shift assignments for the Toho-1 β-lactamase (263 amino acids, 28.9 kDa) are reported based on triple resonance solution-state NMR experiments performed on a uniformly 2H,13C,15N-labeled sample. These assignments allow for subsequent site-specific characterization at the chemical, structural, and dynamical levels. At the chemical level, titration with the non-β-lactam β-lactamase inhibitor avibactam is found to give chemical shift perturbations indicative of tight covalent binding that allow for mapping of the inhibitor binding site. At the structural level, protein secondary structure is predicted based on the backbone chemical shifts and protein residue sequence using TALOS-N and found to agree well with structural characterization from X-ray crystallography. At the dynamical level, model-free analysis of 15N relaxation data at a single field of 16.4 T reveals well-ordered structures for the ligand-free and avibactam-bound enzymes with generalized order parameters of ~ 0.85. Complementary relaxation dispersion experiments indicate that there is an escalation in motions on the millisecond timescale in the vicinity of the active site upon substrate binding. The combination of high rigidity on short timescales and active site flexibility on longer timescales is consistent with hypotheses for achieving both high catalytic efficiency and broad substrate specificity: the induced active site dynamics allows variously sized substrates to be accommodated and increases the probability that the optimal conformation for catalysis will be sampled.
Collapse
Affiliation(s)
- Varun V Sakhrani
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Rittik K Ghosh
- Department of Biochemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Eduardo Hilario
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Leighton Coates
- Second Target Station, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA.
| | - Leonard J Mueller
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
15
|
Discovery of 3-aryl substituted benzoxaboroles as broad-spectrum inhibitors of serine- and metallo-β-lactamases. Bioorg Med Chem Lett 2021; 41:127956. [DOI: 10.1016/j.bmcl.2021.127956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 11/22/2022]
|
16
|
Mandal S, Thakkur V, Nair NN. Achieving an Order of Magnitude Speedup in Hybrid-Functional- and Plane-Wave-Based Ab Initio Molecular Dynamics: Applications to Proton-Transfer Reactions in Enzymes and in Solution. J Chem Theory Comput 2021; 17:2244-2255. [PMID: 33740375 DOI: 10.1021/acs.jctc.1c00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ab initio molecular dynamics (MD) with hybrid density functionals and a plane wave basis is computationally expensive due to the high computational cost of exact exchange energy evaluation. Recently, we proposed a strategy to combine adaptively compressed exchange (ACE) operator formulation and a multiple time step integration scheme to reduce the computational cost significantly [J. Chem. Phys. 2019, 151, 151102 ]. However, it was found that the construction of the ACE operator, which has to be done at least once in every MD time step, is computationally expensive. In the present work, systematic improvements are introduced to further speed up by employing localized orbitals for the construction of the ACE operator. By this, we could achieve a computational speedup of an order of magnitude for a periodic system containing 32 water molecules. Benchmark calculations were carried out to show the accuracy and efficiency of the method in predicting the structural and dynamical properties of bulk water. To demonstrate the applicability, computationally intensive free-energy computations at the level of hybrid density functional theory were performed to investigate (a) methyl formate hydrolysis reaction in neutral aqueous media and (b) proton-transfer reaction within the active-site residues of the class C β-lactamase enzyme.
Collapse
Affiliation(s)
- Sagarmoy Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur 208016, India.,Interdisciplinary Center for Molecular Materials and Computer Chemistry Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nägelsbachstr. 25, Erlangen 91052, Germany
| | - Vaishali Thakkur
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur 208016, India
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur 208016, India
| |
Collapse
|
17
|
Karlowsky JA, Lob SH, Young K, Motyl MR, Sahm DF. Activity of ceftolozane/tazobactam against Gram-negative isolates from patients with lower respiratory tract infections - SMART United States 2018-2019. BMC Microbiol 2021; 21:74. [PMID: 33676406 PMCID: PMC7936229 DOI: 10.1186/s12866-021-02135-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/19/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Ceftolozane/tazobactam (C/T) is approved in 70 countries, including the United States, for the treatment of patients with hospital-acquired and ventilator-associated bacterial pneumonia caused by susceptible Gram-negative pathogens. C/T is of particular importance as an agent for the treatment of multidrug-resistant (MDR) Pseudomonas aeruginosa infections. The current study summarizes 2018-2019 data from the United States on lower respiratory tract isolates of Gram-negative bacilli from the SMART global surveillance program. The CLSI reference broth microdilution method was used to determine in vitro susceptibility of C/T and comparators against isolates of P. aeruginosa and Enterobacterales. RESULTS C/T inhibited 96.0% of P. aeruginosa (n = 1237) at its susceptible MIC breakpoint (≤4 μg/ml), including > 85% of meropenem-nonsusceptible and piperacillin/tazobactam (P/T)-nonsusceptible isolates and 76.2% of MDR isolates. Comparator agents demonstrated lower activity than C/T against P. aeruginosa: meropenem (74.8% susceptible), cefepime (79.2%), ceftazidime (78.5%), P/T (74.4%), and levofloxacin (63.1%). C/T was equally active against ICU (96.0% susceptible) and non-ICU (96.7%) isolates of P. aeruginosa. C/T inhibited 91.8% of Enterobacterales (n = 1938) at its susceptible MIC breakpoint (≤2 μg/ml); 89.5% of isolates were susceptible to cefepime and 88.0% susceptible to P/T. 67.1 and 86.5% of extended-spectrum β-lactamase (ESBL) screen-positive isolates of Klebsiella pneumoniae (n = 85) and Escherichia coli (n = 74) and 49.6% of MDR Enterobacterales were susceptible to C/T. C/T was equally active against ICU (91.3% susceptible) and non-ICU (92.6%) Enterobacterales isolates. CONCLUSION Data from the current study support the use of C/T as an important treatment option for lower respiratory tract infections including those caused by MDR P. aeruginosa.
Collapse
Affiliation(s)
- James A Karlowsky
- IHMA, 2122 Palmer Drive, Schaumburg, IL, 60173, USA
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Sibylle H Lob
- IHMA, 2122 Palmer Drive, Schaumburg, IL, 60173, USA.
| | | | | | | |
Collapse
|
18
|
Huang Y, Jiang J, Wang Y, Chen J, Xi J. Nanozymes as Enzyme Inhibitors. Int J Nanomedicine 2021; 16:1143-1155. [PMID: 33603373 PMCID: PMC7887156 DOI: 10.2147/ijn.s294871] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/28/2021] [Indexed: 01/02/2023] Open
Abstract
Nanozyme is a type of nanomaterial with intrinsic enzyme-like activity. Following the discovery of nanozymes in 2007, nanozyme technology has become an emerging field bridging nanotechnology and biology, attracting research from multi-disciplinary areas focused on the design and synthesis of catalytically active nanozymes. However, various types of enzymes can be mimicked by nanomaterials, and our current understanding of nanozymes as enzyme inhibitors is limited. Here, we provide a brief overview of the utility of nanozymes as inhibitors of enzymes, such as R-chymotrypsin (ChT), β-galactosidase (β-Gal), β-lactamase, and mitochondrial F0F1-ATPase, and the mechanisms underlying inhibitory activity. The advantages, challenges and future research directions of nanozymes as enzyme inhibitors for biomedical research are further discussed.
Collapse
Affiliation(s)
- Yaling Huang
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225001, People’s Republic of China
| | - Jian Jiang
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225001, People’s Republic of China
| | - Yanqiu Wang
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225001, People’s Republic of China
| | - Jie Chen
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225001, People’s Republic of China
| | - Juqun Xi
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225001, People’s Republic of China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu, 225001, People’s Republic of China
| |
Collapse
|
19
|
Li JQ, Chen C, Yao M, Sun LY, Gao H, Chigan J, Yang KW. Hydroxamic acid with benzenesulfonamide: An effective scaffold for the development of broad-spectrum metallo-β-lactamase inhibitors. Bioorg Chem 2020; 105:104436. [PMID: 33171408 DOI: 10.1016/j.bioorg.2020.104436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/10/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
Given that β-lactam antibiotic resistance mediated by metallo-β-lactamases (MβLs) seriously threatens human health, we designed and synthesized nineteen hydroxamic acids with benzenesulfonamide, which exhibited broad-spectrum inhibition against four tested MβLs ImiS, L1, VIM-2 and IMP-1 (except 6, 13 and 18 on IMP-1, and 18 on VIM-2), with an IC50 value in the range of 0.6-9.4, 1.3-27.4, 5.4-43.7 and 5.2-49.7 µM, respectively, and restored antibacterial activity of both cefazolin and meropenem, resulting in a 2-32-fold reduction in MIC of the antibiotics. Compound 17 shows reversible competitive inhibition on L1 with a Ki value of 2.5 µM and significantly reduced the bacterial load in the spleen and liver of mice infected by E. coli expressing L1. The docking studies suggest that 17 tightly binds to the Zn(Ⅱ) of VIM-2 and CphA by the oxygen atoms of sulfonamide group, but coordinates with the Zn(II) of L1 through the oxygen atoms of hydroxamic acid group. These studies reveal that the hydroxamic acids with benzenesulfonamide are the potent scaffolds for the development of MβL inhibitors.
Collapse
Affiliation(s)
- Jia-Qi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Cheng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Min Yao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Le-Yun Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Han Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jiazhu Chigan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China.
| |
Collapse
|
20
|
Lu LN, Liu C, Yang ZZ. Systematic Parameterization and Simulation of Boronic Acid-β-Lactamase Aqueous Solution in Developing the ABEEMσπ Polarizable Force Field. J Phys Chem A 2020; 124:8614-8632. [PMID: 32910648 DOI: 10.1021/acs.jpca.0c06806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Boronic acid, an inhibitor of β-lactamase, has begun to be applied to the treatment of biological infections and tumors. Scientists are working to develop new and more effective boronic acid. Molecular dynamics (MD) simulation provides a powerful auxiliary tool for drug design. However, the current force fields have no boron-related parameters. In this work, an atom-bond electronegativity equalization method at the σπ level (ABEEMσπ) polarizable force field (ABEEMσπ PFF) of boronic acid and β-lactamase has been developed to determine the potential functions and parameters. The interaction between boron and serine in β-lactamase is regarded as a bonded mode. The interaction between them is simulated by the Morse potential energy function, which is close to the experimental change of the stretching potential energy in a large range. The potential energy surfaces of the bond length, bond angle, and dihedral angle of boronic acid-β-lactamase have the same stability point and change trend as M06-2X/6-311G**. For 47 boronic acid-β-lactamase training molecules, the linear correlation coefficient (R) of the charge distribution between the ABEEMσπ PFF and HF/STO-3G is greater than 0.96. Attributed to the fact that the charge distribution of the ABEEMσπ PFF can fluctuate with the change of geometry and environment, the polarization effect and charge-transfer effect are well reflected. The binding ability of different boronic acids with the same β-lactamase is different. A total of 10 boronic acid-β-lactamase model molecules and 10 boronic acid-β-lactamase and water complexes are simulated. The order of binding energy of five large model molecules calculated by the ABEEMσπ PFF is consistent with that of the MP2 method. The binding energies of boronic acid-β-lactamase and water complexes are close to those of the MP2 method. The results of MD simulation of five aqueous boronic acid-β-lactamase complexes in the NVT ensemble verify the rationality of boron-related parameters of the ABEEMσπ PFF, which have a good application prospect. This study lays a solid theoretical foundation for further study of the inhibition of boronic acid on β-lactamase.
Collapse
Affiliation(s)
- Li-Nan Lu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Cui Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| |
Collapse
|
21
|
Wang Y, Wang J, Wang R, Cai Y. Resistance to ceftazidime–avibactam and underlying mechanisms. J Glob Antimicrob Resist 2020; 22:18-27. [DOI: 10.1016/j.jgar.2019.12.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/08/2023] Open
|
22
|
Slater CL, Winogrodzki J, Fraile-Ribot PA, Oliver A, Khajehpour M, Mark BL. Adding Insult to Injury: Mechanistic Basis for How AmpC Mutations Allow Pseudomonas aeruginosa To Accelerate Cephalosporin Hydrolysis and Evade Avibactam. Antimicrob Agents Chemother 2020; 64:e00894-20. [PMID: 32660987 PMCID: PMC7449160 DOI: 10.1128/aac.00894-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/01/2020] [Indexed: 12/27/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of nosocomial infections worldwide and notorious for its broad-spectrum resistance to antibiotics. A key mechanism that provides extensive resistance to β-lactam antibiotics is the inducible expression of AmpC β-lactamase. Recently, a number of clinical isolates expressing mutated forms of AmpC have been found to be clinically resistant to the antipseudomonal β-lactam-β-lactamase inhibitor (BLI) combinations ceftolozane-tazobactam and ceftazidime-avibactam. Here, we compare the enzymatic activity of wild-type (WT) AmpC from PAO1 to those of four of these reported AmpC mutants, bearing mutations E247K (a change of E to K at position 247), G183D, T96I, and ΔG229-E247 (a deletion from position 229 to 247), to gain detailed insights into how these mutations allow the circumvention of these clinically vital antibiotic-inhibitor combinations. We found that these mutations exert a 2-fold effect on the catalytic cycle of AmpC. First, they reduce the stability of the enzyme, thereby increasing its flexibility. This appears to increase the rate of deacylation of the enzyme-bound β-lactam, resulting in greater catalytic efficiencies toward ceftolozane and ceftazidime. Second, these mutations reduce the affinity of avibactam for AmpC by increasing the apparent activation barrier of the enzyme acylation step. This does not influence the catalytic turnover of ceftolozane and ceftazidime significantly, as deacylation is the rate-limiting step for the breakdown of these antibiotic substrates. It is remarkable that these mutations enhance the catalytic efficiency of AmpC toward ceftolozane and ceftazidime while simultaneously reducing susceptibility to inhibition by avibactam. Knowledge gained from the molecular analysis of these and other AmpC resistance mutants will, we believe, aid in the design of β-lactams and BLIs with reduced susceptibility to mutational resistance.
Collapse
Affiliation(s)
- Cole L Slater
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | | | - Pablo A Fraile-Ribot
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Antonio Oliver
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | | | - Brian L Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
23
|
Das CK, Nair NN. Elucidating the Molecular Basis of Avibactam‐Mediated Inhibition of Class A β‐Lactamases. Chemistry 2020; 26:9639-9651. [DOI: 10.1002/chem.202001261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/10/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Chandan Kumar Das
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
- Current Address: Lehrstuhl für Theoretische ChemieRuhr Universität Bochum 44780 Bochum Germany
| | - Nisanth N. Nair
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| |
Collapse
|
24
|
Parida P, Bhowmick S, Saha A, Islam MA. Insight into the screening of potential beta-lactamase inhibitors as anti-bacterial chemical agents through pharmacoinformatics study. J Biomol Struct Dyn 2020; 39:923-942. [PMID: 31984863 DOI: 10.1080/07391102.2020.1720819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Drug resistance is an unsolved and major concern in the bacterial infection. Continuous development of drug-resistance to the antibiotics exponentially rises the danger of bacterial infections. Chemical components from the plants are becoming a major resource of potentially effective therapeutic chemical agents for the wide range of diseases including bacterial infections. In the current study, pharmacoinformatics methodologies were implemented on more than two hundred known phytochemicals to find promising beta-lactamase inhibitors for therapeutically effective anti-bacterial agents. Initially, the molecular docking-based score was used to reduce the chemical space of the selected dataset. Fourteen molecules were found to have more affinity towards the beta-lactamase in compared to the well-known anti-bacterial agent, Avibactam. Binding interactions analysis revealed the strong binding interactions between phytochemicals and catalytic amino residues. For further analysis, molecular dynamics (MD) simulations, density functional theory (DFT) and in silico pharmacokinetics studies were performed. Parameters from MD simulations studies suggested that selected molecules are strong enough to retain in the active site in different orientations of the beta-lactamase. The orbital energies obtained from the DFT study was undoubtedly explained the potentiality of the selected compounds for being effective beta-lactamase inhibitors. The drug-likeness and acceptable pharmacokinetics parameters were observed using in silico ADME analysis. Therefore, observations from the multiple pharmacoinformatics approach explained without any doubt that selected molecules are potential enough being promising anti-bacterial compounds. [Formula: see text] Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pratap Parida
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,School of Health Sciences, University of Kwazulu-Natal, Durban, South Africa.,Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa
| |
Collapse
|
25
|
Gao H, Ge Y, Jiang MH, Chen C, Sun LY, Li JQ, Yang KW. Real-time monitoring and inhibition of the activity of carbapenemase in live bacterial cells: application to screening of β-lactamase inhibitors. NEW J CHEM 2020. [DOI: 10.1039/d0nj03475d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antibiotic resistance mediated by β-lactamases including metallo-β-lactamases (MβLs) has become an emerging threat.
Collapse
Affiliation(s)
- Han Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education
- Chemical Biology Innovation Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710127
| | - Ying Ge
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education
- Chemical Biology Innovation Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710127
| | - Min-Hao Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education
- Chemical Biology Innovation Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710127
| | - Cheng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education
- Chemical Biology Innovation Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710127
| | - Le-Yun Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education
- Chemical Biology Innovation Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710127
| | - Jia-Qi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education
- Chemical Biology Innovation Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710127
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education
- Chemical Biology Innovation Laboratory
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710127
| |
Collapse
|
26
|
Xiang Y, Zhang YJ, Ge Y, Zhou Y, Chen C, Wahlgren WY, Tan X, Chen X, Yang KW. Kinetic, Thermodynamic, and Crystallographic Studies of 2-Triazolylthioacetamides as Verona Integron-Encoded Metallo-β-Lactamase 2 (VIM-2) Inhibitor. Biomolecules 2020; 10:E72. [PMID: 31906402 PMCID: PMC7022493 DOI: 10.3390/biom10010072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 01/23/2023] Open
Abstract
Inhibition of β-lactamases presents a promising strategy to restore the β-lactams antibacterial activity to resistant bacteria. In this work, we found that aromatic carboxyl substituted 2-triazolylthioacetamides 1a-j inhibited VIM-2, exhibiting an IC50 value in the range of 20.6-58.6 μM. The structure-activity relationship study revealed that replacing the aliphatic carboxylic acid with aromatic carboxyl improved the inhibitory activity of 2-triazolylthioacetamides against VIM-2. 1a-j (16 mg/mL) restored the antibacterial activity of cefazolin against E. coli cell expressing VIM-2, resulting in a 4-8-fold reduction in MICs. The isothermal titration calorimetry (ITC) characterization suggested that the primary binding 2-triazolylthioacetamide (1b, 1c, or 1h) to VIM-2 was a combination of entropy and enthalpy contributions. Further, the crystal structure of VIM-2 in complex with 1b was obtained by co-crystallization with a hanging-drop vapour-diffusion method. The crystal structure analysis revealed that 1b bound to two Zn(II) ions of the enzyme active sites, formed H-bound with Asn233 and structure water molecule, and interacted with the hydrophobic pocket of enzyme activity center utilizing hydrophobic moieties; especially for the phenyl of aromatic carboxyl which formed π-π stacking with active residue His263. These studies confirmed that aromatic carboxyl substituted 2-triazolylthioacetamides are the potent VIM-2 inhibitors scaffold and provided help to further optimize 2-triazolylthioacetamides as VIM-2 even or broad-spectrum MβLs inhibitors.
Collapse
Affiliation(s)
- Yang Xiang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China; (Y.X.)
- School of Physical Education, Yan’an University, Yan’an 716000, China
| | - Yue-Juan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China; (Y.X.)
| | - Ying Ge
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China; (Y.X.)
| | - Yajun Zhou
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Cheng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China; (Y.X.)
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-40530 Gothenburg, Sweden
| | - Xiangshi Tan
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China; (Y.X.)
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China; (Y.X.)
| |
Collapse
|
27
|
Lizana I, Ortiz-López D, Delgado-Hurtado A, Delgado EJ. Theoretical Evidence for the Nonoccurrence of Tetrahedral Intermediates in the Deacylation Pathway of the Oxacillinase-24/Avibactam Complex. ACS OMEGA 2019; 4:21954-21961. [PMID: 31891074 PMCID: PMC6933777 DOI: 10.1021/acsomega.9b03022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/27/2019] [Indexed: 05/10/2023]
Abstract
Oxacillinases (OXAs) β-lactamases are of special interest because of their capacity to hydrolyze antibacterial drugs such as cephalosporins and carbapenems, which are frequently used as the last option for the treatment of multidrug-resistant bacteria. Although the comprehension of the involved mechanisms at the atomic level is crucial for the rational design of new inhibitors and antibiotics, currently there is no study on the acylation/deacylation mechanisms of the OXA-24/avibactam complex from first principles; therefore, mechanistic details such as activation barriers, characterization of intermediates, and transition states are still uncertain. In this article, we address the deacylation of the OXA-24/avibactam complex by molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics computations. The study supplies mechanistic details not available so far, namely, topology of the potential energy surfaces, characterization of transition states and intermediates, and calculation of the respective activation barriers. The results show that the deacylation occurs via a mechanism of two stages; the first one involves the formation of a dianionic intermediate with a computed activation barrier of 24 kcal/mol. The second stage corresponds to the cleavage of the OS81-C bond promoted by the protonation of the OS81 atom by the carboxylated Lys84 and the concomitant formation of the C7-N6 bond, allowing the liberation of avibactam and recovery of the enzyme. The calculated activation barrier for the second stage is 13 kcal/mol. The structure of the intermediate, formed in the first stage, does not fulfill the characteristics of a tetrahedral intermediate. These results suggest that the recyclization of avibactam from the OXA-24/avibactam complex may occur without the emergence of tetrahedral intermediates, unlike that observed in the class A CTX-M-15.
Collapse
Affiliation(s)
- Ignacio Lizana
- QTC
Group, Department of Physical-Chemistry, Faculty of Chemical
Sciences and Department of Biochemistry and Molecular Biology, Faculty of Biological
Sciences, Universidad de Concepción, Concepción 4070386, Chile
| | - Diego Ortiz-López
- QTC
Group, Department of Physical-Chemistry, Faculty of Chemical
Sciences and Department of Biochemistry and Molecular Biology, Faculty of Biological
Sciences, Universidad de Concepción, Concepción 4070386, Chile
| | - Aleksei Delgado-Hurtado
- QTC
Group, Department of Physical-Chemistry, Faculty of Chemical
Sciences and Department of Biochemistry and Molecular Biology, Faculty of Biological
Sciences, Universidad de Concepción, Concepción 4070386, Chile
| | - Eduardo J. Delgado
- QTC
Group, Department of Physical-Chemistry, Faculty of Chemical
Sciences and Department of Biochemistry and Molecular Biology, Faculty of Biological
Sciences, Universidad de Concepción, Concepción 4070386, Chile
- Millenium
Nucleus on Catalytic Processes Toward Sustainable Chemistry, Santiago 4070386, Chile
- E-mail:
| |
Collapse
|
28
|
Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, Spencer J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J Mol Biol 2019; 431:3472-3500. [PMID: 30959050 PMCID: PMC6723624 DOI: 10.1016/j.jmb.2019.04.002] [Citation(s) in RCA: 519] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 12/31/2022]
Abstract
The β-lactams retain a central place in the antibacterial armamentarium. In Gram-negative bacteria, β-lactamase enzymes that hydrolyze the amide bond of the four-membered β-lactam ring are the primary resistance mechanism, with multiple enzymes disseminating on mobile genetic elements across opportunistic pathogens such as Enterobacteriaceae (e.g., Escherichia coli) and non-fermenting organisms (e.g., Pseudomonas aeruginosa). β-Lactamases divide into four classes; the active-site serine β-lactamases (classes A, C and D) and the zinc-dependent or metallo-β-lactamases (MBLs; class B). Here we review recent advances in mechanistic understanding of each class, focusing upon how growing numbers of crystal structures, in particular for β-lactam complexes, and methods such as neutron diffraction and molecular simulations, have improved understanding of the biochemistry of β-lactam breakdown. A second focus is β-lactamase interactions with carbapenems, as carbapenem-resistant bacteria are of grave clinical concern and carbapenem-hydrolyzing enzymes such as KPC (class A) NDM (class B) and OXA-48 (class D) are proliferating worldwide. An overview is provided of the changing landscape of β-lactamase inhibitors, exemplified by the introduction to the clinic of combinations of β-lactams with diazabicyclooctanone and cyclic boronate serine β-lactamase inhibitors, and of progress and strategies toward clinically useful MBL inhibitors. Despite the long history of β-lactamase research, we contend that issues including continuing unresolved questions around mechanism; opportunities afforded by new technologies such as serial femtosecond crystallography; the need for new inhibitors, particularly for MBLs; the likely impact of new β-lactam:inhibitor combinations and the continuing clinical importance of β-lactams mean that this remains a rewarding research area.
Collapse
Affiliation(s)
- Catherine L Tooke
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Eilis C Bragginton
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Charlotte K Colenso
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Viivi H A Hirvonen
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Yuiko Takebayashi
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
29
|
Fernandes GFS, Denny WA, Dos Santos JL. Boron in drug design: Recent advances in the development of new therapeutic agents. Eur J Med Chem 2019; 179:791-804. [PMID: 31288128 DOI: 10.1016/j.ejmech.2019.06.092] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 01/21/2023]
Abstract
Advances in the field of boron chemistry have expanded the application of this element in Medicinal Chemistry. Boron-containing compounds represent a new class for medicinal chemists to use in their drug designs. Bortezomib (Velcade®), a dipeptide boronic acid approved by the FDA in 2003 for treatment of multiple myeloma, paved the way for the discovery of new boron-containing compounds. After its approval, two other boron-containing compounds have been approved, tavaborole (Kerydin®) for the treatment of onychomicosis and crisaborole (Eucrisa®) for the treatment of mild to moderate atopic dermatitis. A number of boron-containing compounds have been described and evaluated for a plethora of therapeutic applications. The present review is intended to highlight the recent advances related to boron-containing compounds and their therapeutic applications. Here, we focused only in those most biologically active compounds with proven in vitro and/or in vivo efficacy in the therapeutic area published in the last years.
Collapse
Affiliation(s)
- Guilherme Felipe Santos Fernandes
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, 14800-903, Brazil; Institute of Chemistry, São Paulo State University, Araraquara, 14800-060, Brazil; Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - William Alexander Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, 14800-903, Brazil.
| |
Collapse
|
30
|
Jonek M, Buhl H, Leibold M, Bruhn C, Siemeling U. Evaluation of benzthiazolidine-based formamidinium salts for the synthesis of penem-type β-lactams by uncatalysed carbonylation of acyclic diaminocarbenes. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2019. [DOI: 10.1515/znb-2019-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
The reaction of [iPr2N=CHCl]Cl with 2-phenylbenzthiazolidine (Ph-BtzH) and subsequent anion metathesis afforded the formamidinium salt [(Ph-Btz)CH(NiPr2)][PF6] ([1aH][PF6]). The reaction of [1aH][PF6] with (Me3Si)2NNa in the presence of grey selenium furnished the selenourea derivative 1aSe as trapping product of the acyclic diaminocarbene 1a. In the absence of selenium, a 2H-1,4-benzothiazine derivative (2) was obtained, which is an isomer of 1a, whose formation is plausibly initiated by deprotonation of [1aH]+ not at the cationic N2CH unit, but at the neighbouring PhCH position. CO was ineffective as trapping reagent for 1a. [1aH][PF6], 1aSe and 2 have been structurally characterised by X-ray diffraction.
Collapse
Affiliation(s)
- Markus Jonek
- Institut für Chemie, Universität Kassel , Heinrich-Plett-Straße 40 , 34132 Kassel , Germany
| | - Hannes Buhl
- Institut für Chemie, Universität Kassel , Heinrich-Plett-Straße 40 , 34132 Kassel , Germany
| | - Michael Leibold
- Institut für Chemie, Universität Kassel , Heinrich-Plett-Straße 40 , 34132 Kassel , Germany
| | - Clemens Bruhn
- Institut für Chemie, Universität Kassel , Heinrich-Plett-Straße 40 , 34132 Kassel , Germany
| | - Ulrich Siemeling
- Institut für Chemie, Universität Kassel , Heinrich-Plett-Straße 40 , 34132 Kassel , Germany , Fax: +49 561 804 4777
| |
Collapse
|
31
|
Lizana I, Delgado EJ. Molecular Insights on the Release of Avibactam from the Acyl-Enzyme Complex. Biophys J 2019; 116:1650-1657. [PMID: 31010666 DOI: 10.1016/j.bpj.2019.03.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/13/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023] Open
Abstract
Avibactam is a non-β-lactam β-lactamase inhibitor for treating complicated urinary tract and respiratory infections caused by multidrug-resistant bacterial pathogens, a serious public health threat. Despite its importance, the release mechanism of avibactam from the enzyme-inhibitor complex has been scarcely studied from first principles, considering the total protein environment. This information at the molecular level is essential for the rational design of new antibiotics and inhibitors. In this article, we addressed the release of avibactam from the complex CTX-M-15 by means of molecular dynamics simulations and quantum mechanics/molecular mechanics calculations. This study provides molecular information not available earlier, including exploration of the potential energy surfaces, characterization of the observed intermediate, and their critical points, as well. Our results show that unlike that observed in the acylation reaction, the residues Glu166 and Lys73 would be in their neutral forms. Release of avibactam follows a stepwise mechanism in which the first stage corresponds to the formation of a tetrahedral intermediate, whereas the second stage corresponds to the cleavage of the Ser70-C7 bond, mediated by Lys73, either directly or through Ser130.
Collapse
Affiliation(s)
- Ignacio Lizana
- Departament of Physical Chemistry, Universidad de Concepción, Concepción, Chile
| | - Eduardo J Delgado
- Departament of Physical Chemistry, Universidad de Concepción, Concepción, Chile; Millenium Nucleus on Catalytic Processes toward Sustainable Chemistry, Santiago, Chile.
| |
Collapse
|
32
|
Duan H, Liu X, Zhuo W, Meng J, Gu J, Sun X, Zuo K, Luo Q, Luo Y, Tang D, Shi H, Cao S, Hu J. 3D-QSAR and molecular recognition of Klebsiella pneumoniae NDM-1 inhibitors. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1579327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Huaichuan Duan
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu, People’s Republic of China
| | - Xinyu Liu
- Laboratory of tumor targeted and immune therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, People’s Republic of China
| | - Wei Zhuo
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Jian Meng
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, People’s Republic of China
| | - Jinke Gu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Xin Sun
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu, People’s Republic of China
| | - Ke Zuo
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu, People’s Republic of China
| | - Qing Luo
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu, People’s Republic of China
| | - Yafei Luo
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing, People’s Republic of China
| | - Dianyong Tang
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing, People’s Republic of China
| | - Hubing Shi
- Laboratory of tumor targeted and immune therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, People’s Republic of China
| | - Shenghua Cao
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, People’s Republic of China
| | - Jianping Hu
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu, People’s Republic of China
| |
Collapse
|
33
|
Liu XL, Xiang Y, Chen C, Yang KW. Azolylthioacetamides as potential inhibitors of New Delhi metallo-β-lactamase-1 (NDM-1). J Antibiot (Tokyo) 2018; 72:118-121. [DOI: 10.1038/s41429-018-0121-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/30/2018] [Accepted: 10/21/2018] [Indexed: 11/09/2022]
|
34
|
Ali SR, Pandit S, De M. 2D-MoS2-Based β-Lactamase Inhibitor for Combination Therapy against Drug-Resistant Bacteria. ACS APPLIED BIO MATERIALS 2018; 1:967-974. [DOI: 10.1021/acsabm.8b00105] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sk Rajab Ali
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | - Subhendu Pandit
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
35
|
Clinical Pharmacokinetics and Pharmacodynamics of Ceftazidime–Avibactam Combination: A Model-Informed Strategy for its Clinical Development. Clin Pharmacokinet 2018; 58:545-564. [DOI: 10.1007/s40262-018-0705-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
36
|
Pereira R, Rabelo VWH, Sibajev A, Abreu PA, Castro HC. Class A β-lactamases and inhibitors: In silico analysis of the binding mode and the relationship with resistance. J Biotechnol 2018; 279:37-46. [PMID: 29753682 DOI: 10.1016/j.jbiotec.2018.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/22/2018] [Accepted: 05/03/2018] [Indexed: 02/01/2023]
Abstract
β-lactams are one of the most common antimicrobials used to treat bacterial infections. However, bacterial resistance has compromised their efficacy, mainly due to the β-lactamase enzyme production. To overcome this resistance, β-lactamase inhibitors can be used in association with these antimicrobials. Herein, we analyzed the structural characteristics of β-lactamases and their interactions with classical inhibitors, such as clavulanic acid (CA), sulbactam (SB) and tazobactam (TZ) to gain insights into resistance. The homology models of five class A β-lactamases, namely CARB-3, IMI-1, SFO-1, SHV-5 and TEM-10, were constructed and validated and revealed an overall 3D structural conservation, but with significant differences in the electrostatic potential maps, especially at important regions in the catalytic site. Molecular dockings of CA, SB and TZ with these enzymes revealed a covalent bond with the S70 in all complexes, except Carb-3 which is in agreement with experimental data reported so far. This is likely related to the less voluminous active site of Carb-3 model. Although few specific contacts were observed in the β-lactamase-inhibitor complexes, all compounds interacted with the residues in positions 73, 130, 132, 236 and 237. Therefore, this study provides new perspectives for the design of innovative compounds with broad-spectrum inhibitory profiles against β-lactamases.
Collapse
Affiliation(s)
- Rebeca Pereira
- Programa de Pós-graduação em Ciências e Biotecnologia - Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, RJ, CEP 24210-130, Brazil
| | - Vitor Won-Held Rabelo
- Programa de Pós-graduação em Ciências e Biotecnologia - Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, RJ, CEP 24210-130, Brazil; Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Campus Macaé, RJ, CEP 27965-045, Brazil
| | - Alexander Sibajev
- Centro de Ciências da Saúde - Curso de Medicina, Universidade Federal de Roraima, Campus do Paricarana, Boa Vista, RR, CEP 69304-000, Brazil
| | - Paula Alvarez Abreu
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Campus Macaé, RJ, CEP 27965-045, Brazil.
| | - Helena Carla Castro
- Programa de Pós-graduação em Ciências e Biotecnologia - Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, RJ, CEP 24210-130, Brazil.
| |
Collapse
|
37
|
Chan HL, Lyu L, Aw J, Zhang W, Li J, Yang HH, Hayashi H, Chiba S, Xing B. Unique Fluorescent Imaging Probe for Bacterial Surface Localization and Resistant Enzyme Imaging. ACS Chem Biol 2018; 13:1890-1896. [PMID: 29595947 DOI: 10.1021/acschembio.8b00172] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emergence of antibiotic bacterial resistance has caused serious clinical issues worldwide due to increasingly difficult treatment. Development of a specific approach for selective visualization of resistant bacteria will be highly significant for clinical investigations to promote timely diagnosis and treatment of bacterial infections. In this article, we present an effective method that not only is able to selectively recognize drug resistant AmpC β-lactamases enzyme but, more importantly, is able to interact with bacterial cell wall components, resulting in a desired localization effect on the bacterial surface. A unique and specific enzyme-responsive cephalosporin probe (DFD-1) has been developed for the selective recognition of resistance bacteria AmpC β-lactamase, by employing fluorescence resonance energy transfer with an "off-on" bioimaging. To achieve the desired localization, a lipid-azide conjugate (LA-12) was utilized to facilitate its penetration into the bacterial surface, followed by copper-free click chemistry. This enables the probe DFD-1 to be anchored onto the cell surface. In the presence of AmpC enzymes, the cephalosporin β-lactam ring on DFD-1 will be hydrolyzed, leading to the quencher release, thus generating fluorescence for real-time resistant bacterial screening. More importantly, the bulky dibenzocyclooctyne group in DFD-1 allowed selective recognition toward the AmpC bacterial enzyme instead of its counterpart ( e.g., TEM-1 β-lactamase). Both live cell imaging and cell cytometry assays showed the great selectivity of DFD-1 to drug resistant bacterial pathogens containing the AmpC enzyme with significant fluorescence enhancement (∼67-fold). This probe presented promising capability to selectively localize and screen for AmpC resistance bacteria, providing great promise for clinical microbiological applications.
Collapse
Affiliation(s)
- Hui Ling Chan
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Linna Lyu
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Junxin Aw
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Wenmin Zhang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Juan Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huang-Hao Yang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Hirohito Hayashi
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Shunsuke Chiba
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
38
|
Zhang D, Markoulides MS, Stepanovs D, Rydzik AM, El-Hussein A, Bon C, Kamps JJAG, Umland KD, Collins PM, Cahill ST, Wang DY, von Delft F, Brem J, McDonough MA, Schofield CJ. Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases. Bioorg Med Chem 2018; 26:2928-2936. [PMID: 29655609 PMCID: PMC6008492 DOI: 10.1016/j.bmc.2018.02.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
Abstract
Metallo-β-lactamases (MBLs) enable bacterial resistance to almost all classes of β-lactam antibiotics. We report studies on enethiol containing MBL inhibitors, which were prepared by rhodanine hydrolysis. The enethiols inhibit MBLs from different subclasses. Crystallographic analyses reveal that the enethiol sulphur displaces the di-Zn(II) ion bridging 'hydrolytic' water. In some, but not all, cases biophysical analyses provide evidence that rhodanine/enethiol inhibition involves formation of a ternary MBL enethiol rhodanine complex. The results demonstrate how low molecular weight active site Zn(II) chelating compounds can inhibit a range of clinically relevant MBLs and provide additional evidence for the potential of rhodanines to be hydrolysed to potent inhibitors of MBL protein fold and, maybe, other metallo-enzymes, perhaps contributing to the complex biological effects of rhodanines. The results imply that any medicinal chemistry studies employing rhodanines (and related scaffolds) as inhibitors should as a matter of course include testing of their hydrolysis products.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Marios S Markoulides
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Dmitrijs Stepanovs
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Anna M Rydzik
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Ahmed El-Hussein
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom; The National Institute of Laser Enhanced Science, Cairo University, Egypt
| | - Corentin Bon
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Jos J A G Kamps
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Klaus-Daniel Umland
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Patrick M Collins
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Samuel T Cahill
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - David Y Wang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Frank von Delft
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom; Structural Genomics Consortium (SGC), University of Oxford, Oxford, OX3 7DQ, UK; (e)Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Jürgen Brem
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Michael A McDonough
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
39
|
Pozzi C, Di Pisa F, De Luca F, Benvenuti M, Docquier JD, Mangani S. Atomic-Resolution Structure of a Class C β-Lactamase and Its Complex with Avibactam. ChemMedChem 2018; 13:1437-1446. [PMID: 29786960 DOI: 10.1002/cmdc.201800213] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/10/2018] [Indexed: 11/12/2022]
Abstract
β-Lactamases (BLs) are important antibiotic-resistance determinants that significantly compromise the efficacy of valuable β-lactam antibacterial drugs. Thus, combinations with BL inhibitor were developed. Avibactam is the first non-β-lactam BL inhibitor introduced into clinical practice. Ceftazidime-avibactam represents one of the few last-resort antibiotics available for the treatment of infections caused by near-pandrug-resistant bacteria. TRU-1 is a chromosomally encoded AmpC-type BL of Aeromonas enteropelogenes, related to the FOX-type BLs and constitutes a good model for class C BLs. TRU-1 crystals provided ultrahigh-resolution diffraction data for the native enzyme and for its complex with avibactam. A comparison of the native and avibactam-bound structures revealed new details in the conformations of residues relevant for substrate and/or inhibitor binding. Furthermore, a comparison of the TRU-1 and Pseudomonas aeruginosa AmpC avibactam-bound structures revealed two inhibitor conformations that were likely to correspond to two different states occurring during inhibitor carbamylation/recyclization.
Collapse
Affiliation(s)
- Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Flavio Di Pisa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Filomena De Luca
- Department of Medical Biotechnology, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Manuela Benvenuti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Jean Denis Docquier
- Department of Medical Biotechnology, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
40
|
Aziz DB, Teo JWP, Dartois V, Dick T. Teicoplanin - Tigecycline Combination Shows Synergy Against Mycobacterium abscessus. Front Microbiol 2018; 9:932. [PMID: 29867841 PMCID: PMC5958212 DOI: 10.3389/fmicb.2018.00932] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/23/2018] [Indexed: 11/13/2022] Open
Abstract
Lung disease caused by non-tuberculous mycobacteria (NTM), relatives of Mycobacterium tuberculosis, is increasing. M. abscessus is the most prevalent rapid growing NTM. This environmental pathogen is intrinsically resistant to most commonly used antibiotics, including anti-tuberculosis drugs. Current therapies take years to achieve cure, if cure if achieved. Thus, there is an urgent medical need to identify new, more efficacious treatments. Here, we explore the possibility of repurposing antibiotics developed for other indications. We asked whether novel two-drug combinations of clinically used antibiotics can be identified that show synergistic activity against this mycobacterium. An in vitro checkerboard titration assay was employed to test 180 dual combinations of 41 drugs against the clinical isolate M. abscessus Bamboo. The most attractive novel combination was further profiled against reference strains representing three sub-species (M. abscessus subsp. abscessus, massiliense and bolletii) and a collection of clinical isolates. This resulted in the identification of a novel synergistic antibiotic pair active against the M. abscessus complex: the glycopeptide teicoplanin with the glycylcycline tigecycline showed inhibitory activity at 2–3 μM (teicoplanin) and 1–2 μM (tigecycline). This novel combination can now be tested in M. abscessus animal models of infection and/or patients.
Collapse
Affiliation(s)
- Dinah B Aziz
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jeanette W P Teo
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Véronique Dartois
- The Public Health Research Institute, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Thomas Dick
- The Public Health Research Institute, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
41
|
Lizana I, Delgado EJ. Theoretical insights on the inhibition mechanism of a class A Serine Hydrolase by avibactam. J Comput Chem 2018; 39:1943-1948. [PMID: 29707791 DOI: 10.1002/jcc.25340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/08/2018] [Accepted: 04/08/2018] [Indexed: 11/10/2022]
Abstract
The inhibition mechanism of CTX-M-15 class A serine hydrolase by the inhibitor avibactam is addressed by a combined molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) approach postulating that the residue Ser70 is the sole reacting residue, that is, itself may play the role of the acid-base species required for the enzyme inhibition. Other residues located in the active site have key participation in the positioning of the inhibitor in the right conformation to favor the attack of Ser70, in addition to the stabilization of the transition state by electrostatic interactions with avibactam. The results validate the hypothesis and show that the reaction follows an asynchronous concerted mechanism, in which the nucleophilic attack of the hydroxyl oxygen of Ser70 precedes the protonation of the amidic nitrogen and ring opening. The calculated activation barrier is 16 kcal/mol in agreement with the experimental evidence. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ignacio Lizana
- Computational Chemistry Group, Department of Physical Chemistry, Faculty of Chemical Sciences, Universidad de Concepcion, Concepcion, Chile
| | - Eduardo J Delgado
- Computational Chemistry Group, Department of Physical Chemistry, Faculty of Chemical Sciences, Universidad de Concepcion, Concepcion, Chile
| |
Collapse
|
42
|
Gunzer F, Rudolph WW, Bunk B, Schober I, Peters S, Müller T, Oberheitmann B, Schröttner P. Whole-genome sequencing of a large collection of Myroides odoratimimus and Myroides odoratus isolates and antimicrobial susceptibility studies. Emerg Microbes Infect 2018; 7:61. [PMID: 29618738 PMCID: PMC5884818 DOI: 10.1038/s41426-018-0061-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 02/16/2018] [Accepted: 02/25/2018] [Indexed: 12/04/2022]
Abstract
The genus Myroides comprises several species of Gram-negative, non-motile, and non-fermenting bacteria, which have been regarded as non-pathogenic for decades. Multiple recent reports, however, underscore the pathogenic potential that Myroides sp. possesses for humans. These bacteria seem to be resistant to a wide range of antibiotics (including ß-lactams and aminoglycosides). Therefore, treatment options are limited. Knowledge of antimicrobial resistance, however, is based on only one meaningful comprehensive study and on data published from case reports. This lack of data motivated us to test 59 strains from our Myroides collection (43 M. odoratimimus and 16 M. odoratus) for resistance against 20 commonly used antibiotics. We also performed molecular analyses to reveal whether our bacteria harbor the genus-specific M. odoratimimus metallo-ß-lactamase (MUS-1) or the M. odoratus metallo ß-lactamase (TUS-1), and other ß-lactamases, which may provide an explanation for the extended antimicrobial resistance.
Collapse
Affiliation(s)
- Florian Gunzer
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Wolfram W Rudolph
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Boyke Bunk
- Leibniz-Institut DSMZ-Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - Isabel Schober
- Leibniz-Institut DSMZ-Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - Sonja Peters
- Leibniz-Zentrum für Marine Tropenforschung (ZMT), Fahrenheitstrasse 6, 28359, Bremen, Germany.,Q-Bioanalytic GmbH, Fischkai 1, 27572, Bremerhaven, Germany
| | - Theres Müller
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | | | - Percy Schröttner
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
43
|
Shirley M. Ceftazidime-Avibactam: A Review in the Treatment of Serious Gram-Negative Bacterial Infections. Drugs 2018; 78:675-692. [PMID: 29671219 DOI: 10.1007/s40265-018-0902-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ceftazidime-avibactam (Zavicefta®) is an intravenously administered combination of the third-generation cephalosporin ceftazidime and the novel, non-β-lactam β-lactamase inhibitor avibactam. In the EU, ceftazidime-avibactam is approved for the treatment of adults with complicated urinary tract infections (cUTIs) [including pyelonephritis], complicated intra-abdominal infections (cIAIs), hospital-acquired pneumonia (HAP) [including ventilator-associated pneumonia (VAP)], and other infections caused by aerobic Gram-negative organisms in patients with limited treatment options. This article discusses the in vitro activity and pharmacological properties of ceftazidime-avibactam, and reviews data on the agent's clinical efficacy and tolerability relating to use in these indications, with a focus on the EU label. Ceftazidime-avibactam has excellent in vitro activity against many important Gram-negative pathogens, including many extended-spectrum β-lactamase-, AmpC-, Klebsiella pneumoniae carbapenemase- and OXA-48-producing Enterobacteriaceae and drug-resistant Pseudomonas aeruginosa isolates; it is not active against metallo-β-lactamase-producing strains. The clinical efficacy of ceftazidime-avibactam in the treatment of cUTI, cIAI and HAP (including VAP) in adults was demonstrated in pivotal phase III non-inferiority trials with carbapenem comparators. Ceftazidime-avibactam treatment was associated with high response rates at the test-of-cure visit in patients with infections caused by ceftazidime-susceptible and -nonsusceptible Gram-negative pathogens. Ceftazidime-avibactam was generally well tolerated, with a safety and tolerability profile consistent with that of ceftazidime alone and that was generally typical of the injectable cephalosporins. Thus, ceftazidime-avibactam represents a valuable new treatment option for these serious and difficult-to-treat infections.
Collapse
Affiliation(s)
- Matt Shirley
- Springer, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
44
|
Ouyang X, Chang YN, Yang KW, Wang WM, Bai JJ, Wang JW, Zhang YJ, Wang SY, Xie BB, Wang LL. A DNA nanoribbon as a potent inhibitor of metallo-β-lactamases. Chem Commun (Camb) 2018; 53:8878-8881. [PMID: 28737795 DOI: 10.1039/c7cc04483f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discovered a promising metallo-β-lactamase inhibitor, a DNA nanoribbon, by enzymatic kinetics and isothermal titration calorimetry evaluations. Atomic force microscopy, gel electrophoresis, competitive binding experiments, circular dichroic and thermal denaturation studies suggested that the DNA nanoribbon could bind to the enzyme through a minor groove.
Collapse
Affiliation(s)
- Xiangyuan Ouyang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry & Material Science, Northwest University, Xi'an, 710127, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang J, Li Y, Yan H, Duan J, Luo X, Feng X, Lu L, Wang W. Semi-rational screening of the inhibitors and β-lactam antibiotics against the New Delhi metallo-β-lactamase 1 (NDM-1) producing E. coli. RSC Adv 2018; 8:5936-5944. [PMID: 35539612 PMCID: PMC9078263 DOI: 10.1039/c7ra12778b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 02/01/2018] [Indexed: 11/21/2022] Open
Abstract
Bacteria containing bla NDM-1 gene are a growing threat to almost all clinically β-lactam antibiotics. Especially, the New Delhi metallo-β-lactamase (NDM-1) has become a potential public survival risk. In this study, a novel and efficient strategy for inhibitors and β-lactam antibiotics screening using recombinant New Delhi metallo-beta-lactamase (NDM-1) was developed. First, the gene of bla NDM-1 were identified and cloned from multi-drug resistance of Acinetobacter baumannii isolate; by the means of protein expression and purification, recombinant NDM-1 activity was up to 68.5 U ml-1, and high purity NDM-1 protein with activity of 347.4 U mg-1 was obtained. Finally, for NDM-1, the inhibitors (aspergillomarasmine A (AMA) and EDTA) with high affinity (HI) and the β-lactam antibiotics (imipenem) with low affinity (LA) were screened out. Surprisingly, the inhibition of the NDM-1 was enhanced by the use of inhibitor combinations (AMA-EDTA (1 : 2)), where the IC50 of AMA-EDTA was reduced by 88% and 95%, respectively, comparing to the AMA and EDTA alone. More interesting, AMA-EDTA could restore the activity of imipenem when tested against NDM-1 expressing strains (E. coli and Acinetobacter baumannii), with a working time of 120 min and 330 min, respectively. This method is expected to be used in high-throughput screening, drug redesign (including new inhibitors and drugs) and "old drug new use".
Collapse
Affiliation(s)
- Juan Wang
- Laboratory Medicine Department, Zhongshan People's Hospital, The Affiliated Hospital of Sun Yat-Sen University, Guangdong Province No. 2 Sun Wen East Road Zhongshan Guangdong 528403 China
| | - Yang Li
- Laboratory Medicine Department, Zhongshan People's Hospital, The Affiliated Hospital of Sun Yat-Sen University, Guangdong Province No. 2 Sun Wen East Road Zhongshan Guangdong 528403 China
| | - Haizhong Yan
- Laboratory Medicine Department, Zhongshan People's Hospital, The Affiliated Hospital of Sun Yat-Sen University, Guangdong Province No. 2 Sun Wen East Road Zhongshan Guangdong 528403 China
| | - Juan Duan
- Laboratory Medicine Department, Zhongshan People's Hospital, The Affiliated Hospital of Sun Yat-Sen University, Guangdong Province No. 2 Sun Wen East Road Zhongshan Guangdong 528403 China
| | - Xihua Luo
- Laboratory Medicine Department, Zhongshan People's Hospital, The Affiliated Hospital of Sun Yat-Sen University, Guangdong Province No. 2 Sun Wen East Road Zhongshan Guangdong 528403 China
| | - Xueqin Feng
- Laboratory Medicine Department, Zhongshan People's Hospital, The Affiliated Hospital of Sun Yat-Sen University, Guangdong Province No. 2 Sun Wen East Road Zhongshan Guangdong 528403 China
| | - Lanfen Lu
- Laboratory Medicine Department, Zhongshan People's Hospital, The Affiliated Hospital of Sun Yat-Sen University, Guangdong Province No. 2 Sun Wen East Road Zhongshan Guangdong 528403 China
| | - Weijia Wang
- Laboratory Medicine Department, Zhongshan People's Hospital, The Affiliated Hospital of Sun Yat-Sen University, Guangdong Province No. 2 Sun Wen East Road Zhongshan Guangdong 528403 China
| |
Collapse
|
46
|
Wang R, Lai TP, Gao P, Zhang H, Ho PL, Woo PCY, Ma G, Kao RYT, Li H, Sun H. Bismuth antimicrobial drugs serve as broad-spectrum metallo-β-lactamase inhibitors. Nat Commun 2018; 9:439. [PMID: 29382822 PMCID: PMC5789847 DOI: 10.1038/s41467-018-02828-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/03/2018] [Indexed: 11/09/2022] Open
Abstract
Drug-resistant superbugs pose a huge threat to human health. Infections by Enterobacteriaceae producing metallo-β-lactamases (MBLs), e.g., New Delhi metallo-β-lactamase 1 (NDM-1) are very difficult to treat. Development of effective MBL inhibitors to revive the efficacy of existing antibiotics is highly desirable. However, such inhibitors are not clinically available till now. Here we show that an anti-Helicobacter pylori drug, colloidal bismuth subcitrate (CBS), and related Bi(III) compounds irreversibly inhibit different types of MBLs via the mechanism, with one Bi(III) displacing two Zn(II) ions as revealed by X-ray crystallography, leading to the release of Zn(II) cofactors. CBS restores meropenem (MER) efficacy against MBL-positive bacteria in vitro, and in mice infection model, importantly, also slows down the development of higher-level resistance in NDM-1-positive bacteria. This study demonstrates a high potential of Bi(III) compounds as the first broad-spectrum B1 MBL inhibitors to treat MBL-positive bacterial infection in conjunction with existing carbapenems.
Collapse
Affiliation(s)
- Runming Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
| | - Tsz-Pui Lai
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
| | - Peng Gao
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
- The Research Centre of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hongmin Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Pak-Leung Ho
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
- The Research Centre of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
| | - Patrick Chiu-Yat Woo
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
- The Research Centre of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
| | - Guixing Ma
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Richard Yi-Tsun Kao
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
- The Research Centre of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong.
| |
Collapse
|
47
|
Ge Y, Zhou YJ, Yang KW, Zhang YL, Xiang Y, Zhang YJ. Real-time activity assays of β-lactamases in living bacterial cells: application to the inhibition of antibiotic-resistant E. coli strains. MOLECULAR BIOSYSTEMS 2017; 13:2323-2327. [PMID: 28906528 DOI: 10.1039/c7mb00487g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of antibiotic resistance caused by β-lactamases, including serine β-lactamases (SβLs) and metallo-β-lactamases (MβLs), is a global public health threat. L1, a B3 subclass MβL, hydrolyzes almost all of known β-lactam antibiotics. We report a simple and straightforward UV-Vis approach for real-time activity assays of β-lactamases inside living bacterial cells, and this method has been exemplified by choosing antibiotics, L1 enzyme, Escherichia coli expressing L1 (L1 E. coli), Escherichia coli expressing extended-spectrum β-lactamases (ESBL-E. coli), clinical bacterial strains, and reported MβL and SβL inhibitors. The cell-based studies demonstrated that cefazolin was hydrolyzed by L1 E. coli and clinical strains, and confirmed the hydrolysis to be inhibited by two known L1 inhibitors EDTA and azolylthioacetamide (ATAA), with an IC50 value of 1.6 and 18.9 μM, respectively. Also, it has been confirmed that the breakdown of cefazolin caused by ESBL-E. coli was inhibited by clavulanic acid, the first SβL inhibitor approved by FDA. The data gained through this approach are closely related to the biological function of the target enzyme in its physiological environment. The UV-Vis method proposed here can be applied to target-based whole-cell screening to search for potent β-lactamase inhibitors, and to assays of reactions in complex biological systems, for instance in medical assays.
Collapse
Affiliation(s)
- Ying Ge
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Lab, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | | | | | | | | | | |
Collapse
|
48
|
Decuyper L, Jukič M, Sosič I, Žula A, D'hooghe M, Gobec S. Antibacterial and β-Lactamase Inhibitory Activity of Monocyclic β-Lactams. Med Res Rev 2017; 38:426-503. [DOI: 10.1002/med.21443] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/16/2017] [Accepted: 02/08/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Lena Decuyper
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering; Ghent University; Ghent Belgium
| | - Marko Jukič
- Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - Aleš Žula
- Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering; Ghent University; Ghent Belgium
| | - Stanislav Gobec
- Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| |
Collapse
|
49
|
Yang SW, Linghu X, Smith E, Pan J, Sprague V, Su J. Synthesis of bicyclic β-lactamase inhibitor relabactam derivatives from a relabactam intermediate. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Sevaille L, Gavara L, Bebrone C, De Luca F, Nauton L, Achard M, Mercuri P, Tanfoni S, Borgianni L, Guyon C, Lonjon P, Turan-Zitouni G, Dzieciolowski J, Becker K, Bénard L, Condon C, Maillard L, Martinez J, Frère JM, Dideberg O, Galleni M, Docquier JD, Hernandez JF. 1,2,4-Triazole-3-thione Compounds as Inhibitors of Dizinc Metallo-β-lactamases. ChemMedChem 2017; 12:972-985. [DOI: 10.1002/cmdc.201700186] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/12/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Laurent Sevaille
- Institut des Biomolécules Max Mousseron, UMR5247 CNRS; Université de Montpellier, ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier cedex 5 France
| | - Laurent Gavara
- Institut des Biomolécules Max Mousseron, UMR5247 CNRS; Université de Montpellier, ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier cedex 5 France
| | - Carine Bebrone
- Laboratoire de Macromolécules Biologiques, Centre d'Ingénierie des Protéines; Université de Liège; Allée du 6 août B6, Sart-Tilman 4000 Liège Belgium
- Present address: Symbiose Biomaterials S.A., GIGA Bât. B34; 1 avenue de l'Hôpital 4000 Liège Belgium
| | - Filomena De Luca
- Dipartimento di Biotecnologie Mediche; Università di Siena; 53100 Siena Italy
| | - Lionel Nauton
- Institut de Biologie Structurale-Jean-Pierre Ebel, UMR5075 CNRS, CEA; Université Joseph Fourier; 41 rue Jules Horowitz 38027 Grenoble cedex 1 France
- Present address: Institut de Chimie de Clermont-Ferrand, UMR6296 CNRS; Université Clermont Auvergne; 63000 Clermont-Ferrand France
| | - Maud Achard
- EMBL Outstation c/o DESY; Notkestrasse 85 22603 Hamburg Germany
- Present address: School of Chemistry and Molecular Bioscience; University of Queensland, St. Lucia; Brisbane QLD 4072 Australia
| | - Paola Mercuri
- Laboratoire de Macromolécules Biologiques, Centre d'Ingénierie des Protéines; Université de Liège; Allée du 6 août B6, Sart-Tilman 4000 Liège Belgium
| | - Silvia Tanfoni
- Dipartimento di Biotecnologie Mediche; Università di Siena; 53100 Siena Italy
| | - Luisa Borgianni
- Dipartimento di Biotecnologie Mediche; Università di Siena; 53100 Siena Italy
| | - Carole Guyon
- Institut des Biomolécules Max Mousseron, UMR5247 CNRS; Université de Montpellier, ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier cedex 5 France
| | - Pauline Lonjon
- Institut des Biomolécules Max Mousseron, UMR5247 CNRS; Université de Montpellier, ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier cedex 5 France
- Present address: CERN, HSE/SEE/SI; 1211 Geneva 23 Switzerland
| | - Gülhan Turan-Zitouni
- Department of Pharmaceutical Chemistry; Anadolu University, Faculty of Pharmacy; 26470 Eskisehir Turkey
| | - Julia Dzieciolowski
- Chair of Biochemistry and Molecular Biology, Interdisciplinary Research Center; Justus Liebig University; Heinrich-Buff-Ring 26-32 35392 Giessen Germany
| | - Katja Becker
- Chair of Biochemistry and Molecular Biology, Interdisciplinary Research Center; Justus Liebig University; Heinrich-Buff-Ring 26-32 35392 Giessen Germany
| | - Lionel Bénard
- UMR8226, CNRS, Université Pierre et Marie Curie; Institut de Biologie Physico-Chimique; 13 rue Pierre et Marie Curie 75005 Paris France
| | - Ciaran Condon
- UMR8261, CNRS, Université Paris-Diderot; Institut de Biologie Physico-Chimique; 13 rue Pierre et Marie Curie 75005 Paris France
| | - Ludovic Maillard
- Institut des Biomolécules Max Mousseron, UMR5247 CNRS; Université de Montpellier, ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier cedex 5 France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron, UMR5247 CNRS; Université de Montpellier, ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier cedex 5 France
| | - Jean-Marie Frère
- Laboratoire de Macromolécules Biologiques, Centre d'Ingénierie des Protéines; Université de Liège; Allée du 6 août B6, Sart-Tilman 4000 Liège Belgium
| | - Otto Dideberg
- Institut de Biologie Structurale-Jean-Pierre Ebel, UMR5075 CNRS, CEA; Université Joseph Fourier; 41 rue Jules Horowitz 38027 Grenoble cedex 1 France
| | - Moreno Galleni
- Laboratoire de Macromolécules Biologiques, Centre d'Ingénierie des Protéines; Université de Liège; Allée du 6 août B6, Sart-Tilman 4000 Liège Belgium
| | - Jean-Denis Docquier
- Dipartimento di Biotecnologie Mediche; Università di Siena; 53100 Siena Italy
| | - Jean-François Hernandez
- Institut des Biomolécules Max Mousseron, UMR5247 CNRS; Université de Montpellier, ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier cedex 5 France
| |
Collapse
|