1
|
Oliveira IM, Gomes IB, Simões LC, Simões M. A review of research advances on disinfection strategies for biofilm control in drinking water distribution systems. WATER RESEARCH 2024; 253:121273. [PMID: 38359597 DOI: 10.1016/j.watres.2024.121273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The presence of biofilms in drinking water distribution systems (DWDS) is responsible for water quality deterioration and a possible source of public health risks. Different factors impact the biological stability of drinking water (DW) in the distribution networks, such as the presence and concentration of nutrients, water temperature, pipe material composition, hydrodynamic conditions, and levels of disinfectant residual. This review aimed to evaluate the current state of knowledge on strategies for DW biofilm disinfection through a qualitative and quantitative analysis of the literature published over the last decade. A systematic review method was performed on the 562 journal articles identified through database searching on Web of Science and Scopus, with 85 studies selected for detailed analysis. A variety of disinfectants were identified for DW biofilm control such as chlorine, chloramine, UV irradiation, hydrogen peroxide, chlorine dioxide, ozone, and others at a lower frequency, namely, electrolyzed water, bacteriophages, silver ions, and nanoparticles. The disinfectants can impact the microbial communities within biofilms, reduce the number of culturable cells and biofilm biomass, as well as interfere with the biofilm matrix components. The maintenance of an effective residual concentration in the water guarantees long-term prevention of biofilm formation and improves the inactivation of detached biofilm-associated opportunistic pathogens. Additionally, strategies based on multi-barrier processes by optimization of primary and secondary disinfection combined with other water treatment methods improve the control of opportunistic pathogens, reduce the chlorine-tolerance of biofilm-embedded cells, as well as decrease the corrosion rate in metal-based pipelines. Most of the studies used benchtop laboratory devices for biofilm research. Even though these devices mimic the conditions found in real DWDS, future investigations on strategies for DW biofilm control should include the validity of the promising strategies against biofilms formed in real DW networks.
Collapse
Affiliation(s)
- Isabel Maria Oliveira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Inês Bezerra Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia Chaves Simões
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems, Braga/Guimarães, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
2
|
Durden L, Eckhoff K, Burdsall AC, Youn S, Andújar-Gonzalez C, Abu-Niaaj L, Magnuson M, Harper WF. Characterizing Bacillus globigii as a Bacillus anthracis surrogate for wastewater treatment studies and bioaerosol emissions. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2023; 9:3458-3466. [PMID: 38516331 PMCID: PMC10953809 DOI: 10.1039/d3ew00524k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
This study characterized Bacillus globigii (BG) as a Bacillus anthracis Sterne (BAS) surrogate for wastewater treatment-related studies of UV inactivation, adsorption onto powdered activated carbon (PAC), and bioaerosol emission. The inactivation of BG was faster than that of BAS in DI water (pseudo first-order rate constants of 0.065 and 0.016 min-1 respectively) and in PBS solution (0.030 and 0.005 min-1 respectively). BG was also removed more quickly than BAS by PAC adsorption in DI (0.07 and 0.05 min-1 respectively) and in PBS (0.09 and 0.04 min-1 respectively). In DI, BG aggregated more (P < 0.05) than BAS when the pH was 7 or greater but there were no statistically significant differences in NaCl solution. Spore aggregation was also studied with extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) models. Less than 1% of all spores were released as bioaerosols, and there was no significant difference (P > 0.05) in emission between BG and BAS. To the author's knowledge, this study is the first to demonstrate that BG is a suitable surrogate for BAS for bioaerosol emissions, but a poor surrogate for both UV inactivation and PAC adsorption. These results can be used to understand the ability of BAS to act as a surrogate for BA Ames because of its genetic and morphological similarities with BAS.
Collapse
Affiliation(s)
- Leigh Durden
- Department of Systems Engineering and Management, Engineering Management Program, Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson AFB, OH, USA
| | - Kyle Eckhoff
- Department of Systems Engineering and Management, Engineering Management Program, Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson AFB, OH, USA
| | - Adam C Burdsall
- Water Infrastructure Protection Division, National Homeland Security Research Center, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Sungmin Youn
- Department of Civil Engineering, Marshall University, Huntington, West Virginia, USA
| | - Cindy Andújar-Gonzalez
- Department of Systems Engineering and Management, Engineering Management Program, Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson AFB, OH, USA
| | - Lubna Abu-Niaaj
- Department of Agricultural and Life Sciences, Central State University, Wilberforce, Ohio, USA
| | - Matthew Magnuson
- Water Infrastructure Protection Division, National Homeland Security Research Center, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Willie F Harper
- Department of Systems Engineering and Management, Engineering Management Program, Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson AFB, OH, USA
| |
Collapse
|
3
|
Kinani S, Roumiguières A, Bouchonnet S. A Critical Review on Chemical Speciation of Chlorine-Produced Oxidants (CPOs) in Seawater. Part 1: Chlorine Chemistry in Seawater and Its Consequences in Terms of Biocidal Effectiveness and Environmental Impact. Crit Rev Anal Chem 2022; 54:1837-1850. [PMID: 36325800 DOI: 10.1080/10408347.2022.2139590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Seawater chlorination has three main industrial uses: disinfection of water and installations, control of biofouling, and preventing the transport of aquatic invasive species. Once in contact with seawater, chlorine reacts rapidly with water constituents (e.g. bromide ions, ammonia, and nitrogen-containing compounds) to form a range of oxidative species (e.g. bromine and N-haloamines), termed "chlorine-produced oxidants" (CPOs) or "total residual oxidants" (TRO). The chemical nature of CPOs and their concentration are a function of two categories of parameters related to treatment modality (e.g. chlorine dose) and water quality (e.g. temperature, pH, ammonia concentration, and organic constituents). The chlorination process may result in continuous or intermittent releases of CPOs in seawater. The reactivity and potential ecotoxicity of CPO species largely depend on their physical and chemical properties. Therefore, evaluation of the biocidal effectiveness of chlorination and its potential impacts requires not only determining the sum of CPOs (via a bulk parameter), but also their chemical speciation. The aim of this article - which is the first of a trilogy dedicated to the chemical speciation of CPOs in seawater - is to provide an overview of current knowledge about chlorine chemistry in seawater and to discuss the biocidal efficacy and the environmental fate of resulting CPOs. The 2nd and 3rd articles delineate a comprehensive and critical review of analytical methods and approaches for the determination of CPOs in seawater.
Collapse
Affiliation(s)
- Said Kinani
- Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), Chatou Cedex 01, France
| | - Adrien Roumiguières
- Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), Chatou Cedex 01, France
- Laboratoire de Chimie Moléculaire, CNRS - Institut polytechnique de Paris - Route de Saclay, Palaiseau, France
| | - Stéphane Bouchonnet
- Laboratoire de Chimie Moléculaire, CNRS - Institut polytechnique de Paris - Route de Saclay, Palaiseau, France
| |
Collapse
|
4
|
Wood JP, Adrion AC. Review of Decontamination Techniques for the Inactivation of Bacillus anthracis and Other Spore-Forming Bacteria Associated with Building or Outdoor Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4045-4062. [PMID: 30901213 PMCID: PMC6547374 DOI: 10.1021/acs.est.8b05274] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Since the intentional release of Bacillus anthracis spores through the U.S. Postal Service in the fall of 2001, research and development related to decontamination for this biological agent have increased substantially. This review synthesizes the advances made relative to B. anthracis spore decontamination science and technology since approximately 2002, referencing the open scientific literature and publicly available, well-documented scientific reports. In the process of conducting this review, scientific knowledge gaps have also been identified. This review focuses primarily on techniques that are commercially available and that could potentially be used in the large-scale decontamination of buildings and other structures, as well as outdoor environments. Since 2002, the body of scientific data related to decontamination and microbial sterilization has grown substantially, especially in terms of quantifying decontamination efficacy as a function of several factors. Specifically, progress has been made in understanding how decontaminant chemistry, the materials the microorganisms are associated with, environmental factors, and microbiological methods quantitatively impact spore inactivation. While advancement has been made in the past 15 years to further the state of the science in the inactivation of bacterial spores in a decontamination scenario, further research is warranted to close the scientific gaps that remain.
Collapse
Affiliation(s)
- Joseph P. Wood
- United States Environmental Protection Agency, Offce of Research and Development, National Homeland Security Research Center, Research Triangle Park, North Carolina United States
- Corresponding Author: Phone: (919) 541-5029;
| | - Alden Charles Adrion
- United States Environmental Protection Agency, Offce of Research and Development, National Homeland Security Research Center, Research Triangle Park, North Carolina United States
- Oak Ridge Institute for Science and Education Postdoctoral Fellow, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
5
|
Oh Y, Noga R, Shanov V, Ryu H, Chandra H, Yadav B, Yadav J, Chae S. Electrically heatable carbon nanotube point-of-use filters for effective separation and in-situ inactivation of Legionella pneumophila. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2019; 366:21-26. [PMID: 31275054 PMCID: PMC6604856 DOI: 10.1016/j.cej.2019.02.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite municipal chlorination and secondary disinfection, opportunistic waterborne pathogens (e.g., Legionella spp.) persist in public and private water distribution systems. As a potential source of healthcare-acquired infections, this warrants development of novel pathogen removal and inactivation systems. In this study, electrically heatable carbon nanotube (CNT) point-of-use (POU) filters have been designed to remove and inactivate Legionella pneumophila in water. The CNT/polymer composite membranes effectively removed Legionella (> 99.99%) (i.e., below detection limit) and were able to inactive them on the membrane surface at 100% efficiency within 60 s using ohmic heating at 20 V. The novel POU filters could be used as a final barrier to provide efficient rejection of pathogens and thereby simultaneously eliminate microorganisms in public and private water supplies.
Collapse
Affiliation(s)
- Yoontaek Oh
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, U.S.A
| | - Ryan Noga
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, U.S.A
| | - Vesselin Shanov
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, U.S.A
| | - Hodon Ryu
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH 45268, U.S.A
| | - Harish Chandra
- Microbial Pathogenesis and Immunotoxicology Laboratory, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| | - Brijesh Yadav
- Microbial Pathogenesis and Immunotoxicology Laboratory, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| | - Jagjit Yadav
- Microbial Pathogenesis and Immunotoxicology Laboratory, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| | - Soryong Chae
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, U.S.A
| |
Collapse
|
6
|
Assessment of UV-C-induced water disinfection by differential PCR-based quantification of bacterial DNA damage. J Microbiol Methods 2018; 149:89-95. [DOI: 10.1016/j.mimet.2018.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 11/23/2022]
|
7
|
Silva RG, Szabo J, Namboodiri V, Krishnan ER, Rodriguez J, Zeigler A. Evaluation of an environmentally sustainable UV-assisted water treatment system for the removal of Bacillus globigii spores in water. WATER SCIENCE & TECHNOLOGY, WATER SUPPLY 2018; 18:968-975. [PMID: 30505259 PMCID: PMC6260950 DOI: 10.2166/ws.2017.165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Development of greener water treatment technologies is important for the production of safe drinking water and water security applications, such as decontamination. Chlorine assisted disinfection is common and economical, but can generate disinfection byproducts (DBPs) that may be of health concern. DBPs are formed due to the reaction of chlorine with naturally occurring organic and inorganic substances in water. Currently, various innovative technologies are being developed as alternative approaches for preventing DBPs during water treatment. In this study, we evaluated the effectiveness of a novel combination of high efficiency flow filtration and UV disinfection treatment system for the removal of Bacillus globigii (B. globigii) spores in water. The filtration system consists of a charged membrane filter (CMF) that not only helps to remove suspended particles but also reduces the impact of other impurities including bio organisms. In order to get most performance details, the CMF was evaluated at clean, half-life, and end of life (EOL) conditions along with 100% UV transmittance (UVT). In addition, the effectiveness of the UV system was evaluated as a stand alone system at 100% and 70% EOL intensity. The study was conducted at the US EPA's Test and Evaluation (T&E) Facility in Cincinnati, OH, using B. globigii, a surrogate for B. anthracis spores. This non-chemical environmentally-friendly CMF/UV combination system and the stand alone UV unit showed greater than 6.0 log removal of B. globigii during the tests.
Collapse
Affiliation(s)
- R G Silva
- APTIM, Test and Evaluation Facility, 1600 Gest Street, Cincinnati, OH 45204, USA
| | - J Szabo
- US EPA, National Homeland Security Research Center, Cincinnati, OH, USA
| | - V Namboodiri
- US EPA, National Risk Management Research Laboratory, Cincinnati, OH, USA
| | - E R Krishnan
- APTIM, Test and Evaluation Facility, 1600 Gest Street, Cincinnati, OH 45204, USA
| | - J Rodriguez
- Aqua Treatment Service, Mechanicsburg, PA, USA
| | - A Zeigler
- Waterline Technology, Mansfield, OH, USA
| |
Collapse
|