1
|
Urrea V, Páez-Triana L, Velásquez-Ortiz N, Camargo M, Patiño LH, Vega L, Ballesteros N, Hidalgo-Troya A, Galeano LA, Ramírez JD, Muñoz M. Metagenomic Analysis of Surface Waters and Wastewater in the Colombian Andean Highlands: Implications for Health and Disease. Curr Microbiol 2025; 82:162. [PMID: 40021498 PMCID: PMC11870934 DOI: 10.1007/s00284-024-04019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/02/2024] [Indexed: 03/03/2025]
Abstract
Urban water bodies serve as critical reservoirs of microbial diversity, with major implications for public health and environmental quality. This study aimed to characterize the microbial diversity of surface waters and wastewater from the Pasto River in the Colombian Andean Highlands, offering insights that may support water quality monitoring efforts. Sampling was conducted at three river sites and one wastewater location. Standard physicochemical and microbiological analyses were performed, including real-time PCR to detect protozoan pathogens Giardia spp. and Cryptosporidium spp. Metagenomic sequencing provided an in-depth taxonomic and functional profile of microbial communities through two complementary approaches: (i) read-based analysis to identify abundant families and species, both pathogenic and beneficial, and (ii) detection of health-related molecular markers, including antimicrobial resistance markers and virulence factors. Physicochemical analyses showed distinct profiles between wastewater and surface water, with wastewater exhibiting elevated levels of suspended solids (113.6 mg/L), biochemical oxygen demand (BOD, 311.2 mg/L), and chemical oxygen demand (COD, 426.7 mg/L). Real-time PCR detected Giardia spp. DNA in 75% (76/102) of the samples and Cryptosporidium spp. DNA in 94% (96/102) of samples. The metagenomic read-based profiling identified Aeromonas media as a prevalent pathogen and Polaromonas naphthalenivorans as a potential biodegradative agent. The metagenomic assembly produced 270 high-quality genomes, revealing 16 bacterial species (e. g., Acinetobacter johnsonii and Megamonas funiformis) that provided insights into fecal contaminants and native aquatic microbes. Functional profiling further revealed a high prevalence of antimicrobial resistance markers, particularly for tetracyclines, aminoglycosides, and macrolides, with the highest abundance found in wastewater samples. Additionally, virulence factors were notably present in Zoogloea ramigera. The findings underscore the value of metagenomic profiling as a comprehensive tool for water quality monitoring, facilitating the detection of pathogens, beneficial species, and molecular markers indicative of potential health risks. This approach supports continuous monitoring efforts, offering actionable data for water management strategies to safeguard public health and maintain ecological integrity.
Collapse
Affiliation(s)
- Vanessa Urrea
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Natalia Velásquez-Ortiz
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Milena Camargo
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, 250027, Funza, Cundinamarca, Colombia
| | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Laura Vega
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Arsenio Hidalgo-Troya
- Grupo de Investigación Salud Pública, Departamento de Matemáticas y Estadística, Universidad de Nariño, 520002, Pasto, Colombia
| | - Luis-Alejandro Galeano
- Grupo de Investigación en Materiales Funcionales y Catálisis (GIMFC), Departamento de Química, Universidad de Nariño, 520002, Pasto, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia.
- Instituto de Biotecnología-UN (IBUN), Universidad Nacional de Colombia, 111321, Bogotá, Colombia.
| |
Collapse
|
2
|
Araújo RSD, Barbosa MRF, Dropa M, Araujo de Castro VC, Galvani AT, Padula JA, Bruni ADC, Brandão CJ, Lallo MA, Sato MIZ. Environmental surveillance of Cryptosporidium and Giardia in surface supply water and treated sewage intended for reuse from an urban area in Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125089. [PMID: 39389245 DOI: 10.1016/j.envpol.2024.125089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Environmental monitoring of protozoa, with the potential to trigger diseases, is essential for decision-making by managing authorities and for the control of water surveillance. This study aimed to detect and quantify Cryptosporidium oocysts and Giardia cysts in surface water for drinking water supply and treated sewage for reuse in the city of São Paulo. Samples collected bimonthly for one year were concentrated using the USEPA 1623.1 and 1693 methods for surface water and treated effluents, respectively. Immunofluorescence and nucleic acid amplification techniques were used to detect and quantify (oo)cysts. The cloning technique followed by sequencing and phylogenetic analyses were performed to characterize species and genotypes. The immunofluorescence detected Cryptosporidium spp. and Giardia spp. in 69.2% (9/13) and 100% (13/13) of the surface water samples (0.1-41 oocysts/L and 7.2-354 cysts/L, respectively). In the reuse samples, 85.7% (12/14) were positive for both protozoa and the concentrations varied from 0.4 to 100.6 oocysts/L and 1.2 and 93.5 cysts/L. qPCR assays showed that 100% of surface water (0.1-14.6 oocysts/L and 0.3-639.8 cysts/L) and reused samples (0.1-26.6 oocysts/L and 0.3-92.5 cysts/L) were positive for both protozoa. Species C. parvum, C. hominis, and C. muris were identified using the 18S rRNA gene, demonstrating anthroponotic and zoonotic species in the samples. Multilocus SSU rRNAanalyses of the SSU rRNA, tpi, and gdh genes from Giardia intestinalis identified the AII, BII, and BIV assemblages, revealing that contamination in the different matrices comes from human isolates. The study showed the circulation of these protozoa in the São Paulo city area and the impairment of surface water supply in metropolitan regions impacted by the discharge of untreated or inadequately treated sewage regarding the removal of protozoa, emphasizing the need to implement policies for water safety, to prevent the spread of these protozoa in the population.
Collapse
Affiliation(s)
- Ronalda Silva de Araújo
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Brazil.
| | - Mikaela Renata Funada Barbosa
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Brazil
| | - Milena Dropa
- Department of Environmental Health, School of Public Health, University of São Paulo (FSP-USP), Brazil
| | - Vanessa Cristina Araujo de Castro
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Brazil
| | - Ana Tereza Galvani
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Brazil
| | - José Antônio Padula
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Brazil
| | | | - Carlos Jesus Brandão
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Brazil
| | - Maria Anete Lallo
- Department of Environmental and Experimental Pathology of Universidade Paulista (UNIP), Brazil
| | - Maria Inês Zanoli Sato
- Department of Environmental Analysis, Division of Microbiology and Parasitology, Environmental Company of the São Paulo State (CETESB), Brazil
| |
Collapse
|
3
|
Potes-Morales C, Crespo-Ortiz MDP. Molecular diagnosis of intestinal protozoa in young adults and their pets in Colombia, South America. PLoS One 2023; 18:e0283824. [PMID: 37220135 DOI: 10.1371/journal.pone.0283824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/20/2023] [Indexed: 05/25/2023] Open
Abstract
Intestinal parasitic infections have been considered a relevant public health problem due to the increased incidence worldwide. In developing countries, diarrhea and gastrointestinal symptoms cause impaired work capacity in adults and delayed rate growth in children. Enteric infections of unknown etiology can often lead to misdiagnosis, increased transmission, and morbidity. The aim of this study was to determine the prevalence of intestinal parasites in a young adult population and their pets. Stool samples from 139 university students and 44 companion animals were subjected to microscopy diagnosis using wet mounts, concentration by zinc sulphate flotation and staining techniques (Kinyoun and trichrome stain). Molecular diagnosis of protozoa was also performed by conventional PCR. The mean age was 24 years, 54% individuals were female, 46% were men, and 66% had at least one pet. The overall prevalence for at least one parasite was 74.8% and the rate of polyparasitism was 37.5%. Eighty-three patients (59.7%) were positive for Blastocystis spp., followed by Cryptosporidium spp. 24.5%, Endolimax nana 13.6%, Entamoeba dispar/E. moshkovskii 7.8% and Giardia intestinalis 1.4%. Molecular diagnosis substantially improved Cryptosporidium spp. and Blastocystis spp. detection and allowed to distinguish E. histolytica from commensals in the Entamoeba complex. Student's pets were also examined for parasitism. Samples from 27 dogs, 15 cats, one rabbit and one hen were analyzed, and parasites were detected in 30 (68.2%) as follows: Cryptosporidium spp. (24) Giardia spp. (4), hookworm (3), Endolimax nana (2) and Toxoplasma gondii (1). Overall, university students showed high prevalence of parasitism and polyparasitism suggesting exposure to parasite infected animals and contaminated environments. Cryptosporidium spp. was the predominant pathogen in human and domestic animals, and it was only detected by PCR, pointing out the need for sensitive tests in diagnosis and surveillance. Control strategies to prevent the effects of parasitic infections in young population should consider pets as reservoirs and transmission source.
Collapse
Affiliation(s)
- Caterine Potes-Morales
- Department of Microbiology, Section of Parasitology, Universidad del Valle, Cali, Colombia
| | | |
Collapse
|
4
|
Rondello Bonatti T, Vidal Siqueira-Castro IC, Averaldo Guiguet Leal D, Durigan M, Pedroso Dias RJ, Bueno Franco RM. Molecular characterization of waterborne protozoa in surface water and sediment in Brazil: a taxonomic survey of ciliated protozoa and their correlation with Giardia duodenalis and Cryptosporidium spp. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:470. [PMID: 36922479 DOI: 10.1007/s10661-023-11065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The detection of Giardia duodenalis and Cryptosporidium spp. was performed, along with the identification of the ciliated protozoa biodiversity, to evaluate the correlation between these protozoa in freshwater quality monitoring. Water and sediment samples from two sites in the Atibaia River (Campinas, São Paulo, Brazil) were collected monthly for 2 years (n = 96). Pathogenic protozoa in water and sediment were detected by using immunomagnetic separation, followed by visualization by immunofluorescence assay (IFA). All positive aliquots in IFA were subjected to DNA extraction and subsequently nested PCR. Qualitative (in vivo observation and silver impregnation) and quantitative (in vivo enumeration) analyses were performed for the ciliated protozoa. Giardia cysts were detected in 62.5% of the surface water samples and Cryptosporidium spp. in 25.0%. In the sediment, cysts were detected in 35.4% samples and oocysts in 16.6%. A total of 57 samples positive for Giardia cysts were subjected to sequencing, 40 of which were harboring G. duodenalis (24 were characterized as sub-assemblage AII). For ciliated protozoa, 73 taxa belonging to 53 genera were identified over the period of the study. These results revealed a high degree of contamination by waterborne protozoa in the main water source which supplies drinking water for more than one million people in Campinas (São Paulo), highlighting the need for continuous monitoring of this catchment site. In addition, the present study provides important data regarding the sources of the water body degradation, i.e., fecal contamination of human origin, in addition to the survey of the ciliated protozoa.
Collapse
Affiliation(s)
- Taís Rondello Bonatti
- Laboratório de Protozoologia, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, PO Box: 6109, CEP: 13083-970, São Paulo, Brazil.
| | - Isabel Cristina Vidal Siqueira-Castro
- Laboratório de Protozoologia, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, PO Box: 6109, CEP: 13083-970, São Paulo, Brazil
| | | | - Maurício Durigan
- Laboratório de Protozoologia, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, PO Box: 6109, CEP: 13083-970, São Paulo, Brazil
| | | | - Regina Maura Bueno Franco
- Laboratório de Protozoologia, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, PO Box: 6109, CEP: 13083-970, São Paulo, Brazil
| |
Collapse
|