1
|
Wen M, Deng W, Huang J, Zhang S, Lin Q, Wang C, Ma S, Wang W, Zhang X, Li G, An T. Atmospheric VOCs in an industrial coking facility and the surrounding area: Characteristics, spatial distribution and source apportionment. J Environ Sci (China) 2024; 138:660-670. [PMID: 38135429 DOI: 10.1016/j.jes.2023.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/23/2023] [Accepted: 04/23/2023] [Indexed: 12/24/2023]
Abstract
Industrial coking facilities are an important emission source for volatile organic compounds (VOCs). This study analyzed the atmospheric VOC characteristics within an industrial coking facility and its surrounding environment. Average concentrations of total VOCs (TVOCs) in the surrounding residential activity areas (R1 and R2), the coking facility (CF) and the control area (CA) were determined to be 138.5, 47.8, 550.0, and 15.0 µg/m3, respectively. The cold drum process and coking and quenching areas within the coking facility were identified as the main polluting processes. The spatial variation in VOCs composition was analyzed, showing that VOCs in the coking facility and surrounding areas were mainly dominated by aromatic compounds such as BTX (benzene, toluene, and xylenes) and naphthalene, with concentrations being negatively correlated with the distance from the coking facility (p < 0.01). The sources of VOCs in different functional areas across the monitoring area were analyzed, finding that coking emissions accounted for 73.5%, 33.3% and 27.7% of TVOCs in CF, R1 and R2, respectively. These results demonstrated that coking emissions had a significant impact on VOC concentrations in the areas surrounding coking facility. This study evaluates the spatial variation in exposure to VOCs, providing important information for the influence of VOCs concentration posed by coking facility to surrounding residents and the development of strategies for VOC abatement.
Collapse
Affiliation(s)
- Meicheng Wen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Weiqiang Deng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jin Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shu Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qinhao Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Deng W, Wen M, Wang C, Huang J, Zhang S, Ma S, Xiong J, Wang W, Zhang X, An T. Atmospheric occurrences and health risk assessment of polycyclic aromatic hydrocarbons and their derivatives in a typical coking facility and surrounding areas. CHEMOSPHERE 2023; 341:139994. [PMID: 37652242 DOI: 10.1016/j.chemosphere.2023.139994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Coking facilities release large quantities of polycyclic aromatic hydrocarbons (PAHs) and their derivatives into the ambient air. Here we examined the profiles, spatial distributions, and potential sources of atmospheric PAHs and their derivatives in an industrial coking plant and its surrounding environment (gaseous and particulate). The mean concentrations of PAHs, nitrated PAHs (NPAHs), chlorinated PAHs (ClPAHs), and brominated PAHs (BrPAHs) in the air of the coking facility were 923, 23.8, 16.7 and 4.25 ng m-³, respectively, 1-2 orders of magnitude higher than those in the surrounding area and the control area. Linear regressions between contaminant concentrations and distance from the coking facility suggested that the concentrations of PAHs (r2 = 0.82, p < 0.05), NPAHs (r2 = 0.77, p < 0.01), and BrPAHs (r2 = 0.62, p < 0.01) were negatively correlated with distance. Additionally, the particle-bound fractions of PAHs and their derivatives were significantly correlated with their molecular weights (p < 0.01). Based on the calculation of the gas/particle partitioning coefficients (log KP) for PAHs and their derivatives and the corresponding subcooled liquid vapor pressures (log PL), the slope values for PAHs, NPAHs, ClPAHs, and BrPAHs ranged from -1 to -0.6, indicating that deposition of PAHs and their derivatives occurred through both adsorption and absorption. Five emissions sources were identified by positive matrix factorization (PMF), including coking emissions, oil pollution, industrial and combustion sources, secondary formation, and traffic emissions, with coking emissions accounting for more than 50% of total emissions. Furthermore, the results of the health risks assessment suggested that atmospheric PAHs and their derivatives in the coke plant and surrounding area negatively impacted human health.
Collapse
Affiliation(s)
- Weiqiang Deng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Meicheng Wen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Chao Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jin Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shu Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jukun Xiong
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wanjun Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
3
|
Yu J, Zhu Z, Hu W, Deng Y, Feng C, Chen N. Research on the electrochemical treatment of nitrobenzene wastewater: The effects of process parameters and the mechanism of distinct degradation pathways. CHEMOSPHERE 2023; 338:139408. [PMID: 37419153 DOI: 10.1016/j.chemosphere.2023.139408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Nitrobenzene is a typical organic pollutant of petroleum pollutant, which is a synthetic chemical not found naturally in the environment. Nitrobenzene in environment can cause toxic liver disease and respiratory failure in humans. Electrochemical technology provides an effective and efficient method for degrading nitrobenzene. This study, the effects of process parameter (e.g., electrolyte solution type, electrolyte concentration, current density and pH) and distinct reaction pathways for electrochemical treatment of nitrobenzene were investigated. As a result, available chlorine dominates the electrochemical oxidation process compared with hydroxyl radical, thus the electrolyte of NaCl is more suitable for the degradation of nitrobenzene than that of Na2SO4. The concentration and the existence form of available chlorine were mainly controlled by electrolyte concentration, current density and pH, which directly affect the removal of nitrobenzene. Cyclic voltammetry and mass spectrometric analyses suggested that electrochemical degradation of nitrobenzene included two important ways. Firstly, single oxidation: nitrobenzene → other forms of aromatic compounds→ NO-x + organic acids + mineralization products. Secondly, coordination of reduction and oxidation: nitrobenzene → aniline→ N2 + NO-x + organic acid + mineralization products. The results of this study will encourage us to further understand the electrochemical degradation mechanism of nitrobenzene and develop the efficient processes for nitrobenzene treatment.
Collapse
Affiliation(s)
- Jie Yu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Zipeng Zhu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Weiwu Hu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Yang Deng
- Department of Environmental Engineering, College of Environmental Science and Engineering, Peking University, Beijing, 100871, China
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
4
|
Yeh G, Lin C, Nguyen DH, Hoang HG, Shern JC, Hsiao PJ. A five-year investigation of water quality and heavy metal mass flux of an industrially affected river. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12465-12472. [PMID: 33660174 DOI: 10.1007/s11356-021-13149-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the water quality parameters (dissolved oxygen, electrical conductivity, salinity, pH, and temperature) and the mass flux of eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in five years (2015-2019) of the Houjing River. The river flows through a heavily-industrialized zone in Kaohsiung City in southern Taiwan. The surface water was sampled 4 times per year from five sampling locations: upstream sites (H1 and H2), industrial wastewater discharge point sites (H3 and H4), and downstream (H5). Our findings show that the water quality parameters improved in the study period, especially dissolved oxygen. However, some parameters, such as electrical conductivity (mean = 1152.50 ± 414.21 μS cm-1), were still higher than the Taiwan water quality irrigation standards. The heavy metal pollution was investigated in the aspect of mass fluxes and sources contribution. The spatial variation of the total heavy metal mass flux increased gradually from upstream to downstream, with H5 having the highest total mass flux of 74.1 kg d-1. H2, located near an industrial zone, had a total mass flux of 33.7 kg d-1 and contributed to the most Ni, Cr, Pb, Zn, and Hg fluxes. This study indicates that the water quality improvements observed are still not enough to meet the regulations. Stricter enforcement is required as well as further investigation to identify any illegal pollution sources.
Collapse
Affiliation(s)
- Gavin Yeh
- Ph.D. Program in Maritime Science and Technology, College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan (Republic of China)
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan (Republic of China).
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan (Republic of China).
| | - Duy-Hieu Nguyen
- Ph.D. Program in Maritime Science and Technology, College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan (Republic of China)
| | - Hong-Giang Hoang
- Ph.D. Program in Maritime Science and Technology, College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan (Republic of China)
- Dong Nai Technology University, Bien Hoa, Dong Nai 810000, Vietnam
| | - Jian-Chuan Shern
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan (Republic of China)
| | - Pu-Jen Hsiao
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan (Republic of China)
| |
Collapse
|
5
|
Di N, Zhang K, Hladun KR, Rust M, Chen YF, Zhu ZY, Liu TX, Trumble JT. Joint effects of cadmium and copper on Apis mellifera forgers and larvae. Comp Biochem Physiol C Toxicol Pharmacol 2020; 237:108839. [PMID: 32599020 DOI: 10.1016/j.cbpc.2020.108839] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/12/2023]
Abstract
Honey bees (Apis mellifera L.) are important ecological and agricultural resources. They are among the most widely available pollinators and provide products as well as services. Unfortunately, honey bee populations are susceptible to several environmental threats, including heavy metal exposure. Honey bees can be exposed to heavy metals when foraging on contaminated honey and pollen resources, and in some cases by airborne exposure. We studied the joint acute and chronic effects of cadmium (Cd) and copper (Cu) on A. mellifera. A 1:1 solution of the two heavy metals increased larval developmental duration and the mortality of both larvae and foragers in a dose-dependent way, decreased forager feeding, increased body metal burdens, and disrupted the sucrose response behavior of foragers. In combination, Cd and Cu demonstrated a weakly synergistic effect on foragers, but for larvae an initially antagonistic effect at low doses changed to strongly synergistic response at higher concentrations. The sucrose response threshold of foragers decreased significantly when they were dosed with increasing concentrations of the metal mixtures. Overall, the fitness of honey bee larvae and foragers is detrimentally affected when these metals co-occur.
Collapse
Affiliation(s)
- Ning Di
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Kai Zhang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100122, PR China
| | - Kristen R Hladun
- US FDA Pacific Regional Laboratory, Southwest, Irvine, CA 92612, USA
| | - Michael Rust
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Ya-Feng Chen
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Zheng-Yang Zhu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - John T Trumble
- Department of Entomology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
6
|
Yeh G, Hoang HG, Lin C, Bui XT, Tran HT, Shern CC, Vu CT. Assessment of heavy metal contamination and adverse biological effects of an industrially affected river. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34770-34780. [PMID: 32016863 DOI: 10.1007/s11356-020-07737-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
One of the most industrially affected rivers in Taiwan, the Houjing River, was studied in this research. The water and sediment samples were collected at five locations to measure the concentration of eight metals (As, Cd, Cr, Cu, Hg, Pb, Ni, and Zn). In order to assess the heavy metal contamination and its adverse biological effect, the heavy metal pollution index (HPI), the degree of contamination index (DC), the contamination factor (CF), the index of geo-accumulation (Igeo), and hazard quotients (HQs) were employed. The results showed that the Houjing River's water and sediment were contaminated with heavy metals. The annually averaged values of HPI (128.3) and DC (21.3) indicate that the water is unsafe for potable use and the sediment contamination level is at considerable degree of contamination. CF and Igeo calculation show that Zn, Cu, and Cd are the three main metals contributing to heavy metal contamination in sediment. Evaluation of adverse biological effects suggests that Zn, Cu, and Ni are the major metals that cause adverse effects on organisms. This study provides an overview of the synergistic heavy metal contamination degree of the Houjing River and its adverse biological effects, which should be a reliable reference for future contamination control and management plans.
Collapse
Affiliation(s)
- Gavin Yeh
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan (Republic of China)
| | - Hong-Giang Hoang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan (Republic of China)
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan (Republic of China).
| | - Xuan-Thanh Bui
- Faculty of Environment and Natural Resources, University of Technology, Vietnam National University - Ho Chi Minh, Ho Chi Minh City, 700000, Vietnam
| | - Huu-Tuan Tran
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan (Republic of China)
| | - Chien-Chuan Shern
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan (Republic of China)
| | - Chi-Thanh Vu
- Civil and Environmental Engineering Department, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| |
Collapse
|
7
|
Li M, Sun J, Liu C, Tang Y, Huang J. The remediation of urban freshwater sediment by humic-reducing activated sludge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115038. [PMID: 32599325 DOI: 10.1016/j.envpol.2020.115038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Organic pollution of urban rivers caused by stormwater discharge is a global problem. Traditional bioremediation of organic matters (OM) by aerobes could be restrained in anaerobic environments, which usually occurr in polluted river sediments. In this study, an anaerobic remediation technology has been developed to enhance the in-situ removal of organic matters in river sediments, humic-reducing sludge (HRS) was adapted from traditional activated sludge; it exhibited a strong humic-reducing ability. Nitrate and biostimulants were used to stimulate HRS. The change of microbial community between AQDS-adapted and non-AQDS-adapted was analyzed, and the effect of HRS augmentation and Nitrate/biostimulant addition on TOM removal were discussed from the perspective of light and heavy fraction organic matters (LFOM and HFOM). The results have indicated that, after adaptation, HRS had increased the bacterial population of Anaerolineales and Desulfuromonadales, which was related to the carbon metabolism and electron-transfer ability. On the other hand, the adaptation decreased the population of bacteria related to the sulfur/sulfate circulation. This characteristic of the HRS was potentially benificial to reducing the occurrence of black-odor phenomenon. Also, the removal efficiency of TOM in sediment was significantly improved by using HRS because HRS could facilitate the removal of HFOM. Fourier Transform Infrared Spectroscopy (FTIR) analysis indicated that the advantage of decomposing HFOM using HRS resulted from the fact that the HFOM contained redox mediators to facilitate humic-reducing respiration. In addition, nitrate appeared to be crucial for the enhancement of HRS in sediments. These findings have allowed for the development of a technology for in-situ anaerobic remediation of urban river sediments. They could also help to understand humic-reducing mechanism in the sediment during anaerobic bioremediation.
Collapse
Affiliation(s)
- Meng Li
- School of Environment Science and Engineering, Tianjin University, Tianjin, 300350, PR China; State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin, University, Tianjin, 300350, PR China
| | - Jingmei Sun
- School of Environment Science and Engineering, Tianjin University, Tianjin, 300350, PR China; State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin, University, Tianjin, 300350, PR China
| | - Chang Liu
- School of Environment Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Yinqi Tang
- School of Environment Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Jianjun Huang
- School of Environment Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
| |
Collapse
|
8
|
Chao HR, Que DE, Aquino AC, Gou YY, Tayo LL, Lin YH, Tsai MH, Hsu FL, Lu IC, Lin SL, Srikhao N, Shy CG, Huang KL. Toxicity assessment of electrochemical advanced oxidation process-treated groundwater from a gas station with petrochemical contamination. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:473. [PMID: 32607767 DOI: 10.1007/s10661-020-08393-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Electrochemical advanced oxidation process (EAOP) is known for its efficient and fast degradation of organic pollutants in polluted water treatment. In this study, the EAOP using a boron-doped diamond (BDD) anode was applied to treat two-season groundwater samples collected from four sampling wells (GS1 to GS4) with petrochemical contaminants including methyl tert-butyl ether (MTBE), benzene, toluene, chlorobenzene, total organic compounds (TOC), and total petroleum hydrocarbons (TPH) at a gas station in southern Taiwan. Moreover, toxicity tests (ATP, p53, and NF-κB bioassays) were performed to evaluate the biological responses of raw and EAOP-treated groundwater. Results show that the concentrations of chlorobenzene before and after EAOP treatment were all below its method detection limit. High degradation efficiencies were observed for MTBE (100%), benzene (100%), toluene (100%, except that of GS2 in the first season), TPH (94-97%, except that of GS4 in the first season), and TOC (85-99%). Cell viability for both the raw groundwater (81.2 ± 13.5%) and EAOP-treated samples (84.7 ± 11.7%) as detected using the ATP bioassay showed no significant difference (p = 0.715). A mean reduction in the DNA damage (739 to 165 ng DOX-equivalency L-1 (ng DOX-EQ. L-1)) and inflammatory response levels (460 to 157 ng TNFα-equivalency L-1 (ng TNFα-EQ. L-1)) were observed for EAOP-treated samples subjected to p53 and NF-κB bioassays. Overall, the significances of the average degradation efficiency, DNA damage, and inflammatory response before and after groundwater with EAOP treatment was observed to be significant (p < 0.05). p53 and NF-κB bioassays might be applied to assess ecotoxic risk in the environment.
Collapse
Affiliation(s)
- How-Ran Chao
- Emerging Compounds Research Center, Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung County, 912, Taiwan.
- Institute of Food Safety Management, National Pingtung University of Science and Technology, Neipu, Pingtung County, 912, Taiwan.
| | - Danielle E Que
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Alisha C Aquino
- School of Chemical, Biological and Materials Engineering and Sciences, Mapua University, Muralla St., Intramuros, 1002, Manila, Philippines
| | - Yan-You Gou
- Emerging Compounds Research Center, Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung County, 912, Taiwan
| | - Lemmuel L Tayo
- School of Chemical, Biological and Materials Engineering and Sciences, Mapua University, Muralla St., Intramuros, 1002, Manila, Philippines
| | - Yi-Hsien Lin
- Department of Plant Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung County, 912, Taiwan
| | - Ming-Hsien Tsai
- Department of Child Care, National Pingtung University of Science and Technology, Neipu, Pingtung County, 912, Taiwan
| | - Fu-Lin Hsu
- Emerging Compounds Research Center, Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung County, 912, Taiwan
| | - I-Cheng Lu
- Emerging Compounds Research Center, Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung County, 912, Taiwan
| | - Sheng-Lun Lin
- Department of Civil Engineering and Geomatics, Cheng Shiu University, Kaohsiung, 83347, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 83347, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung, 833, Taiwan
| | - Natwat Srikhao
- Department of Chemical Engineering, Khon Kaen University, Khon Kaen, Thailand
| | - Cherng-Gueih Shy
- Department of Radiology, Pingtung Christian Hospital, Pingtung City, Pingtung, 900, Taiwan
| | - Kuo-Lin Huang
- Emerging Compounds Research Center, Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung County, 912, Taiwan.
| |
Collapse
|
9
|
Mojiri A, Zhou JL, Ohashi A, Ozaki N, Kindaichi T. Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133971. [PMID: 31470323 DOI: 10.1016/j.scitotenv.2019.133971] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/13/2019] [Accepted: 08/17/2019] [Indexed: 05/21/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are principally derived from the incomplete combustion of fossil fuels. This study investigated the occurrence of PAHs in aquatic environments around the world, their effects on the environment and humans, and methods for their removal. Polycyclic aromatic hydrocarbons have a great negative impact on the humans and environment, and can even cause cancer in humans. Use of good methods and equipment are essential to monitoring PAHs, and GC/MS and HPLC are usually used for their analysis in aqueous solutions. In aquatic environments, the PAHs concentrations range widely from 0.03 ng/L (seawater; Southeastern Japan Sea, Japan) to 8,310,000 ng/L (Domestic Wastewater Treatment Plant, Siloam, South Africa). Moreover, bioaccumulation of ∑16PAHs in fish has been reported to range from 11.2 ng/L (Cynoscion guatucupa, South Africa) to 4207.5 ng/L (Saurida undosquamis, Egypt). Several biological, physical and chemical and biological techniques have been reported to treat water contaminated by PAHs, but adsorption and combined treatment methods have shown better removal performance, with some methods removing up to 99.99% of PAHs.
Collapse
Affiliation(s)
- Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Hiroshima, Japan.
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Akiyoshi Ohashi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Hiroshima, Japan
| | - Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Hiroshima, Japan
| | - Tomonori Kindaichi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Hiroshima, Japan
| |
Collapse
|
10
|
Dieu Hien VT, Lin C, Thanh VC, Kim Oanh NT, Thanh BX, Weng CE, Yuan CS, Rene ER. An overview of the development of vertical sampling technologies for ambient volatile organic compounds (VOCs). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 247:401-412. [PMID: 31254756 DOI: 10.1016/j.jenvman.2019.06.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
Atmospheric volatile organic compounds (VOCs) are harmful to human health and the environment, and are precursors of other toxic air pollutants, e.g. ozone (O3) and secondary organic aerosols (SOAs). In recent years, due to scientific and technological advancements, vertical VOC profile in the atmosphere has been increasingly studied since it plays an essential role in the atmospheric research by providing multilevel three-dimensional data. Such information will improve the predictive ability of existing air quality models. This review summarizes the latest development of vertical VOC sampling technologies, highlighting the technical and non-technical challenges with possible solutions and future applications of vertical VOC sampling technologies. Further, other important issues concerning ambient VOCs have also been discussed, e.g. emission sources, VOC air samplers, VOC monitoring strategies, factors influencing airborne VOC measurement, the use of VOC data in air quality models and future smart city air quality management. Since ambient VOC levels can fluctuate significantly with altitude, technologies for vertical VOC profiling have been developed from building/tower-based measurements and tethered balloons to aircrafts, unmanned aerial vehicles (UAVs) and satellites in order to improve the temporal-spatial capacity and accuracy. Between the existing sampling methods, so far, UAVs are capable of providing more reliable VOC measurements and better temporal-spatial capacities. Heretofore, their disadvantages and challenges, e.g. sampling height, sampling time, sensitivity of the sensors and interferences from other chemical species, have limited the application of UAV for vertical VOC profiling.
Collapse
Affiliation(s)
- Vo Thi Dieu Hien
- Institute of Marine Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chitsan Lin
- Institute of Marine Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| | - Vu Chi Thanh
- Civil and Environmental Engineering Department, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Nguyen Thi Kim Oanh
- Environmental Engineering and Management, Asian Institute of Technology, Thailand
| | - Bui Xuan Thanh
- Faculty of Environment and Natural Resources, University of Technology, Vietnam National University, Ho Chi Minh City, Viet Nam.
| | - Chien-Erh Weng
- Department of Electronic Communication Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, 2601DA Delft, the Netherlands
| |
Collapse
|
11
|
Lee ST, Lin C, Vu CT, Chen YC, Chen KS, Villanueva MC. How human activities in commercial areas contribute to phthalate ester pollution in street dust of Taiwan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:619-626. [PMID: 30092517 DOI: 10.1016/j.scitotenv.2018.07.362] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 05/15/2023]
Abstract
UNLABELLED Exposure to phthalate esters (PAEs) poses health risks to humans. Much research has been performed evaluating PAE levels in foodstuffs, river sediment and drinking water, but little attention has been paid to their presence in urban outdoor environments where human activities are highly intense. Here we evaluated PAE presence and distribution in street dust in Kaohsiung, the most industrialized city in Taiwan. Our results showed that PAEs were ubiquitous in fifty-two street-dust samples (levels of total PAEs 5.4-989.2 mg kg-1). Di-(2-ethylhexyl) phthalate was the most abundant congener observed and made up 85.0%, 79.7%, and 97.2% of the total PAEs found in industrial, residential and commercial areas, respectively. PAE levels in street dust in commercial areas (night markets) were significantly higher, suggesting a higher risk of contamination on people present in these areas (H value > χU2). In residential and commercial areas, the higher the intensity of human activity, the higher the PAE content observed. PAE content decreased progressively from the center to the outskirts of the Houjing night market, suggesting that the increased human and consumer activities inside this commercial hotspot were the main PAE source in street dust. Children had higher estimated daily intakes (DIs) than adults and dermal absorption contributed more to these levels than oral ingestion. Although all calculated DIs were below referenced danger thresholds, street dust PAEs in the area should remain an environmental concern especially since night markets play an important role in Taiwanese/Asian culture and economy. Contrary to other studies, PAEs in this study were found less related to industrial manufacturing activities but highly linked to commercial activities. These findings are relevant for future pollution prevention efforts dedicated to mitigating public exposure to PAEs. MAIN FINDINGS PAE levels in street dust are related to commercial activities. Night markets, an important commercial activity in Taiwan, were found to contribute considerably to PAE contamination in street dust.
Collapse
Affiliation(s)
- Sung-Tse Lee
- National Sun Yat-Sen University, Institute of Environmental Engineering, Kaohsiung 80424, Taiwan
| | - Chitsan Lin
- National Kaohsiung University of Science and Technology, Department of Marine Environmental Engineering, Kaohsiung 81157, Taiwan.
| | - Chi Thanh Vu
- The University of Alabama in Huntsville, Civil and Environmental Engineering Department, Huntsville, AL 35899, USA.
| | - Yi-Cyuan Chen
- National Kaohsiung University of Science and Technology, Department of Marine Environmental Engineering, Kaohsiung 81157, Taiwan
| | - Kang-Shin Chen
- National Sun Yat-Sen University, Institute of Environmental Engineering, Kaohsiung 80424, Taiwan
| | - Maria Ching Villanueva
- IFREMER, Laboratoire Biologies Halieutiques, STH, Z.I. Pointe du Diable BP 70, Plouzané, France
| |
Collapse
|
12
|
Müller A, Becker R, Dorgerloh U, Simon FG, Braun U. The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:639-646. [PMID: 29772514 DOI: 10.1016/j.envpol.2018.04.127] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 05/22/2023]
Abstract
Microplastics are increasingly entering marine, limnic and terrestrial ecosystems worldwide, where they sorb hydrophobic organic contaminants. Here, the sorption behavior of the fuel-related water contaminants benzene, toluene, ethyl benzene and xylene (BTEX) and four tertiary butyl ethers to virgin and via UV radiation aged polypropylene (PP) and polystyrene (PS) pellets was investigated. Changes in material properties due to aging were recorded using appropriate polymer characterization methods, such as differential scanning calorimetry, Fourier transform infrared spectroscopy, gel permeation chromatography, X-ray photoelectron spectroscopy, and microscopy. Pellets were exposed to water containing BTEX and the ethers at 130-190 μg L-1 for up to two weeks. Aqueous sorbate concentrations were determined by headspace gas chromatography. Sorption to the polymers was correlated with the sorbate's Kow and was significant for BTEX and marginal for the ethers. Due to substantially lower glass transition temperatures, PP showed higher sorption than PS. Aging had no effect on the sorption behavior of PP. PS sorbed less BTEX after aging due to an oxidized surface layer.
Collapse
Affiliation(s)
- Axel Müller
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Roland Becker
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Ute Dorgerloh
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Franz-Georg Simon
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Ulrike Braun
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| |
Collapse
|