1
|
Bai S, Liu Z, Xu J, Li Y, Zhang Z, Huang Z, Gustave W, Li B, Zhang X, He F. Challenges of Using Whole-Cell Bioreporter for Assessment of Heavy Metal Bioavailability in Soil/Sediment. BIOSENSORS 2025; 15:260. [PMID: 40277573 PMCID: PMC12025839 DOI: 10.3390/bios15040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/25/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Soil and sediment contamination with heavy metals (HMs) is a critical environmental issue, posing significant risks to both ecosystems and human health. Whole-cell bioreporter (WCB) technology offers a promising alternative to traditional detection techniques due to its ability to rapidly assess the bioavailability of pollutants. Specifically, lights-on WCBs quantify pollutant bioavailability by measuring bioluminescence or fluorescence in response to pollutant exposure, demonstrating comparable accuracy to traditional methods for quantitative pollutant detection. However, when applied to soil and sediment, the signal intensity directly measured by WCBs is often attenuated due to interference from solid particles, leading to the underestimation of bioavailability. Currently, no standardized method exists to correct for this signal attenuation. This review provides a critical analysis of the benefits and limitations of traditional detection methods and WCB technology in assessing HM bioavailability in soil and sediment. Based on the approaches used to address WCB signal attenuation, correction methods are categorized into four types: the assumed negligible method, the non-inducible luminescent control method, the addition of a standard to a reference soil, and a pre-exposure bioreporter. We provide a comprehensive analysis of each method's applicability, benefits, and limitations. Lastly, potential future directions for advancing WCB technology are proposed. This review seeks to establish a theoretical foundation for researchers and environmental professionals utilizing WCB technology for pollutant bioavailability assessment in soil and sediment.
Collapse
Affiliation(s)
- Shanshan Bai
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhipeng Liu
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Jiazhi Xu
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Yongshuo Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zirun Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zefeng Huang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, Nassau 4912, Bahamas;
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215123, China;
- Meadows Center for Water and the Environment, Texas State University, San Marcos, TX 78666, USA
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Feng He
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Rotureau E, Pagnout C, Duval JFL. Physicochemical Rationale of Matrix Effects Involved in the Response of Hydrogel-Embedded Luminescent Metal Biosensors. BIOSENSORS 2024; 14:552. [PMID: 39590011 PMCID: PMC11591670 DOI: 10.3390/bios14110552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
There is currently a critical need for understanding how the response and activity of whole-cell bacterial reporters positioned in a complex biological or environmental matrix are impacted by the physicochemical properties of their micro-environment. Accordingly, a comprehensive analysis of the bioluminescence response of Cd(II)-inducible PzntA-luxCDABE Escherichia coli biosensors embedded in silica-based hydrogels is reported to decipher how metal bioavailability, cell photoactivity and ensuing light bioproduction are impacted by the hydrogel environment and the associated matrix effects. The analysis includes the account of (i) Cd speciation and accumulation in the host hydrogels, in connection with their reactivity and electrostatic properties, and (ii) the reduced bioavailability of resources for the biosensors confined (deep) inside the hydrogels. The measurements of the bioluminescence response of the Cd(II) inducible-lux biosensors in both hydrogels and free-floating cell suspensions are completed by those of the constitutive rrnB P1-luxCDABE E. coli so as to probe cell metabolic activity in these two situations. The approach contributes to unraveling the connections between the electrostatic hydrogel charge, the nutrient/metal bioavailabilities and the resulting Cd-triggered bioluminescence output. Biosensors are hosted in hydrogels with thickness varying between 0 mm (the free-floating cell situation) and 1.6 mm, and are exposed to total Cd concentrations from 0 to 400 nM. The partitioning of bioavailable metals at the hydrogel/solution interface following intertwined metal speciation, diffusion and Boltzmann electrostatic accumulation is addressed by stripping chronopotentiometry. In turn, we detail how the bioluminescence maxima generated by the Cd-responsive cells under all tested Cd concentration and hydrogel thickness conditions collapse remarkably well on a single plot featuring the dependence of bioluminescence on free Cd concentration at the individual cell level. Overall, the construction of this master curve integrates the contributions of key and often overlooked processes that govern the bioavailability properties of metals in 3D matrices. Accordingly, the work opens perspectives for quantitative and mechanistic monitoring of metals by biosensors in environmental systems like biofilms or sediments.
Collapse
Affiliation(s)
- Elise Rotureau
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France;
| | | | | |
Collapse
|
3
|
Che H, Tian X, Nie Y, Li Y, Lu L, Hu Y. Multi-targets detection via combination of multi-stimulus-response engineered bacteria and hydrogel-based separation platform. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135578. [PMID: 39173378 DOI: 10.1016/j.jhazmat.2024.135578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Establishing a method similar to ICP-MS that can quantitatively analyze multiple heavy metals simultaneously, conveniently, and in situ is highly anticipated. In this study, we integrated the sensing elements of multiple targets and different fluorescence reporting elements to construct an engineered Escherichia coli. When these targets are present, the engineered bacteria can emit a fluorescent signal at the corresponding wavelength. To avoid the inability to accurately distinguish and quantify the content of each target due to the overlap of fluorescence signals when multiple targets coexist, a hydrogel-based separation platform similar to a separation column was constructed. The hydrogel platform can change the detection limit (LOD) and sensitivity by adjusting the adsorption strength towards different targets, so as to realize the differentiation and recognition of their respective detection signals. The LODs of this new detection method for Cd(II), Hg(II), As(III), and Pb(II) are 1.249, 0.380, 3.917, and 0.755 μg/L, respectively. In addition, this biosensor system was applied to detect coexisting Cd(II), Hg(II), As(III), and Pb(II) in actual samples with a recovery rate of 85.61-110.30 %, which is consistent with the classical ICP-MS detection results, confirming the accuracy and reliability of the method for detecting multiple heavy metal coexisting samples.
Collapse
Affiliation(s)
- Huachao Che
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yong Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Liqiang Lu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yuguang Hu
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Advanced Studies, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
4
|
Saharan BS, Chaudhary T, Mandal BS, Kumar D, Kumar R, Sadh PK, Duhan JS. Microbe-Plant Interactions Targeting Metal Stress: New Dimensions for Bioremediation Applications. J Xenobiot 2023; 13:252-269. [PMID: 37367495 DOI: 10.3390/jox13020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
In the age of industrialization, numerous non-biodegradable pollutants like plastics, HMs, polychlorinated biphenyls, and various agrochemicals are a serious concern. These harmful toxic compounds pose a serious threat to food security because they enter the food chain through agricultural land and water. Physical and chemical techniques are used to remove HMs from contaminated soil. Microbial-metal interaction, a novel but underutilized strategy, might be used to lessen the stress caused by metals on plants. For reclaiming areas with high levels of heavy metal contamination, bioremediation is effective and environmentally friendly. In this study, the mechanism of action of endophytic bacteria that promote plant growth and survival in polluted soils-known as heavy metal-tolerant plant growth-promoting (HMT-PGP) microorganisms-and their function in the control of plant metal stress are examined. Numerous bacterial species, such as Arthrobacter, Bacillus, Burkholderia, Pseudomonas, and Stenotrophomonas, as well as a few fungi, such as Mucor, Talaromyces, Trichoderma, and Archaea, such as Natrialba and Haloferax, have also been identified as potent bioresources for biological clean-up. In this study, we additionally emphasize the role of plant growth-promoting bacteria (PGPB) in supporting the economical and environmentally friendly bioremediation of heavy hazardous metals. This study also emphasizes future potential and constraints, integrated metabolomics approaches, and the use of nanoparticles in microbial bioremediation for HMs.
Collapse
Affiliation(s)
- Baljeet Singh Saharan
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Twinkle Chaudhary
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - Balwan Singh Mandal
- Department of Forestry, CCS Haryana Agricultural University, Hisar 125004, India
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India
| | - Ravinder Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Pardeep Kumar Sadh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
| | | |
Collapse
|
5
|
Allouzi MMA, Allouzi S, Al-Salaheen B, Khoo KS, Rajendran S, Sankaran R, Sy-Toan N, Show PL. Current advances and future trend of nanotechnology as microalgae-based biosensor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Homburg SV, Patel AV. Silica Hydrogels as Entrapment Material for Microalgae. Polymers (Basel) 2022; 14:polym14071391. [PMID: 35406264 PMCID: PMC9002651 DOI: 10.3390/polym14071391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
Despite being a promising feedstock for food, feed, chemicals, and biofuels, microalgal production processes are still uneconomical due to slow growth rates, costly media, problematic downstreaming processes, and rather low cell densities. Immobilization via entrapment constitutes a promising tool to overcome these drawbacks of microalgal production and enables continuous processes with protection against shear forces and contaminations. In contrast to biopolymer gels, inorganic silica hydrogels are highly transparent and chemically, mechanically, thermally, and biologically stable. Since the first report on entrapment of living cells in silica hydrogels in 1989, efforts were made to increase the biocompatibility by omitting organic solvents during hydrolysis, removing toxic by-products, and replacing detrimental mineral acids or bases for pH adjustment. Furthermore, methods were developed to decrease the stiffness in order to enable proliferation of entrapped cells. This review aims to provide an overview of studied entrapment methods in silica hydrogels, specifically for rather sensitive microalgae.
Collapse
Affiliation(s)
- Sarah Vanessa Homburg
- WG Fermentation and Formulation of Biologicals and Chemicals, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Interaktion 1, 33619 Bielefeld, Germany
| | - Anant V Patel
- WG Fermentation and Formulation of Biologicals and Chemicals, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Interaktion 1, 33619 Bielefeld, Germany
| |
Collapse
|
7
|
Kamanina OA, Saverina EA, Rybochkin PV, Arlyapov VA, Vereshchagin AN, Ananikov VP. Preparation of Hybrid Sol-Gel Materials Based on Living Cells of Microorganisms and Their Application in Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1086. [PMID: 35407203 PMCID: PMC9000353 DOI: 10.3390/nano12071086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 01/09/2023]
Abstract
Microorganism-cell-based biohybrid materials have attracted considerable attention over the last several decades. They are applied in a broad spectrum of areas, such as nanotechnologies, environmental biotechnology, biomedicine, synthetic chemistry, and bioelectronics. Sol-gel technology allows us to obtain a wide range of high-purity materials from nanopowders to thin-film coatings with high efficiency and low cost, which makes it one of the preferred techniques for creating organic-inorganic matrices for biocomponent immobilization. This review focuses on the synthesis and application of hybrid sol-gel materials obtained by encapsulation of microorganism cells in an inorganic matrix based on silicon, aluminum, and transition metals. The type of immobilized cells, precursors used, types of nanomaterials obtained, and their practical applications were analyzed in detail. In addition, techniques for increasing the microorganism effective time of functioning and the possibility of using sol-gel hybrid materials in catalysis are discussed.
Collapse
Affiliation(s)
- Olga A. Kamanina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia; (O.A.K.); (E.A.S.); (P.V.R.); (V.A.A.)
| | - Evgeniya A. Saverina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia; (O.A.K.); (E.A.S.); (P.V.R.); (V.A.A.)
| | - Pavel V. Rybochkin
- Tula State University, Lenin pr. 92, 300012 Tula, Russia; (O.A.K.); (E.A.S.); (P.V.R.); (V.A.A.)
| | - Vyacheslav A. Arlyapov
- Tula State University, Lenin pr. 92, 300012 Tula, Russia; (O.A.K.); (E.A.S.); (P.V.R.); (V.A.A.)
| | | | - Valentine P. Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|