1
|
Brooks C, Brooks S, Beasley J, Valley J, Opata M, Karatan E, Bleich R. The influence of environmental factors on the detection and quantification of SARS-CoV-2 variants in dormitory wastewater at a primarily undergraduate institution. Microbiol Spectr 2025; 13:e0200324. [PMID: 39792012 PMCID: PMC11792549 DOI: 10.1128/spectrum.02003-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
Testing for the causative agent of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been crucial in tracking disease spread and informing public health decisions. Wastewater-based epidemiology has helped to alleviate some of the strain of testing through broader, population-level surveillance, and has been applied widely on college campuses. However, questions remain about the impact of various sampling methods, target types, environmental factors, and infrastructure variables on SARS-CoV-2 detection. Here, we present a data set of over 800 wastewater samples that sheds light on the influence of a variety of these factors on SARS-CoV-2 quantification using droplet digital PCR (ddPCR) from building-specific sewage infrastructure. We consistently quantified a significantly higher number of copies of virus per liter for the target nucleocapsid 2 (N2) compared to nucleocapsid 1 (N1), regardless of the sampling method (grab vs composite). We further show some dormitory-specific differences in SARS-CoV-2 abundance, including correlations to dormitory population size. Environmental variables like precipitation and temperature show little to no impact on virus load, with the exception of higher temperatures for grab sample data. We observed significantly higher gene copy numbers of the Omicron variant than the Delta variant within ductile iron pipes but no difference in nucleocapsid abundance (N1 or N2) across the three different sewage pipe types in our data set. Our results indicate that contextual variables should be considered when interpreting wastewater-based epidemiological data. IMPORTANCE Testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has been crucial in tracking the spread of the virus and informing public health decisions. SARS-CoV-2 viral RNA is shed by symptomatic and asymptomatic infected individuals, allowing its genetic material to be detected and quantified in wastewater. Here, we used wastewater-based epidemiology to measure SARS-CoV-2 viral RNA from several dormitories on the Appalachian State University campus and examined the impact of sampling methods, target types, environmental factors, and infrastructure variables on quantification. Changes in the quantification of SARS-CoV-2 were observed based on target type, as well as trends for the quantification of the Delta and Omicron variants by sampling method. These results highlight the value of applying the data-inquiry practices used in this study to better contextualize wastewater sampling results.
Collapse
Affiliation(s)
- Chequita Brooks
- Department of Biology, Appalachian State University, Boone, North Carolina, USA
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
| | - Sebrina Brooks
- Department of Biology, University of North Carolina at Wilmington, Wilmington, North Carolina, USA
| | - Josie Beasley
- Department of Biology, Appalachian State University, Boone, North Carolina, USA
| | - Jenna Valley
- Department of Biology, Appalachian State University, Boone, North Carolina, USA
| | - Michael Opata
- Department of Biology, Appalachian State University, Boone, North Carolina, USA
| | - Ece Karatan
- Department of Biology, Appalachian State University, Boone, North Carolina, USA
| | - Rachel Bleich
- Department of Biology, Appalachian State University, Boone, North Carolina, USA
| |
Collapse
|
2
|
Jourdain F, Toro L, Senta-Loÿs Z, Deryene M, Mokni W, Azevedo Da Graça T, Le Strat Y, Rahali S, Yamada A, Maisa A, Pretet M, Sudour J, Cordevant C, Chesnot T, Roman V, Wilhelm A, Gassilloud B, Mouly D. Wastewater-Based Epidemiological Surveillance in France: The SUM'EAU Network. Microorganisms 2025; 13:281. [PMID: 40005648 PMCID: PMC11857653 DOI: 10.3390/microorganisms13020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Wastewater surveillance is a powerful public health tool which gained global prominence during the COVID-19 pandemic. This article describes the development and implementation of the national wastewater surveillance network in France: SUM'EAU. Preliminary work included defining a sampling strategy, evaluating/optimising analytical methods, launching a call for tenders to select network laboratories and producing wastewater monitoring indicators. SUM'EAU was then deployed in three stages: (i) a pilot study, (ii) the transfer of analytical activities from the National Reference Laboratory to four selected network laboratories, and (iii) the extension of the system to additional sampling sites. Currently, SUM'EAU monitors SARS-CoV-2 across 54 wastewater treatment plants in mainland France. Once a week on business days, 24 h flow-proportional composite samples are collected at plant inlets and transported at 5 °C (±3 °C) to partner laboratories for analysis. The analytical process involves sample concentration, RNA extraction, and digital RT-PCR/q-RT-PCR to detect and quantify the presence of the SARS-CoV-2 genome in wastewater. Subsequently, data are transferred to Santé publique France, the French National Public Health Agency, for analysis and interpretation. While SUM'EAU has been instrumental in monitoring the COVID-19 pandemic and holds significant potential for broader application, securing sustainable funding for its operation remains a major challenge.
Collapse
Affiliation(s)
- Frédéric Jourdain
- Occitanie Regional Office, Regional Division, Santé Publique France (French National Public Health Agency), 31050 Toulouse, France;
| | - Laila Toro
- Occitanie Regional Office, Regional Division, Santé Publique France (French National Public Health Agency), 31050 Toulouse, France;
| | - Zoé Senta-Loÿs
- General Directorate for Health, Ministry of Health, 75007 Paris, France (W.M.)
| | - Marilyne Deryene
- General Directorate for Health, Ministry of Health, 75007 Paris, France (W.M.)
| | - Walid Mokni
- General Directorate for Health, Ministry of Health, 75007 Paris, France (W.M.)
| | - Tess Azevedo Da Graça
- Data Division, Santé Publique France (French National Public Health Agency), 94415 Saint-Maurice, France
| | - Yann Le Strat
- Data Division, Santé Publique France (French National Public Health Agency), 94415 Saint-Maurice, France
| | - Sofiane Rahali
- Data Division, Santé Publique France (French National Public Health Agency), 94415 Saint-Maurice, France
| | - Ami Yamada
- Regional Division, Santé Publique France (French National Public Health Agency), 94415 Saint-Maurice, France;
| | - Anna Maisa
- Infectious Diseases Division, Santé Publique France (French National Public Health Agency), 94415 Saint-Maurice, France
| | - Maël Pretet
- Data Division, Santé Publique France (French National Public Health Agency), 94415 Saint-Maurice, France
| | - Jeanne Sudour
- Data Division, Santé Publique France (French National Public Health Agency), 94415 Saint-Maurice, France
| | - Christophe Cordevant
- Strategy and Programs Department, Research and Reference Division, ANSES, 94701 Maisons-Alfort, France;
| | - Thierry Chesnot
- Nancy Laboratory for Hydrology, ANSES, 54000 Nancy, France (V.R.)
| | - Veronica Roman
- Nancy Laboratory for Hydrology, ANSES, 54000 Nancy, France (V.R.)
| | - Amandine Wilhelm
- Nancy Laboratory for Hydrology, ANSES, 54000 Nancy, France (V.R.)
| | | | - Damien Mouly
- Occitanie Regional Office, Regional Division, Santé Publique France (French National Public Health Agency), 31050 Toulouse, France;
| |
Collapse
|
3
|
Chen C, Wang Y, Kaur G, Adiga A, Espinoza B, Venkatramanan S, Warren A, Lewis B, Crow J, Singh R, Lorentz A, Toney D, Marathe M. Wastewater-based epidemiology for COVID-19 surveillance and beyond: A survey. Epidemics 2024; 49:100793. [PMID: 39357172 DOI: 10.1016/j.epidem.2024.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
The pandemic of COVID-19 has imposed tremendous pressure on public health systems and social economic ecosystems over the past years. To alleviate its social impact, it is important to proactively track the prevalence of COVID-19 within communities. The traditional way to estimate the disease prevalence is to estimate from reported clinical test data or surveys. However, the coverage of clinical tests is often limited and the tests can be labor-intensive, requires reliable and timely results, and consistent diagnostic and reporting criteria. Recent studies revealed that patients who are diagnosed with COVID-19 often undergo fecal shedding of SARS-CoV-2 virus into wastewater, which makes wastewater-based epidemiology for COVID-19 surveillance a promising approach to complement traditional clinical testing. In this paper, we survey the existing literature regarding wastewater-based epidemiology for COVID-19 surveillance and summarize the current advances in the area. Specifically, we have covered the key aspects of wastewater sampling, sample testing, and presented a comprehensive and organized summary of wastewater data analytical methods. Finally, we provide the open challenges on current wastewater-based COVID-19 surveillance studies, aiming to encourage new ideas to advance the development of effective wastewater-based surveillance systems for general infectious diseases.
Collapse
Affiliation(s)
- Chen Chen
- Department of Computer Science, University of Virginia, Charlottesville, 22904, United States.
| | - Yunfan Wang
- Department of Computer Science, University of Virginia, Charlottesville, 22904, United States.
| | - Gursharn Kaur
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States.
| | - Aniruddha Adiga
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States.
| | - Baltazar Espinoza
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States.
| | - Srinivasan Venkatramanan
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States.
| | - Andrew Warren
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States.
| | - Bryan Lewis
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States.
| | - Justin Crow
- Virginia Department of Health, Richmond, 23219, United States.
| | - Rekha Singh
- Virginia Department of Health, Richmond, 23219, United States.
| | - Alexandra Lorentz
- Division of Consolidated Laboratory Services, Department of General Services, Richmond, 23219, United States.
| | - Denise Toney
- Division of Consolidated Laboratory Services, Department of General Services, Richmond, 23219, United States.
| | - Madhav Marathe
- Department of Computer Science, University of Virginia, Charlottesville, 22904, United States; Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States.
| |
Collapse
|
4
|
Diamanti C, Nousis L, Bozidis P, Koureas M, Kyritsi M, Markozannes G, Simantiris N, Panteli E, Koutsolioutsou A, Tsilidis K, Hadjichristodoulou C, Koutsotoli A, Christaki E, Alivertis D, Bartzokas A, Gartzonika K, Dovas C, Ntzani E. Wastewater Surveillance of SARS-CoV-2: A Comparison of Two Concentration Methods. Viruses 2024; 16:1398. [PMID: 39339875 PMCID: PMC11436116 DOI: 10.3390/v16091398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Wastewater surveillance is crucial for the epidemiological monitoring of SARS-CoV-2. Various concentration techniques, such as skimmed milk flocculation (SMF) and polyethylene glycol (PEG) precipitation, are employed to isolate the virus effectively. This study aims to compare these two methods and determine the one with the superior recovery rates. From February to December 2021, 24-h wastewater samples were collected from the Ioannina Wastewater Treatment Plant's inlet and processed using both techniques. Subsequent viral genome isolation and a real-time RT-qPCR detection of SARS-CoV-2 were performed. The quantitative analysis demonstrated a higher detection sensitivity with a PEG-based concentration than SMF. Moreover, when the samples were positive by both methods, PEG consistently yielded higher viral loads. These findings underscore the need for further research into concentration methodologies and the development of precise protocols to enhance epidemiological surveillance through wastewater analysis.
Collapse
Affiliation(s)
- Christina Diamanti
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece; (C.D.); (L.N.); (G.M.); (N.S.); (E.P.); (K.T.); (A.K.)
| | - Lambros Nousis
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece; (C.D.); (L.N.); (G.M.); (N.S.); (E.P.); (K.T.); (A.K.)
| | - Petros Bozidis
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (P.B.); (K.G.)
| | - Michalis Koureas
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Str., 41222 Larissa, Greece; (M.K.); (M.K.); (C.H.)
| | - Maria Kyritsi
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Str., 41222 Larissa, Greece; (M.K.); (M.K.); (C.H.)
| | - George Markozannes
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece; (C.D.); (L.N.); (G.M.); (N.S.); (E.P.); (K.T.); (A.K.)
| | - Nikolaos Simantiris
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece; (C.D.); (L.N.); (G.M.); (N.S.); (E.P.); (K.T.); (A.K.)
| | - Eirini Panteli
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece; (C.D.); (L.N.); (G.M.); (N.S.); (E.P.); (K.T.); (A.K.)
| | | | - Konstantinos Tsilidis
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece; (C.D.); (L.N.); (G.M.); (N.S.); (E.P.); (K.T.); (A.K.)
| | - Christos Hadjichristodoulou
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Str., 41222 Larissa, Greece; (M.K.); (M.K.); (C.H.)
- National Public Health Organization, 15123 Athens, Greece;
| | - Alexandra Koutsotoli
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece; (C.D.); (L.N.); (G.M.); (N.S.); (E.P.); (K.T.); (A.K.)
| | - Eirini Christaki
- 1st Division of Internal Medicine & Infectious Diseases Unit, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45500 Ioannina, Greece;
| | - Dimitrios Alivertis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina 45110, Greece;
| | - Aristides Bartzokas
- Laboratory of Meteorology, Department of Physics, University of Ioannina, Ioannina, Greece;
| | - Konstantina Gartzonika
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (P.B.); (K.G.)
| | - Chrysostomos Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece;
| | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Ioannina, 45100 Ioannina, Greece; (C.D.); (L.N.); (G.M.); (N.S.); (E.P.); (K.T.); (A.K.)
- Center for Evidence Synthesis in Health, Department of Health Services, Policy and Practice, School of Public Health, Brown University, Providence, RI 02912, USA
- Biomedical Research Institute, Foundation for Research and Technology, 45110 Ioannina, Greece
| |
Collapse
|
5
|
Marin-Ramirez A, Mahoney T, Smith T, Holm RH. Predicting wastewater treatment plant influent in mixed, separate, and combined sewers using nearby surface water discharge for better wastewater-based epidemiology sampling design. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167375. [PMID: 37774884 DOI: 10.1016/j.scitotenv.2023.167375] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/28/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
For wastewater sample collection approaches supporting public health applications, few high hydrologic activity normalizing guidelines currently consider readily available environmental flow data that may earlier capture information regarding periods of influent mixing and dilution of wastewater with groundwater and runoff. This study aimed to identify wastewater sampling rules for high hydrological activity events, allowing for an earlier decision point in the control of dilution before sample collection. We defined the sampling rules via data-driven models (Random Forest and linear regression) using environmental data (i.e., wastewater treatment facility influent rates, nearby stream discharge flow, and precipitation). These models were applied to five treatment plants in Jefferson County, Kentucky (USA) in mixed, separate, and combined sewers with different population sizes. We proposed cutoffs of 10 %, 25 %, and 50 % flow conditions for orientation towards public health samples. The results showed a strong nonlinear relationship between nearby stream discharge and treatment facility flow rates, which was used to infer the hydrological conditions that produce high volumes of diluted wastewater in the sewer system. Accumulated Local Effects and SHapley Additive exPlanations aided in deciphering the relationship between the predictors and response variables of the Random Forest models. The influent rate to the treatment plant from the previous day and two USGS stream gages were needed to adequately predict the degree of infiltration and inflow mixing on a given day. Surface water discharge data can be used to provide an earlier workflow decision point during wet weather periods to improve understanding of flow conditions for wastewater-based epidemiological studies to inform laboratory analysis and data interpretation. Not only total flow, but also the specific proportions of infiltration and inflow to wastewater volume in influent should be considered when analyzing data for normalization purposes, and our method provides a starting point for doing so rapidly and at low cost.
Collapse
Affiliation(s)
- Arlex Marin-Ramirez
- Department of Civil and Environmental Engineering, J. B. Speed School of Engineering, University of Louisville, 132 E. Pkwy., Louisville, KY 40202, United States
| | - Tyler Mahoney
- Department of Civil and Environmental Engineering, J. B. Speed School of Engineering, University of Louisville, 132 E. Pkwy., Louisville, KY 40202, United States
| | - Ted Smith
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd., Louisville, KY 40202, United States
| | - Rochelle H Holm
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd., Louisville, KY 40202, United States.
| |
Collapse
|
6
|
Baz Lomba JA, Pires J, Myrmel M, Arnø JK, Madslien EH, Langlete P, Amato E, Hyllestad S. Effectiveness of environmental surveillance of SARS-CoV-2 as an early-warning system: Update of a systematic review during the second year of the pandemic. JOURNAL OF WATER AND HEALTH 2024; 22:197-234. [PMID: 38295081 PMCID: wh_2023_279 DOI: 10.2166/wh.2023.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The aim of this updated systematic review was to offer an overview of the effectiveness of environmental surveillance (ES) of SARS-CoV-2 as a potential early-warning system (EWS) for COVID-19 and new variants of concerns (VOCs) during the second year of the pandemic. An updated literature search was conducted to evaluate the added value of ES of SARS-CoV-2 for public health decisions. The search for studies published between June 2021 and July 2022 resulted in 1,588 publications, identifying 331 articles for full-text screening. A total of 151 publications met our inclusion criteria for the assessment of the effectiveness of ES as an EWS and early detection of SARS-CoV-2 variants. We identified a further 30 publications among the grey literature. ES confirms its usefulness as an EWS for detecting new waves of SARS-CoV-2 infection with an average lead time of 1-2 weeks for most of the publication. ES could function as an EWS for new VOCs in areas with no registered cases or limited clinical capacity. Challenges in data harmonization and variant detection require standardized approaches and innovations for improved public health decision-making. ES confirms its potential to support public health decision-making and resource allocation in future outbreaks.
Collapse
Affiliation(s)
- Jose Antonio Baz Lomba
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway E-mail:
| | - João Pires
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway; ECDC fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, Norwegian University of Life Science (NMBU), Oslo, Norway
| | - Jorunn Karterud Arnø
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Henie Madslien
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Langlete
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Susanne Hyllestad
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
7
|
Triggiano F, De Giglio O, Apollonio F, Brigida S, Fasano F, Mancini P, Bonanno Ferraro G, Veneri C, La Rosa G, Suffredini E, Lucentini L, Ungaro N, Di Vittorio G, Mongelli O, Albano N, Montagna MT. Wastewater-based Epidemiology and SARS-CoV-2: Variant Trends in the Apulia Region (Southern Italy) and Effect of Some Environmental Parameters. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:331-341. [PMID: 37735299 PMCID: PMC10654208 DOI: 10.1007/s12560-023-09565-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
During the COVID-19 pandemic, wastewater monitoring has been used to monitor the levels of SARS-CoV-2 RNA entering the sewerage system. In Italy, the Istituto Superiore di Sanità coordinated the SARI project (Sorveglianza Ambientale Reflue in Italia) to detect SARS-CoV-2 and its variants. In this study, the concentration of SARS-CoV-2 and its variants in raw wastewater against COVID-19 cases was evaluated together with the effect of temperature and precipitation on virus spread. We validated a predictive model, proposed by De Giglio et al., 2021, to establish the number of COVID-19 cases/100,000 inhabitants. A receiver operating characteristic curve model was applied to predict the number of COVID-19 cases and Poisson regression was applied to study the effect of temperature and rainfall on viral load. In Apulia, from October 2021 to December 2022, we analyzed 1041 samples, of which 985 (94.6%) tested positive for SARS-CoV-2. Median atmospheric temperature was inversely proportional to viral load in wastewater; no correlation was found with precipitation. The predictive model confirmed that at least 11 cases/100,000 inhabitants would occur in the 15 days following the detection of the virus in wastewater. Environmental surveillance of SARS-CoV-2 can be used to map the virus and its variants.
Collapse
Affiliation(s)
- Francesco Triggiano
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Piazza G. Cesare 11, Bari, 70124, Italy
| | - Osvalda De Giglio
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Piazza G. Cesare 11, Bari, 70124, Italy.
| | - Francesca Apollonio
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Piazza G. Cesare 11, Bari, 70124, Italy
| | - Silvia Brigida
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Campus Ecotekne, Monteroni di Lecce, Lecce, 73047, Italy
| | - Fabrizio Fasano
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Piazza G. Cesare 11, Bari, 70124, Italy
| | - Pamela Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Giusy Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Carolina Veneri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Luca Lucentini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Nicola Ungaro
- Agency for the Environmental Prevention and Protection (ARPA Puglia), Corso Trieste 27, Bari, 70126, Italy
| | | | - Onofrio Mongelli
- Department of Health Promotion and Animal Welfare, Apulia Region, Bari, Italy
| | - Nelhudoff Albano
- Department of Health Promotion and Animal Welfare, Apulia Region, Bari, Italy
| | - Maria Teresa Montagna
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Piazza G. Cesare 11, Bari, 70124, Italy
| |
Collapse
|
8
|
König AW, Ariano SS, Joksimovic D. Analysis of sampling strategies for pulse loads of SARS-CoV-2: implications for wastewater-based epidemiology. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1039-1057. [PMID: 37651336 PMCID: wst_2023_233 DOI: 10.2166/wst.2023.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A faecal transport model was applied to a 11.3 km2 wastewater servicing area in Toronto, Ontario, Canada to explore the role that different wastewater sampling campaigns have on estimating the prevalence of SARS-CoV-2 in a population of 60,000. A stochastic wastewater and water quality model was used to evaluate the effectiveness of 11 sampling campaigns during periods of high and low COVID-19 infection among the population, tested using virtual sampling during dry-weather flow. The virtual sampling campaigns were based on the most common automatic sampler programming capabilities and widely used wastewater-based epidemiology (WBE) sampling campaigns reported in the literature. Sampling campaigns differ in weighting method (time, volume, or flow-weighted sampling), sample count, collection period, or sample time. Results suggest that grab samples should be avoided and/or that sampling campaigns with the greatest sample counts and durations are the most robust at capturing COVID-19 infection among the population. Most surprisingly, changes to the weighting method were negligible indicating that a greater number of samples, and larger sample volumes are preferred. This work suggests that investment in flow monitoring equipment for flow- or volume-weighted sampling will not improve WBE results, and that standard time based sampling is sufficient.
Collapse
Affiliation(s)
- Albert Wilhelm König
- Institute of Urban Water Management and Landscape Water Engineering, Graz University of Technolog, Stremayrgasse 10/1, Graz 8010, Austria E-mail:
| | - Sarah Sydney Ariano
- Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, QC, H3A 0E8, Canada
| | - Darko Joksimovic
- Department of Civil Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
9
|
Adachi Katayama Y, Hayase S, Ando Y, Kuroita T, Okada K, Iwamoto R, Yanagimoto T, Kitajima M, Masago Y. COPMAN: A novel high-throughput and highly sensitive method to detect viral nucleic acids including SARS-CoV-2 RNA in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158966. [PMID: 36162583 PMCID: PMC9502438 DOI: 10.1016/j.scitotenv.2022.158966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 05/15/2023]
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, wastewater-based epidemiology (WBE) attracted attention as an objective and comprehensive indicator of community infection that does not require individual inspection. Although several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection methods from wastewater have been developed, there are obstacles to their social implementation. In this study, we developed the COPMAN (Coagulation and Proteolysis method using Magnetic beads for detection of Nucleic acids in wastewater), an automatable method that can concentrate and detect multiple types of viruses from a limited volume (∼10 mL) of wastewater. The COPMAN consists of a high basicity polyaluminum chloride (PAC) coagulation process, magnetic bead-based RNA purification, and RT-preamplification, followed by qPCR. A series of enzymes exhibiting a high tolerance to PCR inhibitors derived from wastewater was identified and employed in the molecular detection steps in the COPMAN. We compared the detectability of viral RNA from 10-mL samples of virus-spiked (heat-inactivated SARS-CoV-2 and intact RSV) or unspiked wastewater by the COPMAN and other methods (PEG-qPCR, UF-qPCR, and EPISENS-S). The COPMAN was the most efficient for detecting spiked viruses from wastewater, detecting the highest level of pepper mild mottle virus (PMMoV), a typical intrinsic virus in human stool, from wastewater samples. The COPMAN also successfully detected indigenous SARS-CoV-2 RNA from 12 samples of wastewater at concentrations of 2.2 × 104 to 5.4 × 105 copies/L, during initial stages of an infection wave in the right and the left bank of the Sagami River in Japan (0.65 to 11.45 daily reported cases per 100,000 people). These results indicate that the COPMAN is suitable for detection of multiple pathogens from small volume of wastewater in automated stations.
Collapse
Affiliation(s)
- Yuka Adachi Katayama
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Shin Hayase
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Yoshinori Ando
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Tomohiro Kuroita
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan; AdvanSentinel Inc., 3-1-8 Doshomachi, Chuo-ku, Osaka 541-0045, Japan
| | - Kazuya Okada
- Shionogi & Co., Ltd., Head Office, 3-1-8 Doshomachi, Chuo-ku, Osaka 541-0045, Japan
| | - Ryo Iwamoto
- Shionogi & Co., Ltd., Head Office, 3-1-8 Doshomachi, Chuo-ku, Osaka 541-0045, Japan; AdvanSentinel Inc., 3-1-8 Doshomachi, Chuo-ku, Osaka 541-0045, Japan
| | - Toru Yanagimoto
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yusaku Masago
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan.
| |
Collapse
|
10
|
Li X, Zhang S, Sherchan S, Orive G, Lertxundi U, Haramoto E, Honda R, Kumar M, Arora S, Kitajima M, Jiang G. Correlation between SARS-CoV-2 RNA concentration in wastewater and COVID-19 cases in community: A systematic review and meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129848. [PMID: 36067562 PMCID: PMC9420035 DOI: 10.1016/j.jhazmat.2022.129848] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/26/2023]
Abstract
Wastewater-based epidemiology (WBE) has been considered as a promising approach for population-wide surveillance of coronavirus disease 2019 (COVID-19). Many studies have successfully quantified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentration in wastewater (CRNA). However, the correlation between the CRNA and the COVID-19 clinically confirmed cases in the corresponding wastewater catchments varies and the impacts of environmental and other factors remain unclear. A systematic review and meta-analysis were conducted to identify the correlation between CRNA and various types of clinically confirmed case numbers, including prevalence and incidence rates. The impacts of environmental factors, WBE sampling design, and epidemiological conditions on the correlation were assessed for the same datasets. The systematic review identified 133 correlation coefficients, ranging from -0.38 to 0.99. The correlation between CRNA and new cases (either daily new, weekly new, or future cases) was stronger than that of active cases and cumulative cases. These correlation coefficients were potentially affected by environmental and epidemiological conditions and WBE sampling design. Larger variations of air temperature and clinical testing coverage, and the increase of catchment size showed strong negative impacts on the correlation between CRNA and COVID-19 case numbers. Interestingly, the sampling technique had negligible impact although increasing the sampling frequency improved the correlation. These findings highlight the importance of viral shedding dynamics, in-sewer decay, WBE sampling design and clinical testing on the accurate back-estimation of COVID-19 case numbers through the WBE approach.
Collapse
Affiliation(s)
- Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Shuxin Zhang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Samendrdra Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, USA
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Unax Lertxundi
- Bioaraba Health Research Institute; Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, Vitoria-Gasteiz, Spain
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Kofu, Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, Jaipur, India
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Hokkaido, Japan
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
11
|
Mitranescu A, Uchaikina A, Kau AS, Stange C, Ho J, Tiehm A, Wurzbacher C, Drewes JE. Wastewater-Based Epidemiology for SARS-CoV-2 Biomarkers: Evaluation of Normalization Methods in Small and Large Communities in Southern Germany. ACS ES&T WATER 2022; 2:2460-2470. [PMID: 37552738 PMCID: PMC9578648 DOI: 10.1021/acsestwater.2c00306] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 06/18/2023]
Abstract
In the context of the COVID-19 pandemic, wastewater-based epidemiology (WBE) emerged as a useful tool to account for the prevalence of SARS-CoV-2 infections on a population scale. In this study, we analyzed wastewater samples from three large (>300,000 people served) and four small (<25,000 people served) communities throughout southern Germany from August to December 2021, capturing the fourth infection wave in Germany dominated by the Delta variant (B.1.617.2). As dilution can skew the SARS-CoV-2 biomarker concentrations in wastewater, normalization to wastewater parameters can improve the relationship between SARS-CoV-2 biomarker data and clinical prevalence data. In this study, we investigated the suitability and performance of various normalization parameters. Influent flow data showed strong relationships to precipitation data; accordingly, flow-normalization reacted distinctly to precipitation events. Normalization by surrogate viruses CrAssphage and pepper mild mottle virus showed varying performance for different sampling sites. The best normalization performance was achieved with a mixed fecal indicator calculated from both surrogate viruses. Analyzing the temporal and spatial variation of normalization parameters proved to be useful to explain normalization performance. Overall, our findings indicate that the performance of surrogate viruses, flow, and hydro-chemical data is site-specific. We recommend testing the suitability of normalization parameters individually for specific sewage systems.
Collapse
Affiliation(s)
- Alexander Mitranescu
- Chair of Urban Water Systems Engineering,
Technical University of Munich, Am Coulombwall 3,
85748Garching, Germany
| | - Anna Uchaikina
- Chair of Urban Water Systems Engineering,
Technical University of Munich, Am Coulombwall 3,
85748Garching, Germany
| | - Anna-Sonia Kau
- Chair of Urban Water Systems Engineering,
Technical University of Munich, Am Coulombwall 3,
85748Garching, Germany
| | - Claudia Stange
- Department of Water Microbiology, TZW:
DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, 76139Karlsruhe,
Germany
| | - Johannes Ho
- Department of Water Microbiology, TZW:
DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, 76139Karlsruhe,
Germany
| | - Andreas Tiehm
- Department of Water Microbiology, TZW:
DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, 76139Karlsruhe,
Germany
| | - Christian Wurzbacher
- Chair of Urban Water Systems Engineering,
Technical University of Munich, Am Coulombwall 3,
85748Garching, Germany
| | - Jörg E. Drewes
- Chair of Urban Water Systems Engineering,
Technical University of Munich, Am Coulombwall 3,
85748Garching, Germany
| |
Collapse
|
12
|
Yu L, Tian Z, Joshi DR, Yuan L, Tuladhar R, Zhang Y, Yang M. Detection of SARS-CoV-2 and Other Viruses in Wastewater: Optimization and Automation of an Aluminum Hydroxide Adsorption-Precipitation Method for Virus Concentration. ACS ES&T WATER 2022; 2:2175-2184. [PMID: 37552732 PMCID: PMC9115887 DOI: 10.1021/acsestwater.2c00079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 06/18/2023]
Abstract
This study aimed to provide a low-cost technique for virus detection in wastewater by improving an aluminum hydroxide adsorption-precipitation method. The releasing efficiency of viruses trapped by the aluminum hydroxide precipitates was improved by adding ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) to dissolve the precipitates at a Na2EDTA·2H2O:AlCl3 molar ratio of 1.8-3.6. The recovery rates of the improved method for seven viruses, including SARS-CoV-2-abEN pseudovirus and six animal viruses, were 5.9-22.3% in tap water and 4.9-35.1% in wastewater. Rotavirus A (9.0-4.5 × 103 copies/mL), porcine circovirus type 2 (5.8-6.4 × 105 copies/mL), and porcine parvovirus (5.6-2.7 × 104 copies/mL) were detected in China's pig farm wastewater, while rotavirus A (2.0 × 103 copies/mL) was detected in hospital wastewater. SARS-CoV-2 was detected in hospital wastewater (8.4 × 102 to 1.4 × 104 copies/mL), sewage (6.4 × 10 to 2.3 × 103 copies/mL), and river water (6.6 × 10 to 9.3 × 10 copies/mL) in Nepal. The method was automized, with a rate of recovery of 4.8 ± 1.4% at a virus concentration of 102 copies/mL. Thus, the established method could be used for wastewater-based epidemiology with sufficient sensitivity in coping with the COVID-19 epidemic and other virus epidemics.
Collapse
Affiliation(s)
- Lina Yu
- State Key Laboratory of Environmental Aquatic
Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- Sino-Danish College, University of
Chinese Academy of Sciences, Beijing 100190,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic
Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
| | - Dev Raj Joshi
- Central Department of Microbiology,
Tribhuvan University, GPO 44613 Kirtipur, Kathmandu,
Nepal
| | - Lin Yuan
- Beijing Sino-science Gene Technology
Company, Ltd., Beijing 102629, China
| | - Reshma Tuladhar
- Central Department of Microbiology,
Tribhuvan University, GPO 44613 Kirtipur, Kathmandu,
Nepal
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic
Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- Sino-Danish College, University of
Chinese Academy of Sciences, Beijing 100190,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Min Yang
- Sino-Danish College, University of
Chinese Academy of Sciences, Beijing 100190,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
- Key Laboratory of Drinking Water Science and Technology,
Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
| |
Collapse
|
13
|
Langan LM, O’Brien M, Rundell ZC, Back JA, Ryan BJ, Chambliss CK, Norman RS, Brooks BW. Comparative Analysis of RNA-Extraction Approaches and Associated Influences on RT-qPCR of the SARS-CoV-2 RNA in a University Residence Hall and Quarantine Location. ACS ES&T WATER 2022; 2:1929-1943. [PMID: 37552714 PMCID: PMC9063990 DOI: 10.1021/acsestwater.1c00476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 05/09/2023]
Abstract
Wastewater-based epidemiology (WBE) provides an early warning and trend analysis approach for determining the presence of COVID-19 in a community and complements clinical testing in assessing the population level, even as viral loads fluctuate. Here, we evaluate combinations of two wastewater concentration methods (i.e., ultrafiltration and composite supernatant-solid), four pre-RNA extraction modifications, and three nucleic acid extraction kits using two different wastewater sampling locations. These consisted of a quarantine facility containing clinically confirmed COVID-19-positive inhabitants and a university residence hall. Of the combinations examined, composite supernatant-solid with pre-RNA extraction consisting of water concentration and RNA/DNA shield performed the best in terms of speed and sensitivity. Further, of the three nucleic acid extraction kits examined, the most variability was associated with the Qiagen kit. Focusing on the quarantine facility, viral concentrations measured in wastewater were generally significantly related to positive clinical cases, with the relationship dependent on method, modification, kit, target, and normalization, although results were variable-dependent on individual time points (Kendall's Tau-b (τ) = 0.17 to 0.6) or cumulatively (Kendall's Tau-b (τ) = -0.048 to 1). These observations can support laboratories establishing protocols to perform wastewater surveillance and monitoring efforts for COVID-19.
Collapse
Affiliation(s)
- Laura M. Langan
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Megan O’Brien
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Zach C. Rundell
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Jeffrey A. Back
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Benjamin J. Ryan
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
| | - C. Kevin Chambliss
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Department of Chemistry and Biochemistry,
Baylor University, One Bear Place #97348, Waco, Texas 76798,
United States
| | - R. Sean Norman
- Environmental Health Sciences, Arnold
School of Public Health, South Carolina, 921 Assembly Street, Columbia,
South Carolina 29208, United States
| | - Bryan W. Brooks
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Institute of Biomedical Studies, Baylor
University, One Bear Place #97224, Waco, Texas 76798, United
States
| |
Collapse
|
14
|
Langan LM, O’Brien M, Lovin LM, Scarlett KR, Davis H, Henke AN, Seidel SE, Archer N, Lawrence E, Norman RS, Bojes HK, Brooks BW. Quantitative Reverse Transcription PCR Surveillance of SARS-CoV-2 Variants of Concern in Wastewater of Two Counties in Texas, United States. ACS ES&T WATER 2022; 2:2211-2224. [PMID: 37552718 PMCID: PMC9291321 DOI: 10.1021/acsestwater.2c00103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 06/02/2023]
Abstract
After its emergence in late November/December 2019, the severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) rapidly spread globally. Recognizing that this virus is shed in feces of individuals and that viral RNA is detectable in wastewater, testing for SARS-CoV-2 in sewage collections systems has allowed for the monitoring of a community's viral burden. Over a 9 month period, the influents of two regional wastewater treatment facilities were concurrently examined for wild-type SARS-CoV-2 along with variants B.1.1.7 and B.1.617.2 incorporated as they emerged. Epidemiological data including new confirmed COVID-19 cases and associated hospitalizations and fatalities were tabulated within each location. RNA from SARS-CoV-2 was detectable in 100% of the wastewater samples, while variant detection was more variable. Quantitative reverse transcription PCR (RT-qPCR) results align with clinical trends for COVID-19 cases, and increases in COVID-19 cases were positively related with increases in SARS-CoV-2 RNA load in wastewater, although the strength of this relationship was location specific. Our observations demonstrate that clinical and wastewater surveillance of SARS-CoV-2 wild type and constantly emerging variants of concern can be combined using RT-qPCR to characterize population infection dynamics. This may provide an early warning for at-risk communities and increases in COVID-19 related hospitalizations.
Collapse
Affiliation(s)
- Laura M. Langan
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Megan O’Brien
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Department of Public Health, Baylor
University, One Bear Place #97343, Waco, Texas 76798, United
States
| | - Lea M. Lovin
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Kendall R. Scarlett
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Haley Davis
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Abigail N. Henke
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Department of Biology, Baylor
University, One Bear Place #97388, Waco, Texas 76798, United
States
| | - Sarah E. Seidel
- Center for Health
Statistics, Texas Department of State Health Services, Austin, Texas
78756, United States
| | - Natalie Archer
- Environmental Epidemiology and Disease Registries
Section, Texas Department of State Health Services, Austin,
Texas 78756, United States
| | - Eric Lawrence
- Environmental Epidemiology and Disease Registries
Section, Texas Department of State Health Services, Austin,
Texas 78756, United States
| | - R. Sean Norman
- Department of Environmental Health Sciences, Arnold School of
Public Health, University of South Carolina, 921 Assembly
Street Columbia, South Carolina 29208, United States
| | - Heidi K. Bojes
- Environmental Epidemiology and Disease Registries
Section, Texas Department of State Health Services, Austin,
Texas 78756, United States
| | - Bryan W. Brooks
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Department of Public Health, Baylor
University, One Bear Place #97343, Waco, Texas 76798, United
States
| |
Collapse
|
15
|
Martins RM, Carvalho T, Bittar C, Quevedo DM, Miceli RN, Nogueira ML, Ferreira HL, Costa PI, Araújo JP, Spilki FR, Rahal P, Calmon MF. Long-Term Wastewater Surveillance for SARS-CoV-2: One-Year Study in Brazil. Viruses 2022; 14:v14112333. [PMID: 36366431 PMCID: PMC9692902 DOI: 10.3390/v14112333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 02/01/2023] Open
Abstract
Wastewater-based epidemiology (WBE) is a tool involving the analysis of wastewater for chemicals and pathogens at the community level. WBE has been shown to be an effective surveillance system for SARS-CoV-2, providing an early-warning-detection system for disease prevalence in the community via the detection of genetic materials in the wastewater. In numerous nation-states, studies have indicated the presence of SARS-CoV-2 in wastewater. Herein, we report the primary time-course monitoring of SARS-CoV-2 RNA in wastewater samples in São José do Rio Preto-SP/Brazil in order to explain the dynamics of the presence of SARS-CoV-2 RNA during one year of the SARS-CoV-2 pandemic and analyze possible relationships with other environmental parameters. We performed RNA quantification of SARS-CoV-2 by RT-qPCR using N1 and N2 targets. The proportion of positive samples for every target resulted in 100% and 96.6% for N1 and N2, respectively. A mean lag of -5 days is observed between the wastewater signal and the new SARS-CoV-2-positive cases reported. A correlation was found between the air and wastewater temperatures and therefore between the SARS-CoV-2 viral titers for N1 and N2 targets. We also observed a correlation between SARS-CoV-2 viral titers and media wastewater flow for the N1 target. In addition, we observed higher viral genome copies within the wastewater samples collected on non-rainy days for the N1 target. Thus, we propose that, based on our results, monitoring raw wastewater may be a broadly applicable strategy that might contribute to resolving the pressing problem of insufficient diagnostic testing; it may represent an inexpensive and early-warning method for future COVID-19 outbreaks, mainly in lower- and middle-income countries.
Collapse
Affiliation(s)
- Renan Moura Martins
- Laboratory of Genomic Studies, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Tamara Carvalho
- Laboratory of Genomic Studies, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Cintia Bittar
- Laboratory of Genomic Studies, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Daniela Muller Quevedo
- Institute of Exact and Technological Sciences (ICET), University Feevale, Novo Hamburgo 93525-075, RS, Brazil
| | - Rafael Nava Miceli
- SeMAE-Autonomous Municipal Water and Sewage Service, São José do Rio Preto 15048-000, SP, Brazil
| | - Mauricio Lacerda Nogueira
- Virology Research Laboratory (LPV), Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
| | - Helena Lage Ferreira
- Applied Preventive Veterinary Medicine Laboratory, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| | - Paulo Inácio Costa
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14801-360, SP, Brazil
| | - João Pessoa Araújo
- Biotechnology Institute, São Paulo State University (UNESP), Botucatu 18607-440, SP, Brazil
| | - Fernando Rosado Spilki
- Molecular Microbiology Laboratory, University Feevale, Novo Hamburgo 93525-075, RS, Brazil
| | - Paula Rahal
- Laboratory of Genomic Studies, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Marilia Freitas Calmon
- Laboratory of Genomic Studies, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
- Correspondence:
| |
Collapse
|
16
|
SARS-CoV-2 Surveillance in Belgian Wastewaters. Viruses 2022; 14:v14091950. [PMID: 36146757 PMCID: PMC9506219 DOI: 10.3390/v14091950] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Wastewater-based surveillance was conducted by the national public health authority to monitor SARS-CoV-2 circulation in the Belgian population. Over 5 million inhabitants representing 45% of the Belgian population were monitored throughout 42 wastewater treatment plants for 15 months comprising three major virus waves. During the entire period, a high correlation was observed between the daily new COVID-19 cases and the SARS-CoV-2 concentration in wastewater corrected for rain impact and covered population size. Three alerting indicators were included in the weekly epidemiological assessment: High Circulation, Fast Increase, and Increasing Trend. These indicators were computed on normalized concentrations per individual treatment plant to allow for a comparison with a reference period as well as between analyses performed by distinct laboratories. When the indicators were not corrected for rain impact, rainy events caused an underestimation of the indicators. Despite this negative impact, the indicators permitted us to effectively monitor the evolution of the fourth virus wave and were considered complementary and valuable information to conventional epidemiological indicators in the weekly wastewater reports communicated to the National Risk Assessment Group.
Collapse
|
17
|
Darques R, Trottier J, Gaudin R, Ait-Mouheb N. Clustering and mapping the first COVID-19 outbreak in France. BMC Public Health 2022; 22:1279. [PMID: 35778679 PMCID: PMC9247918 DOI: 10.1186/s12889-022-13537-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND With more than 160 000 confirmed COVID-19 cases and about 30 000 deceased people at the end of June 2020, France was one of the countries most affected by the coronavirus crisis worldwide. We aim to assess the efficiency of global lockdown policy in limiting spatial contamination through an in-depth reanalysis of spatial statistics in France during the first lockdown and immediate post-lockdown phases. METHODS To reach that goal, we use an integrated approach at the crossroads of geography, spatial epidemiology, and public health science. To eliminate any ambiguity relevant to the scope of the study, attention focused at first on data quality assessment. The data used originate from official databases (Santé Publique France) and the analysis is performed at a departmental level. We then developed spatial autocorrelation analysis, thematic mapping, hot spot analysis, and multivariate clustering. RESULTS We observe the extreme heterogeneity of local situations and demonstrate that clustering and intensity are decorrelated indicators. Thematic mapping allows us to identify five "ghost" clusters, whereas hot spot analysis detects two positive and two negative clusters. Our re-evaluation also highlights that spatial dissemination follows a twofold logic, zonal contiguity and linear development, thus determining a "metastatic" propagation pattern. CONCLUSIONS One of the most problematic issues about COVID-19 management by the authorities is the limited capacity to identify hot spots. Clustering of epidemic events is often biased because of inappropriate data quality assessment and algorithms eliminating statistical-spatial outliers. Enhanced detection techniques allow for a better identification of hot and cold spots, which may lead to more effective political decisions during epidemic outbreaks.
Collapse
Affiliation(s)
- Regis Darques
- UMR 7300 ESPACE, CNRS, Aix Marseille Univ, Université Côte d'Azur, Avignon Université, Case 41, 74 rue Louis Pasteur, 84029, Avignon cedex, France.
| | - Julie Trottier
- CNRS, PRODIG, Campus Condorcet, Bat. Recherche Sud, 5 cours des Humanités, 12 rue des Fillettes, 93322, Aubervilliers cedex, France
| | - Raphael Gaudin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Univ Montpellier, 1919 Route de Mende, 34293, Montpellier, France
| | - Nassim Ait-Mouheb
- UMR G-Eau, INRAE, University of Montpellier, 361 rue Jean-François Breton, 34196, Montpellier cedex 5, France
| |
Collapse
|