1
|
Wevar Oller AL, Torres Tejerizo G, Pereira PP, Pramparo RDP, Agostini E. Characterization and identification of Pseudomonas sp. AW4, an arsenic-resistant and plant growth-promoting bacteria isolated from the soybean (Glycine max L.) rhizosphere. Res Microbiol 2025; 176:104263. [PMID: 39647648 DOI: 10.1016/j.resmic.2024.104263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Pseudomonas sp. AW4 is a highly arsenic (As) resistant bacterium with plant growth promoting properties, originally isolated from the soybean (Glycine max L.) rhizosphere. In order to safely use this isolate in diverse bioformulations, its characterization needs to be completed and a reliable identification must be provided. In the present work, we analyzed the morpho-physiological, biochemical and genomic characteristics of Pseudomonas sp. AW4. Identification of the isolate varied according to the parameters analyzed, mainly biochemical and physiological tests or individual genes and phylogenetic analyses. In this regard, we performed massive sequencing of its genome, in order to consistently complete its characterization and identification. Pseudomonas sp. AW4 formed a monophyletic clade with P. urmiensis SWRI10, presenting 3.08 % of unique genes against this reference isolate. More than 70 % of AW4 genes were also shared with P. oryziphila strain 1257 NZ and with P. reidholzensis strain CCOS 865. The search for genes related to As resistance evidenced the presence of the operon arsHRBC. Taken together, results of the present work allow identification of this bacterium as Pseudomonas urmiensis AW4 and open up a number of opportunities to study this strain and understand the mechanisms of arsenic resistance and plant growth promotion.
Collapse
Affiliation(s)
- Ana L Wevar Oller
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET, Ruta Nacional 36 Km 601 (X5804BYA) Río Cuarto, Córdoba, Argentina.
| | - Gonzalo Torres Tejerizo
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. Instituto de Biotecnología y Biología Molecular (IBBM), CCT-La Plata, CONICET, Calles 49 y 115 (1900), La Plata, Buenos Aires, Argentina.
| | - Paola P Pereira
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET, Ruta Nacional 36 Km 601 (X5804BYA) Río Cuarto, Córdoba, Argentina.
| | - Romina Del Pilar Pramparo
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET, Ruta Nacional 36 Km 601 (X5804BYA) Río Cuarto, Córdoba, Argentina.
| | - Elizabeth Agostini
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET, Ruta Nacional 36 Km 601 (X5804BYA) Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
2
|
Sultan MW, Qureshi F, Ahmed S, Kamyab H, Rajendran S, Ibrahim H, Yusuf M. A comprehensive review on arsenic contamination in groundwater: Sources, detection, mitigation strategies and cost analysis. ENVIRONMENTAL RESEARCH 2025; 265:120457. [PMID: 39613013 DOI: 10.1016/j.envres.2024.120457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/15/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
While groundwater is commonly perceived as safe, the excessive presence of trace metals, particularly arsenic (As), can pose significant health hazards. This review examines the current scenario of pollutants and their mitigations focusing on As contamination in groundwater across multiple nations, with a specific emphasis on the Indian Peninsula. Arsenic pollution surpasses the WHO limit of 10 ppb in 107 countries, impacting around 230 million people worldwide, with a substantial portion in Asia, including 20 states and four union territories in India. Analysis of the correlation between the aquifer and arsenic poisoning highlights severe contamination in groundwater originating from loose sedimentary aquifer strata, particularly in recently formed mountain ranges with geological sources presumed to contribute over 90% of arsenic pollution, i.e. a big environmental challenge. A myriad of techniques, including chromatographic, electrochemical, biological, spectroscopic, and colorimetric methods among others, are available for the detection and removal of arsenic from groundwater. Removal strategies encompass a wide array of approaches such as bioremediation, adsorption, coagulation/flocculation, ion exchange, biological processes, membrane treatment, and oxidation techniques specifically tailored for affected areas. Constructed wetlands help to eliminate heavy metal impurities such as As, Zn, Cd, Cu, Ni, Fe, and Cr. Their efficiency is influenced by design and environmental factors. Nanotechnology and nanoparticles have recently been studied to remove arsenic and toxic metal ions from water. Cost-effective solutions including community-based mitigation initiatives, alongside policy and regulatory frameworks addressing arsenic contamination, are essential considerations.
Collapse
Affiliation(s)
| | - Fazil Qureshi
- Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates.
| | - Salman Ahmed
- Interdisciplinary Department of Remote Sensing and GIS Applications, Aligarh Muslim University, Aligarh 202002, India
| | - Hesam Kamyab
- UTE University, Faculty of Architecture and Urbanism, Architecture Department, TCEMC Investigation Group, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India; The KU-KIST Graduate School of Energy and Environment, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Saravanan Rajendran
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica-1000000, Chile
| | - Hussameldin Ibrahim
- Clean Energy Technologies Research Institute (CETRI), Process Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada
| | - Mohammad Yusuf
- Clean Energy Technologies Research Institute (CETRI), Process Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India.
| |
Collapse
|
3
|
Sharma G, Verma Y, Lai CW, Naushad M, Iqbal J, Kumar A, Dhiman P. Biochar and biosorbents derived from biomass for arsenic remediation. Heliyon 2024; 10:e36288. [PMID: 39263124 PMCID: PMC11388741 DOI: 10.1016/j.heliyon.2024.e36288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
Global groundwater contamination by Arsenic (As) presents a grave danger to the health of living beings and wildlife, demanding comprehensive remediation strategies. This review delves into the complex landscape of arsenic remediation, encompassing its chemical forms, occurrences, sources, and associated health risks. Advanced techniques, notably biomass-derived adsorbents, emerge as promising and cost-effective solutions. The exploration spans preparing and modifying biomass-derived adsorbents, unraveling their adsorption capacity, influencing factors, isotherms, kinetics, and thermodynamics. Noteworthy attention is given to plant-agricultural waste, algal-fungal-bacterial, and iron-modified biomass-derived adsorbents. The comprehensive discussion of the adsorption mechanism highlights the efficacy of low-cost biomass, particularly from plant, animal, and agricultural residues, offering a sustainable remedy for arsenic removal. This insightful review contributes to the understanding of evolving technologies essential for addressing arsenic contamination in wastewater, emphasizing the potential of renewable biomaterials in advancing efficient remediation practices.
Collapse
Affiliation(s)
- Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Yaksha Verma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), 50603, Kuala Lumpur, Malaysia
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jibran Iqbal
- Department of Environmental Sciences and Sustainability, College of Natural and Health Sciences, Zayed University, Abu Dhabi, 144534, United Arab Emirates
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Pooja Dhiman
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| |
Collapse
|
4
|
Zhou J, Yang Y, Li Z. Efficient and fast arsenate removal from water by in-situ formed magnesium hydroxide. Sci Rep 2024; 14:21232. [PMID: 39261575 PMCID: PMC11390963 DOI: 10.1038/s41598-024-72258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
MgO nanoparticles have good As-adsorption capacity in treating As-contaminated wastewater but suffer from high production cost. In this study, instead of using pre-formed MgO nanoparticles, we found that in-situ formed Mg(OH)2 from MgCl2 and NaOH reaction exhibited super high arsenate (As(V)) removal efficiency. Only 1.5 mmol/L of in-situ formed Mg(OH)2 could remove more than 95% As(V) within 10 min to make the As contaminated water (10 mg-As(V)/L) meet the municipal wastewater treatment standard, whereas MgO nanoparticles failed. The Mg-As sludge has an amorphous crystal structure while no Mg(OH)2 phase could be observed. As(V) existed uniformly within the sludge which was confirmed by elemental mapping. A precipitation-adsorption-coagulation mechanism might exist, which could relieve the restriction of limited surface area of solid MgO adsorbents. This study not only reveals an applicable method for efficient removal of trace level As(V) from water but also implies the huge potential of in-situ formed adsorbents in water treatment.
Collapse
Affiliation(s)
- Juanjuan Zhou
- School of Health, Guangzhou Vocational University of Science and Technology, Guangzhou, 510080, People's Republic of China
| | - Ying Yang
- School of Environment, Jinan University, Guangzhou, 511436, People's Republic of China
| | - Zhanjun Li
- School of Environment, Jinan University, Guangzhou, 511436, People's Republic of China.
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
5
|
Jain N, Singh P, Bhatnagar A, Maiti A. Arsenite oxidation and adsorptive arsenic removal from contaminated water: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42574-42592. [PMID: 38890252 DOI: 10.1007/s11356-024-33963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Arsenic poisoning of groundwater is one of the most critical environmental hazards on Earth. Therefore, the practical and proper treatment of arsenic in water requires more attention to ensure safe drinking water. The World Health Organization (WHO) sets guidelines for 10 μg/L of arsenic in drinking water, and direct long-term exposure to arsenic in drinking water beyond this value causes severe health hazards to individuals. Numerous studies have confirmed the adverse effects of arsenic after long-term consumption of arsenic-contaminated water. Here, technologies for the remediation of arsenic from water are highlighted for the purpose of understanding the need for a single-point solution for the treatment of As(III)-contaminated water. As(III) species are neutral at neutral pH; the solution requires transformation technology for its complete removal. In this critical review, emphasis was placed on single-step technologies with multiple functions to remediate arsenic from water.
Collapse
Affiliation(s)
- Nishant Jain
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, 247001, India
| | - Prashant Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, 247001, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, 50130, Mikkeli, Fl, Finland
| | - Abhijit Maiti
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, 247001, India.
| |
Collapse
|
6
|
Wang J, Chen M, Han Y, Sun C, Zhang Y, Zang S, Qi L. Fast and efficient As(III) removal from water by bifunctional nZVI@NBC. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:160. [PMID: 38592564 DOI: 10.1007/s10653-024-01939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024]
Abstract
As a notable toxic substance, metalloid arsenic (As) widely exists in water body and drinking As-contaminated water for an extended period of time can result in serious health concerns. Here, the performance of nanoscale zero-valent iron (nZVI) modified N-doped biochar (NBC) composites (nZVI@NBC) activated peroxydisulfate (PDS) for As(III) removal was investigated. The removal efficiencies of As(III) with initial concentration ranging from 50 to 1000 μg/L were above 99% (the residual total arsenic below 10 μg/L, satisfying the contaminant limit for arsenic in drinking water) within 10 min by nZVI@NBC (0.2 g/L)/PDS (100 μM). As(III) removal efficiency influenced by reaction time, PDS dosage, initial concentration, pH, co-existing ions, and natural organic matter in nZVI@NBC/PDS system were investigated. The nZVI@NBC composite is magnetic and could be conveniently collected from aqueous solutions. In practical applications, nZVI@NBC/PDS has more than 99% As(III) removal efficiency in various water bodies (such as deionized water, piped water, river water, and lake water) under optimized operation parameters. Radical quenching and EPR analysis revealed that SO4·- and ·OH play important roles in nZVI@NBC/PDS system, and the possible reaction mechanism was further proposed. These results suggest that nZVI@NBC activated peroxydisulfate may be an efficient and fast approach for the removal of water contaminated with As(III).
Collapse
Affiliation(s)
- Jiuwan Wang
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Mengfan Chen
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Yulian Han
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Congting Sun
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China.
| | - Ying Zhang
- College of Environment, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Shuyan Zang
- Shenyang University of Chemical Technology, Shenyang, 110142, People's Republic of China.
| | - Lin Qi
- Shenyang Municipal Bureau of Ecology and Environment, Shenyang, 110036, People's Republic of China
| |
Collapse
|
7
|
Khan Khanzada A, Al-Hazmi HE, Śniatała B, Muringayil Joseph T, Majtacz J, Abdulrahman SAM, Albaseer SS, Kurniawan TA, Rahimi-Ahar Z, Habibzadeh S, Mąkinia J. Hydrochar-nanoparticle integration for arsenic removal from wastewater: Challenges, possible solutions, and future horizon. ENVIRONMENTAL RESEARCH 2023; 238:117164. [PMID: 37722579 DOI: 10.1016/j.envres.2023.117164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Arsenic (As) contamination poses a significant threat to human health, ecosystems, and agriculture, with levels ranging from 12 to 75% attributed to mine waste and stream sediments. This naturally element is abundant in Earth's crust and gets released into the environment through mining and rock processing, causing ≈363 million people to depend on As-contaminated groundwater. To combat this issue, introducing a sustainable hydrochar system has achieved a remarkable removal efficiency of over 92% for arsenic through adsorption. This comprehensive review presents an overview of As contamination in the environment, with a specific focus on its impact on drinking water and wastewater. It delves into the far-reaching effects of As on human health, ecosystems, aquatic systems, and agriculture, while also exploring the effectiveness of existing As treatment systems. Additionally, the study examines the potential of hydrochar as an efficient adsorbent for As removal from water/wastewater, along with other relevant adsorbents and biomass-based preparations of hydrochar. Notably, the fusion of hydrochar with nanoparticle-centric approaches presents a highly promising and environmentally friendly solution for achieving the removal of As from wastewater, exceeding >99% efficiency. This innovative approach holds immense potential for advancing the realms of green chemistry and environmental restoration. Various challenges associated with As contamination and treatment are highlighted, and proposed solutions are discussed. The review emphasizes the urgent need to advance treatment technologies, improve monitoring methods, and enhance regulatory frameworks. Looking outlook, the article underscores the importance of fostering research efforts, raising public awareness, and fostering interdisciplinary collaboration to address this critical environmental issue. Such efforts are vital for UN Sustainable Development Goals, especially clean water and sanitation (Goal 6) and climate action (Goal 13), crucial for global sustainability.
Collapse
Affiliation(s)
- Aisha Khan Khanzada
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Hussein E Al-Hazmi
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland.
| | - Bogna Śniatała
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Joanna Majtacz
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Sameer A M Abdulrahman
- Department of Chemistry, Faculty of Education and Sciences-Rada'a, Albaydha University, Albaydha, Yemen
| | - Saeed S Albaseer
- Department of Evolutionary Ecology & Environmental Toxicology, Biologicum, Goethe University Frankfurt, 60438, Frankfurt Am Main, Germany
| | | | - Zohreh Rahimi-Ahar
- Department of Chemical Engineering, Engineering Faculty, Velayat University, Iranshahr, Iran
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology, Tehran, 1599637111, Iran
| | - Jacek Mąkinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| |
Collapse
|