1
|
Athni TS, Barmettler S. Hypogammaglobulinemia, late-onset neutropenia, and infections following rituximab. Ann Allergy Asthma Immunol 2023; 130:699-712. [PMID: 36706910 PMCID: PMC10247428 DOI: 10.1016/j.anai.2023.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
Rituximab is a chimeric anti-CD20 monoclonal antibody that targets CD20-expressing B lymphocytes, has a well-defined efficacy and safety profile, and is broadly used to treat a wide array of diseases. In this review, we cover the mechanism of action of rituximab and focus on hypogammaglobulinemia and late-onset neutropenia-2 immune effects secondary to rituximab-and subsequent infection. We review risk factors and highlight key considerations for immunologic monitoring and clinical management of rituximab-induced secondary immune deficiencies. In patients treated with rituximab, monitoring for hypogammaglobulinemia and infections may help to identify the subset of patients at high risk for developing poor B cell reconstitution, subsequent infections, and adverse complications. These patients may benefit from early interventions such as vaccination, antibacterial prophylaxis, and immunoglobulin replacement therapy. Systematic evaluation of immunoglobulin levels and peripheral B cell counts by flow cytometry, both at baseline and periodically after therapy, is recommended for monitoring. In addition, in those patients with prolonged hypogammaglobulinemia and increased infections after rituximab use, immunologic evaluation for inborn errors of immunity may be warranted to further risk stratification, increase monitoring, and assist in therapeutic decision-making. As the immunologic effects of rituximab are further elucidated, personalized approaches to minimize the risk of adverse reactions while maximizing benefit will allow for improved care of patients with decreased morbidity and mortality.
Collapse
Affiliation(s)
| | - Sara Barmettler
- Allergy and Clinical Immunology Unit, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
2
|
Lynch CT, Buttimer C, Epping L, O'Connor J, Walsh N, McCarthy C, O'Brien D, Vaughan C, Semmler T, Bolton D, Coffey A, Lucey B. Phenotypic and genetic analyses of two Campylobacter fetus isolates from a patient with relapsed prosthetic valve endocarditis. Pathog Dis 2021; 79:6486444. [PMID: 34962980 DOI: 10.1093/femspd/ftab055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/24/2021] [Indexed: 11/12/2022] Open
Abstract
Campylobacter fetus can cause intestinal and systemic disease in humans and are well established veterinary and economic pathogens. We report the complete genomic sequences of two C. fetus subsp. fetus (Cff) isolates recovered in 2017 (CITCf01) and 2018 (CITCf02) from a case of recurrent prosthetic valve endocarditis. Both were capable of growth aerobically. Their genomes were found to be highly conserved and syntenic with 99.97% average nucleotide identity (ANI) while differences in their respective sap loci defined the temporal separation of their genomes. Based on core genome phylogeny and ANI of 83 Cff genomes belonging to the previously described human-associated Cff lineage, CITCf01 and CITCf02 grouped in a clade of eleven sequence type (ST)3 Cff (including the Cff type strain NCTC 10842T). CITCf01 and CITCf02 were marked for their lack of unique genomic features when compared to isolates within the subspecies and the type strain in particular. We identified point mutations in oxidative stress response genes, among others, that may contribute to aerobiosis. We report a case of Cff causing relapsed prosthetic valve endocarditis and we highlight the sap island as a polymorphic site within the genetically stable ST3 lineage, central to pathogenicity.
Collapse
Affiliation(s)
- Caoimhe T Lynch
- Department of Biological Sciences, Munster Technological University, Rossa Ave, Bishopstown, Cork, Ireland
| | - Colin Buttimer
- APC Microbiome Ireland, University College Cork, College Road, Cork, Ireland
| | - Lennard Epping
- Genome Sequencing and Genomic Epidemiology, Robert Koch Institute, Nordufer 20, Berlin, Germany
| | - James O'Connor
- Department of Microbiology, Grenville Place, Mercy University Hospital, Cork, Ireland
| | - Niamh Walsh
- Department of Biological Sciences, Munster Technological University, Rossa Ave, Bishopstown, Cork, Ireland
| | - Conor McCarthy
- Department of Biological Sciences, Munster Technological University, Rossa Ave, Bishopstown, Cork, Ireland
| | - Deirdre O'Brien
- Department of Microbiology, Grenville Place, Mercy University Hospital, Cork, Ireland
| | - Carl Vaughan
- Department of Cardiology, Grenville Place, Mercy University Hospital, Cork, Ireland
| | - Torsten Semmler
- Genome Sequencing and Genomic Epidemiology, Robert Koch Institute, Nordufer 20, Berlin, Germany
| | - Declan Bolton
- Food Safety Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, Rossa Ave, Bishopstown, Cork, Ireland.,APC Microbiome Ireland, University College Cork, College Road, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Rossa Ave, Bishopstown, Cork, Ireland
| |
Collapse
|
3
|
Chen H, Huang N, Tian H, Li J, Li B, Sun J, Zhang S, Zhang C, Zhao Y, Kong G, Li Z. Splenectomy provides protective effects against CLP-induced sepsis by reducing TRegs and PD-1/PD-L1 expression. Int J Biochem Cell Biol 2021; 136:105970. [PMID: 33774183 DOI: 10.1016/j.biocel.2021.105970] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/24/2022]
Abstract
The role of the spleen in sepsis is still controversial. Therefore, we investigated the effect of the spleen on sepsis-induced immune dysfunction in C57BL/6 mice subjected to caecal ligation and puncture (CLP). Changes in different immune cells and apoptotic cells in the spleen and peripheral blood were observed 4, 24 and 48 h after CLP. Then, we determined that 48 h following CLP was the most significant period of immunosuppression. Next, we divided the mice into four groups: control, CLP, CLP + spx (splenectomy 48 h after CLP) and spx + CLP (splenectomy surgery two weeks before CLP). Compared with the CLP mice, the CLP + spx and spx + CLP mice had improved survival rates and organ injuries, increased expression of inflammatory factors, a decreased proportion of regulatory T cells (Tregs), and reduced expression of the genes involved in the programmed cell death 1 and its ligand 1 (PD1-PDL1) pathway in immune cells and T-cell immunoglobulin-mucin domain 3 (Tim 3) and Galectin9 in the liver and lungs after 72 h in late-phase sepsis. In addition, the expression of PD-1 was significantly reduced in T cells in spx + CLP mice, and the expression of PD-L1 in myeloid-derived suppressor cells (MDSCs) was reduced in the CLP + spx group, especially in macrophages. These findings suggested that splenectomy could protect septic mice from exhaustion of immune cells by reducing the proliferation of Treg cells and expression of the PD-1/PD-L1 axis in immune cells during the immunosuppressive stage of sepsis. Splenectomy could also reduce liver and lung injuries possibly via the Tim 3 and/or Galectin-9 axis. The spleen is an important regulator of the occurrence and development of sepsis, which provides a new perspective to improve the prognosis of sepsis by regulating the spleen.
Collapse
Affiliation(s)
- Haiyan Chen
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Na Huang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Hongwei Tian
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jun Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Baohua Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jin Sun
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Shaoying Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Chen Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Yang Zhao
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Guangyao Kong
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Zongfang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
4
|
Recurrent Campylobacter Enteritis in Patients with Hypogammaglobulinemia: Review of the Literature. J Clin Med 2020; 9:jcm9020553. [PMID: 32085573 PMCID: PMC7074135 DOI: 10.3390/jcm9020553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 01/31/2023] Open
Abstract
Recurrent Campylobacter enteritis is a well-recorded complication of primary hypogammaglobulinemia but has only rarely been reported with other types of immunodeficiency, and no cases have been reported after rituximab-associated secondary hypogammaglobulinemia. We therefore reviewed our local microbiology laboratory databases and conducted a literature search, to provide a detailed characterization of the immunodeficiency states associated with recurrent Campylobacter enteritis. Published cases had primary hypogammaglobulinemia, most frequently in the setting of common variable immunodeficiency, x-linked agammaglobulinemia, and Good syndrome. No cases were identified in the literature after rituximab or secondary hypogammaglobulinemia. We report a 73-year-old patient with recurrent Campylobacter enteritis and hypogammaglobulinemia in the setting of non-Hodgkin lymphoma, chemotherapy, and maintenance rituximab. Physicians should be aware of the association of recurrent Campylobacter enteritis and immunodeficiency, most commonly in primary hypogammaglobulinemia. Rituximab alone may not be sufficiently immunosuppressive for recurrent campylobacteriosis to occur; additional factors, including hematological malignancy and its treatment, appear necessary. Patients with recurrent Campylobacter enteritis and those starting rituximab should be investigated for hypogammaglobulinemia and B-lymphopenia.
Collapse
|