1
|
Xia R, Wu B, Jian Y, Li X, Zhang W, Zeng X, Chen S. Cordycepin improves liver fibrosis and the intestinal flora disturbance induced by 3,5-diethoxycarbonyl-1,4-dihydroxylidine in mice. Eur J Pharmacol 2025; 987:177172. [PMID: 39681281 DOI: 10.1016/j.ejphar.2024.177172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND AND AIMS Studies have shown that improving the intestinal flora can alleviate the progression of liver fibrosis. Cordycepin has shown potential anti-inflammatory and anti-fibrosis effects. In this study, we aimed to investigate the effects of cordycepin on liver fibrosis and how it affects the intestinal flora composition to determine a potentially effective therapeutic approach for liver fibrosis. EXPERIMENTAL PROCEDURE C57BL/6 mice were fed a special diet containing 3,5-diethoxycarbonyl-1,4-dihydroxylidine (DDC) to induce liver fibrosis. The histopathological changes in liver tissue and intestinal mucosa were determining via immunohistochemical staining. Serum transaminase levels were determined using biochemical test kits. Faecalibaculum samples were sequenced via 16S rRNA sequencing. RESULTS Cordycepin reduced DDC-induced liver collagen deposition, improved serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and reduced the levels of endothelial dysfunction markers vascular cell adhesion molecule 1 (VCAM) and thrombomodulin (TM). Our analysis of the intestinal flora composition showed that Dubosiella, Faecalibaculum, and Bifidobacterium were significantly increased in the cordycepin-treated group (P < 0.05). The Dubosiella level was significantly negatively correlated with TM and VCAM levels, and serum levels of ALT and AST (P < 0.05). After treatment with cordycepin, the microvilli length in the intestinal mucosa, the density of goblet cells, and the expressions of occludin and zonula occludens protein 1 (ZO-1) were significantly increased (P < 0.05). CONCLUSION We discovered that cordycepin improves liver fibrosis in vivo. We found that Dubosiella levels were considerably increased in the cordycepin-treated group and were significantly negatively correlated with liver sinusoidal endothelial damage.
Collapse
Affiliation(s)
- Ruiqi Xia
- Department of Gastroenterology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China; Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bing Wu
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai, China
| | - Yourong Jian
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangting Li
- Department of Traditional Chinese Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen Zhang
- Department of Traditional Chinese Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqing Zeng
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China; Evidence-based Medicine Centre, Fudan University, Shanghai, China.
| | - Shiyao Chen
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China; Evidence-based Medicine Centre, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Liu Y, Chen Z, Li C, Sun T, Luo X, Jiang B, Liu M, Wang Q, Li T, Cao J, Li Y, Chen Y, Kuai L, Xiao F, Xu H, Cui H. Associations between changes in the gut microbiota and liver cirrhosis: a systematic review and meta-analysis. BMC Gastroenterol 2025; 25:16. [PMID: 39806278 PMCID: PMC11727502 DOI: 10.1186/s12876-025-03589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVE Summaries of the relationships between the microbiota and liver cirrhosis and their conclusions are not consistent. This study describes microbial differences in patients with liver cirrhosis by performing a meta-analysis. METHODS We searched PubMed, Embase, Web of Science, and the Cochrane Library and collected related articles published before March 10, 2024. Ratio of autochthonous to non-autochthonous taxa was calculated as the cirrhosis dysbiosis ratio (CDR). Using a random-effects model, the standard mean deviation (SMD) and 95% confidence interval (CI) were calculated. We subsequently performed subgroup, sensitivity, and publication bias analyses. cirrhosis dysbiosis ratio. RESULTS A total of 53 eligible papers including 5076 participants were included. The pooled estimates revealed a moderately significant reduction in gut microbiome richness in patients with liver cirrhosis compared with controls, including the Shannon, Chao1, observed species, ACE, and PD indices, but no significant difference was observed for the Simpson index. Over 80% of the studies reported significant differences in β diversity. Families Enterobacteriaceae and Pasteurellaceae, belonging to the phylum Proteobacteria, along with the family Streptococcaceae and the genera Haemophilus, Streptococcus, and Veillonella, were significantly associated with liver cirrhosis compared to the control group. In contrast, the healthy group exhibited a higher abundance of the class Clostridia, particularly the families Lachnospiraceae and Ruminococcaceae, which are known for their diversity and role as common gut commensals. Furthermore, the class Bacilli, predominantly represented by the genus Streptococcus, was markedly enriched in the cirrhosis group. CONCLUSIONS The microbiota richness of liver cirrhosis patients was lower than that of healthy controls. Alterations in gut microbiota linked to liver cirrhosis were characterized by a decrease in Lachnospiraceae, Ruminococcaceae, and Clostridia and an enrichment of Enterobacteriaceae, Pasteurellaceae, Streptococcaceae, Bacilli, and Streptococcus.
Collapse
Affiliation(s)
- Ye Liu
- Beijing Hospital, Peking University Fifth School of Clinical Medicine, National Center of Gerontology, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Ziwei Chen
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chang Li
- Beijing Hospital, Peking University Fifth School of Clinical Medicine, National Center of Gerontology, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianhan Sun
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuanmei Luo
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Boyue Jiang
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meilan Liu
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qing Wang
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tong Li
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianfu Cao
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yayu Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Chen
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lu Kuai
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Xiao
- Beijing Hospital, Peking University Fifth School of Clinical Medicine, National Center of Gerontology, Beijing, China.
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China.
- Clinical Biobank, Beijing Hospital, No. 1 Dahua Road, Dong Dan, Beijing, 100730, China.
| | - Hongtao Xu
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- Department of Laboratory Medicine, Beijing Hospital, No. 1 Dahua Road, Dong Dan, Beijing, 100730, China.
| | - Hongyuan Cui
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Department of General Surgery, Beijing Hospital, No. 1 Dahua Road, Dong Dan, Beijing, 100730, China.
| |
Collapse
|
3
|
Xirouchakis E, Pelekanos A, Xirouchakis S, Kranidioti H, Manolakopoulos S. A Systematic Review of Microbiota in Cirrhosis: A Change Towards a More Pathogenic Predisposition. Int J Mol Sci 2025; 26:527. [PMID: 39859243 PMCID: PMC11765289 DOI: 10.3390/ijms26020527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
The microbiome of the human intestine is a regulator of health that modulates immune response and plays an important role in metabolism. The diversity, and abundance of microbiota communities in the gut have been shown to change in cirrhosis and its complications. We aimed to review the current knowledge regarding microbiota alterations in cirrhosis, its potential differences according to etiology, and its role in the development of cirrhosis complications. A systematic search of the online bibliographic database up to July 2024 was performed. Randomized controlled trials and observational and cohort studies that included a total or at least a cohort of cirrhotic adult patients were enlisted for data extraction and analysis. A total of 73 publications were included for data extraction. Alpha diversity was found to decrease in cirrhotic patients in 30/38 (78%) of the studies, while beta diversity in 20/22 (90%) presented significant differences between healthy and cirrhotic groups. Proteobacteria significantly increased in 20/27 (74%) studies, followed by Actinobacteria and Fusobacteria, while 22/25 (88%) studies found either a reduction in cirrhotic patients or increased abundance in healthy controls for Firmicutes and Bacteroidetes. The most abundant genera in hepatic encephalopathy groups were pathobionts such as Enterococcus and Streptococcus, followed by Vellionella and Escherichia. Heterogeneity was found among studies regarding Alpha diversity in hepatocellular carcinoma (HCC) as it was decreased in three studies, indifferent in five, and increased in three studies in comparison to cirrhotic non-HCC patients. The dysbiosis of the gut microbiota is associated with cirrhosis and the development of complications such as hepatic encephalopathy and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Elias Xirouchakis
- Gastroenterology-Liver-Endoscopy Unit, 2nd Department of Internal Medicine, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.); (H.K.); (S.M.)
- Department of Gastroenterology and Hepatology, Athens Medical, P. Faliron Hospital, 175 62 Athens, Greece;
| | - Alexandros Pelekanos
- Gastroenterology-Liver-Endoscopy Unit, 2nd Department of Internal Medicine, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.); (H.K.); (S.M.)
| | - Spyridon Xirouchakis
- Department of Gastroenterology and Hepatology, Athens Medical, P. Faliron Hospital, 175 62 Athens, Greece;
- Medical School, European University of Cyprus, 2404 Nicosia, Cyprus
| | - Hariklia Kranidioti
- Gastroenterology-Liver-Endoscopy Unit, 2nd Department of Internal Medicine, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.); (H.K.); (S.M.)
| | - Spilios Manolakopoulos
- Gastroenterology-Liver-Endoscopy Unit, 2nd Department of Internal Medicine, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.); (H.K.); (S.M.)
| |
Collapse
|
4
|
Hao Y, Hao Z, Zeng X, Lin Y. Gut microbiota and metabolites of cirrhotic portal hypertension: a novel target on the therapeutic regulation. J Gastroenterol 2024; 59:788-797. [PMID: 39028343 DOI: 10.1007/s00535-024-02134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND The regulatory role of gut microbiota and gut-derived metabolites through the gut-liver axis in the development of cirrhotic portal hypertension (PH) has received increasing attention. METHODS The review summarized a series of investigations on effects of metabolites derived from microbiota and medicines targeting microbiome including rifaximin, VSL#3, statins, propranolol, FXR agonists as well as drugs derived from bile acids (BAs) on PH progression. RESULTS Patients with PH exhibit alterations in gut microbial richness and differential overall microbiota community, and several results clearly displayed the correlation of PH with enrichment of Veillonella dispar or depletion of Clostridiales, Peptostreptococcaceae, Alistipes putredinis, Roseburia faecis and Clostridium cluster IV. The gut-derived metabolites including hydrogen sulfide, tryptophan metabolites, butyric acid, secondary BAs and phenylacetic acid (PAA) participate in a range of pathophysiology process of PH through modulating intrahepatic vascular resistance and portal blood flow associated with the formation and progression of PH. Established and emerging drugs targeting on bacterial translocation and intestinal eubiosis are gradually identified as potential strategies for treatments of liver cirrhosis and PH by modulating intestinal inflammation, splanchnic arterial vasodilation and endothelial dysfunction. CONCLUSIONS Future explorations should further characterize the alteration of the fecal microbiome and metabolite profiles in PH and elucidate the regulatory mechanism of the intestinal microbiome, gut-derived metabolites and gut microbiota targeted pharmaceutical treatments involved in PH.
Collapse
Affiliation(s)
- Yarong Hao
- Department of Gastroenterology, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Zhiyuan Hao
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xin Zeng
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| | - Yong Lin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
5
|
Ye Y, Xia C, Hu H, Tang S, Huan H. Metabolomics reveals altered metabolites in cirrhotic patients with severe portal hypertension in Tibetan population. Front Med (Lausanne) 2024; 11:1404442. [PMID: 39015788 PMCID: PMC11250582 DOI: 10.3389/fmed.2024.1404442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Background Portal hypertension (PHT) presents a challenging issue of liver cirrhosis. This study aims to identify novel biomarkers for severe PHT (SPHT) and explore the pathophysiological mechanisms underlying PHT progression. Methods Twenty-three Tibetan cirrhotic patients who underwent hepatic venous pressure gradient (HVPG) measurement were included. Eleven patients had an HVPG between 5 mmHg and 15 mmHg (MPHT), while 12 had an HVPG ≥16 mmHg (SPHT). Peripheral sera were analyzed using liquid chromatograph-mass spectrometer for metabolomic assessment. An additional 14 patients were recruited for validation of metabolites. Results Seven hundred forty-five metabolites were detected and significant differences in metabolomics between MPHT and SPHT patients were observed. Employing a threshold of p < 0.05 and a variable importance in projection score >1, 153 differential metabolites were identified. A significant number of these metabolites were lipids and lipid-like molecules. Pisumionoside and N-decanoylglycine (N-DG) exhibited the highest area under the curve (AUC) values (0.947 and 0.9091, respectively). Additional differential metabolites with AUC >0.8 included 6-(4-ethyl-2-methoxyphenoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid, sphinganine 1-phosphate, 4-hydroxytriazolam, 4,5-dihydroorotic acid, 6-hydroxy-1H-indole-3-acetamide, 7alpha-(thiomethyl)spironolactone, 6-deoxohomodolichosterone, glutaminylisoleucine, taurocholic acid 3-sulfate, and Phe Ser. Enzyme-linked immunosorbent assay further confirmed elevated levels of sphinganine 1-phosphate, N-DG, and serotonin in SPHT patients. Significant disruptions in linoleic acid, amino acid, sphingolipid metabolisms, and the citrate cycle were observed in SPHT patients. Conclusion Pisumionoside and N-DG are identified as promising biomarkers for SPHT. The progression of PHT may be associated with disturbances in lipid, linoleic acid, and amino acid metabolisms, as well as alterations in the citrate cycle.
Collapse
Affiliation(s)
- Yanting Ye
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Xia
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China
| | - Hong Hu
- Department of Gastroenterology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Shihang Tang
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Hui Huan
- Department of Gastroenterology, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| |
Collapse
|
6
|
Lombardi M, Troisi J, Motta BM, Torre P, Masarone M, Persico M. Gut-Liver Axis Dysregulation in Portal Hypertension: Emerging Frontiers. Nutrients 2024; 16:1025. [PMID: 38613058 PMCID: PMC11013091 DOI: 10.3390/nu16071025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Portal hypertension (PH) is a complex clinical challenge with severe complications, including variceal bleeding, ascites, hepatic encephalopathy, and hepatorenal syndrome. The gut microbiota (GM) and its interconnectedness with human health have emerged as a captivating field of research. This review explores the intricate connections between the gut and the liver, aiming to elucidate how alterations in GM, intestinal barrier function, and gut-derived molecules impact the development and progression of PH. A systematic literature search, following PRISMA guidelines, identified 12 original articles that suggest a relationship between GM, the gut-liver axis, and PH. Mechanisms such as dysbiosis, bacterial translocation, altered microbial structure, and inflammation appear to orchestrate this relationship. One notable study highlights the pivotal role of the farnesoid X receptor axis in regulating the interplay between the gut and liver and proposes it as a promising therapeutic target. Fecal transplantation experiments further emphasize the pathogenic significance of the GM in modulating liver maladies, including PH. Recent advancements in metagenomics and metabolomics have expanded our understanding of the GM's role in human ailments. The review suggests that addressing the unmet need of identifying gut-liver axis-related metabolic and molecular pathways holds potential for elucidating pathogenesis and directing novel therapeutic interventions.
Collapse
Affiliation(s)
- Martina Lombardi
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy;
- European Institute of Metabolomics (EIM) Foundation, Via G. Puccini, 3, 84081 Baronissi, SA, Italy
| | - Jacopo Troisi
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy;
- European Institute of Metabolomics (EIM) Foundation, Via G. Puccini, 3, 84081 Baronissi, SA, Italy
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy; (B.M.M.); (P.T.); (M.M.)
| | - Benedetta Maria Motta
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy; (B.M.M.); (P.T.); (M.M.)
| | - Pietro Torre
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy; (B.M.M.); (P.T.); (M.M.)
| | - Mario Masarone
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy; (B.M.M.); (P.T.); (M.M.)
| | - Marcello Persico
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy; (B.M.M.); (P.T.); (M.M.)
| |
Collapse
|
7
|
Pun CK, Huang HC, Chang CC, Hsu SJ, Huang YH, Hou MC, Lee FY. Hepatic encephalopathy: From novel pathogenesis mechanism to emerging treatments. J Chin Med Assoc 2024; 87:245-251. [PMID: 38109364 DOI: 10.1097/jcma.0000000000001041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
Hepatic encephalopathy (HE) is one of the major complications of liver disease and significantly affects the quality of life (QOL) of patients. HE is common and frequently relapses in cirrhotic patients. The management of HE is supportive, and precipitating conditions should be eliminated. Most drugs used to treat HE are conventional and include nonabsorbable disaccharides such as lactulose, and antibiotics such as rifaximin. However, their therapeutic efficacy is still suboptimal, and novel therapeutic agents are urgently needed. In addition, the optimal management and diagnosis of minimal HE/covert HE are under debate. In this review, we focus on novel pathogenetic mechanisms such as central nervous system clearance, and emerging therapeutic targets of HE, such as fecal material transplantation. We also discuss different classifications and etiologies of HE.
Collapse
Affiliation(s)
- Chon Kit Pun
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Hui-Chun Huang
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ching-Chih Chang
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Division of Holistic and Multidisciplinary Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shao-Jung Hsu
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Hsiang Huang
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ming-Chih Hou
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Fa-Yauh Lee
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
8
|
Stojic J, Kukla M, Grgurevic I. The Intestinal Microbiota in the Development of Chronic Liver Disease: Current Status. Diagnostics (Basel) 2023; 13:2960. [PMID: 37761327 PMCID: PMC10528663 DOI: 10.3390/diagnostics13182960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic liver disease (CLD) is a significant global health burden, leading to millions of deaths annually. The gut-liver axis plays a pivotal role in this context, allowing the transport of gut-derived products directly to the liver, as well as biological compounds from the liver to the intestine. The gut microbiota plays a significant role in maintaining the health of the digestive system. A change in gut microbiome composition as seen in dysbiosis is associated with immune dysregulation, altered energy and gut hormone regulation, and increased intestinal permeability, contributing to inflammatory mechanisms and damage to the liver, irrespective of the underlying etiology of CLD. The aim of this review is to present the current knowledge about the composition of the intestinal microbiome in healthy individuals and those with CLD, including the factors that affect this composition, the impact of the altered microbiome on the liver, and the mechanisms by which it occurs. Furthermore, this review analyzes the effects of gut microbiome modulation on the course of CLD, by using pharmacotherapy, nutrition, fecal microbiota transplantation, supplements, and probiotics. This review opens avenues for the translation of knowledge about gut-liver interplay into clinical practice as an additional tool to fight CLD and its complications.
Collapse
Affiliation(s)
- Josip Stojic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, 10000 Zagreb, Croatia;
| | - Michał Kukla
- Department of Internal Medicine and Geriatrics, Faculty of Medicine, Jagellonian University Medical College, 31-688 Kraków, Poland;
- Department of Endoscopy, University Hospital, 30-688 Kraków, Poland
| | - Ivica Grgurevic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Santopaolo F, Coppola G, Giuli L, Gasbarrini A, Ponziani FR. Influence of Gut–Liver Axis on Portal Hypertension in Advanced Chronic Liver Disease: The Gut Microbiome as a New Protagonist in Therapeutic Management. MICROBIOLOGY RESEARCH 2022; 13:539-555. [DOI: 10.3390/microbiolres13030038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Clinically significant portal hypertension is associated with most complications of advanced chronic liver disease (ACLD), including variceal bleeding, ascites, spontaneous bacterial peritonitis, hepatorenal syndrome, and hepatic encephalopathy. Gut dysbiosis is a hallmark of ACLD with portal hypertension and consists of the overgrowth of potentially pathogenic bacteria and a decrease in autochthonous bacteria; additionally, congestion makes the intestinal barrier more permeable to bacteria and their products, which contributes to the development of complications through inflammatory mechanisms. This review summarizes current knowledge on the role of the gut–liver axis in the pathogenesis of portal hypertension, with a focus on therapies targeting portal hypertension and the gut microbiota. The modulation of the gut microbiota on several levels represents a major challenge in the upcoming years; in-depth characterization of the molecular and microbiological mechanisms linking the gut–liver axis to portal hypertension in a bidirectional relationship could pave the way to the identification of new therapeutic targets for innovative therapies in the management of ACLD.
Collapse
Affiliation(s)
- Francesco Santopaolo
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gaetano Coppola
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Lucia Giuli
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
10
|
Cui Z, Li J, Zhen Y, Fan P, Du G. The Effect of Whole-Grain Diet on the Gut Microbiota of the Elderly Individuals. Front Nutr 2022; 9:919838. [PMID: 35832054 PMCID: PMC9273149 DOI: 10.3389/fnut.2022.919838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/31/2022] [Indexed: 11/20/2022] Open
Abstract
A whole-grain (WG) diet affects human health in multiple ways. However, the effect of WG on the gut microbiota of the elderly individuals is still largely unknown. In this study, WG did not affect the microbial α-diversity but had a profound impact on the microbes' abundance in the elderly individuals. WG increased the abundance of Verrucomicrobia and decreased the abundance of Firmicutes. The prediction of microbial function showed that glucose metabolism and lipid metabolism were inhibited. In addition, the effects of WG on the gut microbiota of normal-weight (NW) and overweight (OW) individuals were different. WG increased Verrucomicrobia in the NW group and decreased Firmicutes in the OW group. Meanwhile, the effect of WG on gut microbiota showed gender characteristics, Firmicutes/Bacteroidetes ratio was decreased in women, while Verrucomicrobia abundance was increased in men. The use of WG could improve the microbial composition and promote the growth of beneficial microbes, which may be beneficial to the health of the elderly individuals.
Collapse
Affiliation(s)
- Zeying Cui
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Molecular Biology, Hainan Medical University, Haikou, China
| | - Jingtai Li
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuting Zhen
- Key Laboratory of Molecular Biology, Hainan Medical University, Haikou, China
| | - Pingming Fan
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Pingming Fan
| | - Guankui Du
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Molecular Biology, Hainan Medical University, Haikou, China
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
- Biotechnology and Biochemistry Laboratory, Hainan Medical University, Haikou, China
- *Correspondence: Guankui Du
| |
Collapse
|
11
|
Wu P, Zhu T, Tan Z, Chen S, Fang Z. Role of Gut Microbiota in Pulmonary Arterial Hypertension. Front Cell Infect Microbiol 2022; 12:812303. [PMID: 35601107 PMCID: PMC9121061 DOI: 10.3389/fcimb.2022.812303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Gut microbiota and its metabolites play an important role in maintaining host homeostasis. Pulmonary arterial hypertension (PAH) is a malignant clinical syndrome with a frightening mortality. Pulmonary vascular remodeling is an important feature of PAH, and its pathogenesis is not well established. With the progress of studies on intestinal microbes in different disease, cumulative evidence indicates that gut microbiota plays a major role in PAH pathophysiology. In this review, we will systematically summarize translational and preclinical data on the correlation between gut dysbiosis and PAH and investigate the role of gut dysbiosis in the causation of PAH. Then, we point out the potential significance of gut dysbiosis in the diagnosis and treatment of PAH as well as several problems that remain to be resolved in the field of gut dysbiosis and PAH. All of this knowledge of gut microbiome might pave the way for the extension of novel pathophysiological mechanisms, diagnosis, and targeted therapies for PAH.
Collapse
|
12
|
Madsen M, Kimer N, Bendtsen F, Petersen AM. Fecal microbiota transplantation in hepatic encephalopathy: a systematic review. Scand J Gastroenterol 2021; 56:560-569. [PMID: 33840331 DOI: 10.1080/00365521.2021.1899277] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hepatic encephalopathy (HE) is a reversible neurocognitive dysfunction that ranges in severity from subclinical alterations to coma. Patients with chronic liver disease are predisposed to HE due to metabolic failure and portosystemic shunting of toxins, of which ammonia is believed to be the main toxic chemical. Fecal microbiota transplantation (FMT) may reduce ammonia synthesis by altering the gut microbiota composition to a taxon low in urease, diminish uptake of ammonia by reestablishing the integrity of the intestinal barrier and increase ammonia clearance by improving liver function. In this systematic review, we summarize the insights of the current literature examining FMT as a treatment for HE.PubMed and EMBASE were searched on 08 February 2021 using the MeSH terms 'fecal microbiota transplantation & hepatic encephalopathy' and the abbreviations 'FMT & HE'.Eight studies fulfilled our inclusion criteria, comprising two randomized clinical trials, three case reports and three rodent studies. Thirty-nine patients with HE were treated with FMT. Thirty-nine rodents received FMT in laboratory tests. FMT improved neurocognitive test results in four human studies and two rodent studies. Microbiota originating from donors was found in human recipients one year post-FMT. Readmission of patients was lower after treatment with FMT compared to standard of care.FMT may improve neurocognitive function and reduce serious adverse events in patients with HE, but the studies conducted so far have been small and their long-term follow-up is limited. Large-scale, randomized and controlled trials are needed to validate and help standardize the clinical application of FMT in cases of HE.
Collapse
Affiliation(s)
- Mathias Madsen
- Gastro Unit, Medical Division, Hvidovre University Hospital, Copenhagen, Denmark
| | - Nina Kimer
- Gastro Unit, Medical Division, Hvidovre University Hospital, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Bendtsen
- Gastro Unit, Medical Division, Hvidovre University Hospital, Copenhagen, Denmark
| | - Andreas Munk Petersen
- Gastro Unit, Medical Division, Hvidovre University Hospital, Copenhagen, Denmark.,Department of Clinical Microbiology, Hvidovre University Hospital, Copenhagen, Denmark
| |
Collapse
|