1
|
Rücker-Braun E, Falk B, Baldauf H, Massalski C, Schäfer G, Altmann H, Sauter J, Solloch UV, Lange V, Egger-Heidrich K, Kunadt D, Stölzel F, Röllig C, Middeke JM, von Bonin M, Thiede C, Schmidt AH, Bornhäuser M, Schetelig J, Heidenreich F. Protective effects for HLA-B*40:01 and C*03:04 in NPM1-mutated AML: result of a large HLA association study. Front Immunol 2025; 16:1571508. [PMID: 40557158 PMCID: PMC12185502 DOI: 10.3389/fimmu.2025.1571508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 05/13/2025] [Indexed: 06/28/2025] Open
Abstract
Introduction Mutations in the nucleophosmin 1 gene (NPM1) are common and recurrent molecular abnormalities in acute myeloid leukemia (AML). NPM1 mutations are considered to be positive prognostic factors. The beneficial effect may be due to immune responses mediated by cytotoxic T cells targeting HLA-presented peptides derived from mutated NPM1 and thereby suppressing mutated NPM1-positive hematopoiesis. While the immunogenicity of these NPM1 peptides has not been demonstrated conclusively, certain HLA-types have been linked to a lower risk of NPM1-mutated AML. Method In a comprehensive HLA association study at two-field resolution, we compared the proportions of HLA class I alleles between NPM1-mutated (n = 477) and/or DNMT3A-mutated (n = 216) patients with AML and a control group of healthy individuals (n = 51,890). Result We found HLA-B*40:01 and HLA-C*03:04 to be significantly underrepresented in NPM1-mutated AML compared to the control group (4.0% vs. 10.2%, p < 0.001, and 8.2% vs, 15.9%, p < 0.001, respectively). This might suggest that neoepitopes presented by these HLA alleles trigger T-cell responses. Online epitope prediction tools predict that mutated NPM1-derived peptides bind strongly to B*40:01 and C*03:04. Discussion Based on these findings, further studies should confirm the presence and functionality of neoepitope-specific T cells and characterize specific T-cell receptors (TCR). Sequence information might eventually be exploited in immunotherapeutic approaches to treat AML patients with TCR-engineered T cells or bispecific TCR T/NK cell engagers.
Collapse
Affiliation(s)
- Elke Rücker-Braun
- Department of Internal Medicine I, University Hospital TU Dresden, Dresden, Germany
- Clinical Trials Unit, DKMS Group, Dresden, Germany
| | - Bose Falk
- Clinical Trials Unit, DKMS Group, Dresden, Germany
| | | | | | | | - Heidi Altmann
- Department of Internal Medicine I, University Hospital TU Dresden, Dresden, Germany
| | | | | | | | | | - Desiree Kunadt
- Department of Internal Medicine I, University Hospital TU Dresden, Dresden, Germany
| | - Friedrich Stölzel
- Division for Stem Cell Transplantation and Cellular Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christoph Röllig
- Department of Internal Medicine I, University Hospital TU Dresden, Dresden, Germany
| | - Jan M. Middeke
- Department of Internal Medicine I, University Hospital TU Dresden, Dresden, Germany
| | - Malte von Bonin
- Department of Internal Medicine I, University Hospital TU Dresden, Dresden, Germany
| | - Christian Thiede
- Department of Internal Medicine I, University Hospital TU Dresden, Dresden, Germany
| | - Alexander H. Schmidt
- Clinical Trials Unit, DKMS Group, Dresden, Germany
- DKMS Life Science Lab, Dresden, Germany
- DKMS Group, Tübingen, Germany
| | - Martin Bornhäuser
- Department of Internal Medicine I, University Hospital TU Dresden, Dresden, Germany
| | - Johannes Schetelig
- Department of Internal Medicine I, University Hospital TU Dresden, Dresden, Germany
- Clinical Trials Unit, DKMS Group, Dresden, Germany
| | - Falk Heidenreich
- Department of Internal Medicine I, University Hospital TU Dresden, Dresden, Germany
- Clinical Trials Unit, DKMS Group, Dresden, Germany
| |
Collapse
|
2
|
Hayashi M, Yamamura A, Iida Y. Evaluation of the factor of E. coli growth inhibition by recombinant DNA methyltransferase, and a new tip for the transformation of DNA methyltransferases into E. coli. Biosci Biotechnol Biochem 2025; 89:841-848. [PMID: 40216410 DOI: 10.1093/bbb/zbaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/11/2025] [Indexed: 05/22/2025]
Abstract
Studies on DNA methyltransferases (MTases) have described growth inhibition in transformed MTase-Escherichia coli. In addition, this phenomenon has been reported to negatively impact on the transformation efficiency of E. coli. In this study, we identified the cause of the growth inhibition of MTase-transformed E. coli by DNA MTase. We also described that metal ions promote the efficiency of the transformation of DNA MTases into E. coli. Growth inhibition was evaluated through spot plating, which revealed growth inhibition in M.ApeKI, which is the thermostability DNA (cytosine-5)-methyltransferase, and the mutant (possessing only DNA-binding ability). We previously showed that Cu and Zn inhibited the catalytic activity and DNA binding ability of M.ApeKI in vitro. Therefore, we examined the cancellation of the growth inhibition of the host cell and the construction of M.ApeKI in the presence of these metal ions. We also indicated that this method could be adapted to other DNA MTases.
Collapse
Affiliation(s)
- Mao Hayashi
- Department of Applied Chemistry and Bioscience, Graduate School of Engineering, Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan
| | - Akira Yamamura
- Department of Applied Chemistry and Bioscience, Graduate School of Engineering, Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan
- Department of Applied Bioscience, Faculty of Applied Bioscience, Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan
| | - Yasuhiro Iida
- Department of Applied Chemistry and Bioscience, Graduate School of Engineering, Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan
- Department of Applied Bioscience, Faculty of Applied Bioscience, Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan
| |
Collapse
|
3
|
Ouyang J, Wu D, Gan Y, Tang Y, Wang H, Huang J. Unraveling the metabolic‒epigenetic nexus: a new frontier in cardiovascular disease treatment. Cell Death Dis 2025; 16:183. [PMID: 40102393 PMCID: PMC11920384 DOI: 10.1038/s41419-025-07525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/16/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
Cardiovascular diseases are the leading causes of death worldwide. However, there are still shortcomings in the currently employed treatment methods for these diseases. Therefore, exploring the molecular mechanisms underlying cardiovascular diseases is an important avenue for developing new treatment strategies. Previous studies have confirmed that metabolic and epigenetic alterations are often involved in cardiovascular diseases across patients. Moreover, metabolic and epigenetic factors interact with each other and affect the progression of cardiovascular diseases in a coordinated manner. Lactylation is a novel posttranslational modification (PTM) that links metabolism with epigenetics and affects disease progression. Therefore, analyzing the crosstalk between cellular metabolic and epigenetic factors in cardiovascular diseases is expected to provide insights for the development of new treatment strategies. The purpose of this review is to describe the relationship between metabolic and epigenetic factors in heart development and cardiovascular diseases such as heart failure, myocardial infarction, and atherosclerosis, with a focus on acylation and methylation, and to propose potential therapeutic measures.
Collapse
Affiliation(s)
- Jun Ouyang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Deping Wu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yumei Gan
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuming Tang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, China
| | - Hui Wang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, China.
| | - Jiangnan Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
4
|
Song J, Wu Y, Chen Y, Sun X, Zhang Z. Epigenetic regulatory mechanism of macrophage polarization in diabetic wound healing (Review). Mol Med Rep 2025; 31:2. [PMID: 39422035 PMCID: PMC11551531 DOI: 10.3892/mmr.2024.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetic wounds represent a significant complication of diabetes and present a substantial challenge to global public health. Macrophages are crucial effector cells that play a pivotal role in the pathogenesis of diabetic wounds, through their polarization into distinct functional phenotypes. The field of epigenetics has emerged as a rapidly advancing research area, as this phenomenon has the potential to markedly affect gene expression, cellular differentiation, tissue development and susceptibility to disease. Understanding epigenetic mechanisms is crucial to further exploring disease pathogenesis. A growing body of scientific evidence has highlighted the pivotal role of epigenetics in the regulation of macrophage phenotypes. Various epigenetic mechanisms, such as DNA methylation, histone modification and non‑coding RNAs, are involved in the modulation of macrophage phenotype differentiation in response to the various environmental stimuli present in diabetic wounds. The present review provided an overview of the various changes that take place in macrophage phenotypes and functions within diabetic wounds and discussed the emerging role of epigenetic modifications in terms of regulating macrophage plasticity in diabetic wounds. It is hoped that this synthesis of information will facilitate the elucidation of diabetic wound pathogenesis and the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Jielin Song
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Yuqing Wu
- The First Clinical Medical College, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yunli Chen
- The First Clinical Medical College, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Xu Sun
- Department of Traditional Chinese Medicine Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Zhaohui Zhang
- Department of Traditional Chinese Medicine Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| |
Collapse
|
5
|
Wang K, He Z, Jin G, Jin S, Du Y, Yuan S, Zhang J. Targeting DNA methyltransferases for cancer therapy. Bioorg Chem 2024; 151:107652. [PMID: 39024804 DOI: 10.1016/j.bioorg.2024.107652] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
DNA methyltransferases (DNMTs) play a crucial role in genomic DNA methylation. In mammals, DNMTs regulate the dynamic patterns of DNA methylation in embryonic and adult cells. Abnormal functions of DNMTs are often indicative of cancers, including overall hypomethylation and partial hypermethylation of tumor suppressor genes (TSG), which accelerate the malignancy of tumors, worsen the condition of patients, and significantly exacerbate the difficulty of cancer treatment. Currently, nucleoside DNMT inhibitors such as Azacytidine and Decitabine have been approved by the FDA and EMA for the treatment of acute myeloid leukemia (AML), chronic myelomonocytic leukemia (CMML), and myelodysplastic syndrome (MDS). Therefore, targeting DNMTs is a very promising anti-tumor strategy. This review mainly summarizes the therapeutic effects of DNMT inhibitors on cancers. It aims to provide more possibilities for the treatment of cancers by discovering more DNMT inhibitors with high activity, high selectivity, and good drug-like properties in the future.
Collapse
Affiliation(s)
- Kaiyue Wang
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China
| | - Zhangxu He
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China.
| | - Gang Jin
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China
| | - Sasa Jin
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China
| | - Yuanbing Du
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, PR China.
| | - Jingyu Zhang
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China.
| |
Collapse
|
6
|
Teng S, Han C, Zhou J, He Z, Qian W. m 5C RNA methylation: a potential mechanism for infectious Alzheimer's disease. Front Cell Dev Biol 2024; 12:1440143. [PMID: 39175875 PMCID: PMC11338875 DOI: 10.3389/fcell.2024.1440143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder caused by a variety of factors, including age, genetic susceptibility, cardiovascular disease, traumatic brain injury, and environmental factors. The pathogenesis of AD is largely associated with the overproduction and accumulation of amyloid-β peptides and the hyperphosphorylation of tau protein in the brain. Recent studies have identified the presence of diverse pathogens, including viruses, bacteria, and parasites, in the tissues of AD patients, underscoring the critical role of central nervous system infections in inducing pathological changes associated with AD. Nevertheless, it remains unestablished about the specific mechanism by which infections lead to the occurrence of AD. As an important post-transcriptional RNA modification, RNA 5-methylcytosine (m5C) methylation regulates a wide range of biological processes, including RNA splicing, nuclear export, stability, and translation, therefore affecting cellular function. Moreover, it has been recently demonstrated that multiple pathogenic microbial infections are associated with the m5C methylation of the host. However, the role of m5C methylation in infectious AD is still uncertain. Therefore, this review discusses the mechanisms of pathogen-induced AD and summarizes research on the molecular mechanisms of m5C methylation in infectious AD, thereby providing new insight into exploring the mechanism underlying infectious AD.
Collapse
Affiliation(s)
- Sisi Teng
- Department of Neurology, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cunqiao Han
- Department of Emergency, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Zhou
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Zhenyan He
- Department of Neurosurgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Weiwei Qian
- Department of Emergency, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Hobble HV, Schaner Tooley CE. Intrafamily heterooligomerization as an emerging mechanism of methyltransferase regulation. Epigenetics Chromatin 2024; 17:5. [PMID: 38429855 PMCID: PMC10908127 DOI: 10.1186/s13072-024-00530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/10/2024] [Indexed: 03/03/2024] Open
Abstract
Protein and nucleic acid methylation are important biochemical modifications. In addition to their well-established roles in gene regulation, they also regulate cell signaling, metabolism, and translation. Despite this high biological relevance, little is known about the general regulation of methyltransferase function. Methyltransferases are divided into superfamilies based on structural similarities and further classified into smaller families based on sequence/domain/target similarity. While members within superfamilies differ in substrate specificity, their structurally similar active sites indicate a potential for shared modes of regulation. Growing evidence from one superfamily suggests a common regulatory mode may be through heterooligomerization with other family members. Here, we describe examples of methyltransferase regulation through intrafamily heterooligomerization and discuss how this can be exploited for therapeutic use.
Collapse
Affiliation(s)
- Haley V Hobble
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
8
|
Rabkin SW, Wong CN. Epigenetics in Heart Failure: Role of DNA Methylation in Potential Pathways Leading to Heart Failure with Preserved Ejection Fraction. Biomedicines 2023; 11:2815. [PMID: 37893188 PMCID: PMC10604152 DOI: 10.3390/biomedicines11102815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
This review will focus on epigenetic modifications utilizing the DNA methylation mechanism, which is potentially involved in the pathogenesis of heart failure with preserved ejection fraction (HFpEF). The putative pathways of HFpEF will be discussed, specifically myocardial fibrosis, myocardial inflammation, sarcoplasmic reticulum Ca2+-ATPase, oxidative-nitrosative stress, mitochondrial and metabolic defects, as well as obesity. The relationship of HFpEF to aging and atrial fibrillation will be examined from the perspective of DNA methylation.
Collapse
Affiliation(s)
- Simon W. Rabkin
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Division of Cardiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Chenille N. Wong
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
9
|
Oñate G, Bataller A, Garrido A, Hoyos M, Arnan M, Vives S, Coll R, Tormo M, Sampol A, Escoda L, Salamero O, Garcia A, Bargay J, Aljarilla A, Nomdedeu JF, Esteve J, Sierra J, Pratcorona M. Prognostic impact of DNMT3A mutation in acute myeloid leukemia with mutated NPM1. Blood Adv 2022; 6:882-890. [PMID: 34516636 PMCID: PMC8945292 DOI: 10.1182/bloodadvances.2020004136] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/07/2021] [Indexed: 11/20/2022] Open
Abstract
The negative prognostic impact of internal tandem duplication of FLT3 (FLT3-ITD) in patients with acute myeloid leukemia with mutated NPM1 (AML-NPM1) is restricted to those with a higher FLT3-ITD allelic ratio (FLT3high; ≥0.5) and considered negligible in those with a wild-type (FLT3WT)/low ITD ratio (FLT3low). Because the comutation of DNMT3A (DNMT3Amut) has been suggested to negatively influence prognosis in AML-NPM1, we analyzed the impact of DNMT3Amut in FLT3-ITD subsets (absent, low, and high ratios). A total of 164 patients diagnosed with AML-NPM1 included in 2 consecutive CETLAM protocols and with DNMT3A and FLT3 status available were studied. Overall, DNMT3Amut status did not have a prognostic impact, with comparable overall survival (P = .2). Prognostic stratification established by FLT3-ITD (FLT3WT = FLT3low > FLT3high) was independent of DNMT3Amut status. Measurable residual disease (MRD) based on NPM1 quantitative polymerase chain reaction was available for 94 patients. DNMT3Amut was associated with a higher number of mutated NPM1 transcripts after induction (P = .012) and first consolidation (C1; P < .001). All DNMT3Amut patients were MRD+ after C1 (P < .001) and exhibited significant MRD persistence after C2 and C3 (MRD+ vs MRD-; P = .027 and P = .001, respectively). Finally, DNMT3Amut patients exhibited a trend toward greater risk of molecular relapse (P = .054). In conclusion, DNMT3Amut did not modify the overall prognosis exerted by FLT3-ITD in AML-NPM1 despite delayed MRD clearance, possibly because of MRD-driven preemptive intervention.
Collapse
Affiliation(s)
- Guadalupe Oñate
- Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | | | - Ana Garrido
- Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Montserrat Hoyos
- Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Montserrat Arnan
- Catalan Institute of Oncology (ICO), Hospital Duran i Reynals, Barcelona, Spain
| | - Susana Vives
- ICO, Hospital Germans Trias i Pujol, José Carreras Leukemia Research Institute, Badalona, Spain
| | - Rosa Coll
- ICO, Hospital Josep Trueta, Girona, Spain
| | - Mar Tormo
- Hospital Clínico Universitario, Instituto de Investigación del Hospital Clínico de la Comunidad Valenciana, Valencia, Spain
| | | | | | | | - Antoni Garcia
- Hospital Universitari Arnau de Vilanova, Lleida, Spain; and
| | - Joan Bargay
- Hospital Son Llàtzer, Palma de Mallorca, Spain
| | - Alba Aljarilla
- Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Josep F. Nomdedeu
- Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | | | - Jorge Sierra
- Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Marta Pratcorona
- Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Tasin FR, Ahmed A, Halder D, Mandal C. On-going consequences of in utero exposure of Pb: An epigenetic perspective. J Appl Toxicol 2022; 42:1553-1569. [PMID: 35023172 DOI: 10.1002/jat.4287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 11/08/2022]
Abstract
Epigenetic modifications by toxic heavy metals are one of the intensively investigated fields of modern genomic research. Among a diverse group of heavy metals, lead (Pb) is an extensively distributed toxicant causing an immense number of abnormalities in the developing fetus via a wide variety of epigenetic changes. As a divalent cation, Pb can readily cross the placental membrane and the fetal blood brain barrier leading to far-reaching alterations in DNA methylation patterns, histone protein modifications and micro-RNA expression. Over recent years, several human cohorts and animal model studies have documented hyper- and hypo-methylation of developmental genes along with altered DNA methyl-transferase expression by in utero Pb exposure in a dose-, duration- and sex-dependent manner. Modifications in the expression of specific histone acetyltransferase enzymes along with histone acetylation and methylation levels have been reported in rodent and murine models. Apart from these, down-regulation and up-regulation of certain microRNAs crucial for fetal development have been shown to be associated with in utero Pb exposure in human placenta samples. All these modifications in the developing fetus during the prenatal and perinatal stages reportedly caused severe abnormalities in early or adult age, such as - impaired growth, obesity, autism, diabetes, cardiovascular diseases, risks of cancer development and Alzheimer's disease. In this review, currently available information on Pb-mediated alterations in the fetal epigenome is summarized. Further research on Pb-induced epigenome modification will help to understand the mechanisms in detail and will enable us to formulate safety guidelines for pregnant women and developing children.
Collapse
Affiliation(s)
- Fahim Rejanur Tasin
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Asif Ahmed
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Debasish Halder
- Rare Disease research center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Chanchal Mandal
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
11
|
Abstract
Little is known regarding the DNA methyltransferases (MTases) in hyperthermophilic archaea. In this study, we focus on an MTase from Aeropyrum pernix K1, a hyperthermophilic archaeon that is found in hydrothermal vents and whose optimum growth temperature is 90°C to 95°C. From genomic sequence analysis, A. pernix K1 has been predicted to have a restriction-modification system (R-M system). The restriction endonuclease from A. pernix K1 (known as ApeKI from New England BioLabs Inc. [catalog code R06435]) has been described previously, but the properties of the MTase from A. pernix K1 (M.ApeKI) have not yet been clarified. Thus, we demonstrated the properties of M.ApeKI. In this study, M.ApeKI was expressed in Escherichia coli strain JM109 and affinity purified using its His tag. The recognition sequence of M.ApeKI was determined by methylation activity and bisulfite sequencing (BS-seq). High-performance liquid chromatography (HPLC) was used to detect the position of the methyl group in methylated cytosine. As a result, it was clarified that M.ApeKI adds the methyl group at the C-5 position of the second cytosine in 5'-GCWGC-3'. Moreover, we also determined that the MTase optimum temperature was over 70°C and that it is strongly tolerant to high temperatures. M.ApeKI is the first highly thermostable DNA (cytosine-5)-methyltransferase to be evaluated by experimental evidence. IMPORTANCE In general, thermophilic bacteria with optimum growth temperatures over or equal to 60°C have been predicted to include only N4-methylcytosine or N6-methyladenine as methylated bases in their DNA, because 5-methylcytosine is susceptible to deamination by heat. However, from this study, A. pernix K1, with an optimum growth temperature at 95°C, was demonstrated to produce a DNA (cytosine-5)-methyltransferase. Thus, A. pernix K1 presumably has 5-methylcytosine in its DNA and may produce an original repair system for the expected C-to-T mutations. M.ApeKI was demonstrated to be tolerant to high temperatures; thus, we expect that M.ApeKI may be valuable for the development of a novel analysis system or epigenetic editing tool.
Collapse
|
12
|
Tessier SN, Ingelson-Filpula WA, Storey KB. Epigenetic regulation by DNA methyltransferases during torpor in the thirteen-lined ground squirrel Ictidomys tridecemlineatus. Mol Cell Biochem 2021; 476:3975-3985. [PMID: 34191233 DOI: 10.1007/s11010-021-04214-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 06/21/2021] [Indexed: 12/31/2022]
Abstract
The thirteen-lined ground squirrel, Ictidomys tridecemlineatus, is a mammal capable of lowering its Tb to almost 0 °C while undergoing deep torpor bouts over the winter. To decrease its metabolic rate to such a drastic extent, the squirrel must undergo multiple physiological, biological, and molecular alterations including downregulation of almost all nonessential processes. Epigenetic regulation allows for a dynamic range of transient phenotypes, allowing the squirrel to downregulate energy-expensive and nonessential pathways during torpor. DNA methylation is a prominent form of epigenetic regulation; therefore, the DNA methyltransferase (DNMT) family of enzymes were studied by measuring expression and activity levels of the five major proteins during torpor bouts. Additionally, specific cytosine marks on genomic DNA were quantified to further elucidate DNA methylation during hibernation. A tissue-specific response was observed that highlighted variant degrees of DNA methylation and DNMT expression/activity, demonstrating that DNA methylation is a highly complex form of epigenetic regulation and likely one of many regulatory mechanisms that enables metabolic rate depression in response to torpor.
Collapse
Affiliation(s)
- Shannon N Tessier
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.,BioMEMS Resource Center & Center for Engineering in Medicine, Massachusetts General Hospital & Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - W Aline Ingelson-Filpula
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
13
|
Kiselev IS, Kulakova OG, Boyko AN, Favorova OO. DNA Methylation As an Epigenetic Mechanism in the Development of Multiple Sclerosis. Acta Naturae 2021; 13:45-57. [PMID: 34377555 PMCID: PMC8327151 DOI: 10.32607/actanaturae.11043] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
The epigenetic mechanisms of gene expression regulation are a group of the key cellular and molecular pathways that lead to inherited alterations in genes' activity without changing their coding sequence. DNA methylation at the C5 position of cytosine in CpG dinucleotides is amongst the central epigenetic mechanisms. Currently, the number of studies that are devoted to the identification of methylation patterns specific to multiple sclerosis (MS), a severe chronic autoimmune disease of the central nervous system, is on a rapid rise. However, the issue of the contribution of DNA methylation to the development of the different clinical phenotypes of this highly heterogeneous disease has only begun to attract the attention of researchers. This review summarizes the data on the molecular mechanisms underlying DNA methylation and the MS risk factors that can affect the DNA methylation profile and, thereby, modulate the expression of the genes involved in the disease's pathogenesis. The focus of our attention is centered on the analysis of the published data on the differential methylation of DNA from various biological samples of MS patients obtained using both the candidate gene approach and high-throughput methods.
Collapse
Affiliation(s)
- I. S. Kiselev
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - O. G. Kulakova
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - A. N. Boyko
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - O. O. Favorova
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| |
Collapse
|
14
|
Aftab A, Afzal S, Idrees M, Shahid AA. p53 and rb promoter methylation in hepatitis C virus-related chronic hepatitis and hepatocellular carcinoma. Future Virol 2021. [DOI: 10.2217/fvl-2020-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To identify methylation in p53 and rb during hepatitis C virus (HCV) infection in individuals in Pakistan. Materials & methods: Methylation-specific PCR was used on liver biopsies from hepatocellular carcinoma and chronic hepatitis C patients and on blood samples from healthy individuals. Real-time PCR was used to assess changes in the expression of p53 and rb in Huh-7 cells transfected with HCV-3a. Results: The p53 and rb promoters were methylated in hepatocellular carcinoma patients. The presence of HCV-3a- Core (p = 0.03), HCV-3a- NS-3 (p = 0.01) and HCV-3a- NS-5a (p = 0.02) downregulated p53 expression. Exposure to HCV-3a- Core (p = 0.04) downregulated rb expression. Conclusion: It can be hypothesized that HCV-induced epigenetic modifications may lead to the development of hepatic cancer that in turn inactivates p53 and rb.
Collapse
Affiliation(s)
- Ayma Aftab
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ahmad Ali Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
15
|
Lauber C, Correia N, Trumpp A, Rieger MA, Dolnik A, Bullinger L, Roeder I, Seifert M. Survival differences and associated molecular signatures of DNMT3A-mutant acute myeloid leukemia patients. Sci Rep 2020; 10:12761. [PMID: 32728112 PMCID: PMC7391693 DOI: 10.1038/s41598-020-69691-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a very heterogeneous and highly malignant blood cancer. Mutations of the DNA methyltransferase DNMT3A are among the most frequent recurrent genetic lesions in AML. The majority of DNMT3A-mutant AML patients shows fast relapse and poor survival, but also patients with long survival or long-term remission have been reported. Underlying molecular signatures and mechanisms that contribute to these survival differences are only poorly understood and have not been studied in detail so far. We applied hierarchical clustering to somatic gene mutation profiles of 51 DNMT3A-mutant patients from The Cancer Genome Atlas (TCGA) AML cohort revealing two robust patient subgroups with profound differences in survival. We further determined molecular signatures that distinguish both subgroups. Our results suggest that FLT3 and/or NPM1 mutations contribute to survival differences of DNMT3A-mutant patients. We observed an upregulation of genes of the p53, VEGF and DNA replication pathway and a downregulation of genes of the PI3K-Akt pathway in short- compared to long-lived patients. We identified that the majority of measured miRNAs was downregulated in the short-lived group and we found differentially expressed microRNAs between both subgroups that have not been reported for AML so far (miR-153-2, miR-3065, miR-95, miR-6718) suggesting that miRNAs could be important for prognosis. In addition, we learned gene regulatory networks to predict potential major regulators and found several genes and miRNAs with known roles in AML pathogenesis, but also interesting novel candidates involved in the regulation of hematopoiesis, cell cycle, cell differentiation, and immunity that may contribute to the observed survival differences of both subgroups and could therefore be important for prognosis. Moreover, the characteristic gene mutation and expression signatures that distinguished short- from long-lived patients were also predictive for independent DNMT3A-mutant AML patients from other cohorts and could also contribute to further improve the European LeukemiaNet (ELN) prognostic scoring system. Our study represents the first in-depth computational approach to identify molecular factors associated with survival differences of DNMT3A-mutant AML patients and could trigger additional studies to develop robust molecular markers for a better stratification of AML patients with DNMT3A mutations.
Collapse
Affiliation(s)
- Chris Lauber
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Nádia Correia
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Anna Dolnik
- Department of Hematology, Oncology and Tumorimmunology, Charité University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumorimmunology, Charité University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany. .,National Center for Tumor Diseases (NCT), Dresden, Germany.
| |
Collapse
|
16
|
Newton AS, Faver JC, Micevic G, Muthusamy V, Kudalkar SN, Bertoletti N, Anderson KS, Bosenberg MW, Jorgensen WL. Structure-Guided Identification of DNMT3B Inhibitors. ACS Med Chem Lett 2020; 11:971-976. [PMID: 32435413 DOI: 10.1021/acsmedchemlett.0c00011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
Methyltransferase 3 beta (DNMT3B) inhibitors that interfere with cancer growth are emerging possibilities for treatment of melanoma. Herein we identify small molecule inhibitors of DNMT3B starting from a homology model based on a DNMT3A crystal structure. Virtual screening by docking led to purchase of 15 compounds, among which 5 were found to inhibit the activity of DNMT3B with IC50 values of 13-72 μM in a fluorogenic assay. Eight analogues of 7, 10, and 12 were purchased to provide 2 more active compounds. Compound 11 is particularly notable as it shows good selectivity with no inhibition of DNMT1 and 22 μM potency toward DNMT3B. Following additional de novo design, exploratory synthesis of 17 analogues of 11 delivered 5 additional inhibitors of DNMT3B with the most potent being 33h with an IC50 of 8.0 μM. This result was well confirmed in an ultrahigh-performance liquid chromatography (UHPLC)-based analytical assay, which yielded an IC50 of 4.8 μM. Structure-activity data are rationalized based on computed structures for DNMT3B complexes.
Collapse
Affiliation(s)
- Ana S. Newton
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - John C. Faver
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | | | | | | | | | | | | | - William L. Jorgensen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
17
|
Zubrzycka A, Zubrzycki M, Perdas E, Zubrzycka M. Genetic, Epigenetic, and Steroidogenic Modulation Mechanisms in Endometriosis. J Clin Med 2020; 9:E1309. [PMID: 32370117 PMCID: PMC7291215 DOI: 10.3390/jcm9051309] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Endometriosis is a chronic gynecological disease, affecting up to 10% of reproductive-age women. The exact cause of the disease is unknown; however, it is a heritable condition affected by multiple genetic, epigenetic, and environmental factors. Previous studies reported variations in the epigenetic patterns of numerous genes known to be involved in the aberrant modulation of cell cycle steroidogenesis, abnormal hormonal, immune and inflammatory status in endometriosis, apoptosis, adhesion, angiogenesis, proliferation, immune and inflammatory processes, response to hypoxia, steroidogenic pathway and hormone signaling are involved in the pathogenesis of endometriosis. Accumulating evidence suggest that various epigenetic aberrations may contribute to the pathogenesis of endometriosis. Among them, DNA methyltransferases, histone deacetylators, and non-coding microRNAs demonstrate differential expression within endometriotic lesions and in the endometrium of patients with endometriosis. It has been indicated that the identification of epigenetic differences within the DNA or histone proteins may contribute to the discovery of a useful prognostic biomarker, which could aid in the future earlier detection, timely diagnosis, and initiation of a new approach to the treatment of endometriosis, as well as inform us about the effectiveness of treatment and the stage of the disease. As the etiology of endometriosis is highly complex and still far from being fully elucidated, the presented review focuses on different approaches to identify the genetic and epigenetic links of endometriosis and its pathogenesis.
Collapse
Affiliation(s)
- Anna Zubrzycka
- Department of Biomedicine and Genetics, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; Poland;
- Department of Operative and Conservative Gynecology, K. Jonscher Memorial Hospital, Milionowa 14, 93-113 Lodz, Poland
| | - Marek Zubrzycki
- Department of Cardiac Surgery and Transplantology, The Cardinal Stefan Wyszynski Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland;
| | - Ewelina Perdas
- Department of Cardiovascular Physiology, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Maria Zubrzycka
- Department of Cardiovascular Physiology, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| |
Collapse
|
18
|
Wu Y, Chen J, Sun Y, Dong X, Wang Z, Chen J, Dong G. PGN and LTA from Staphylococcus aureus Induced Inflammation and Decreased Lactation through Regulating DNA Methylation and Histone H3 Acetylation in Bovine Mammary Epithelial Cells. Toxins (Basel) 2020; 12:E238. [PMID: 32283626 PMCID: PMC7232188 DOI: 10.3390/toxins12040238] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) are the most common pathogens of mastitis, and S. aureus generally causes subclinical mastitis which is more persistent and resistant to treatment. Peptidoglycan (PGN) and lipoteichoic acid (LTA) are cell wall components of S. aureus. Although the roles of PGN and LTA in causing inflammation are well studied, the epigenetic mechanisms of the effects of PGN and LTA on the inflammation and lactation remain poorly understood. This study characterized the gene expression profiling by RNA sequencing and investigated DNA methylation and histone acetylation in relation to inflammation and lactation in the immortalized bovine mammary epithelial cell line (MAC-T). The cells were cultured for 24 h with neither PGN nor LTA (CON), PGN (30 μg/mL), LTA (30 μg/mL), and PGN (30 μg/mL) + LTA (30 μg/mL), respectively. The number of differentially expressed genes (DEGs) and the expression of proinflammatory factors including interleukin (IL)-1β, IL-6, IL-8, chemokine (C-X-C motif) ligand (CXCL)1, and CXCL6 of the treatments increased in the following order: CON < PGN < LTA < PGN + LTA, and the DEGs mainly enriched on the cytokine-cytokine receptor interaction and chemokine signaling pathway. LTA and PGN + LTA induced hypomethylation of global DNA by suppressing DNA methyltransferase (DNMT) activity. PGN and LTA, alone or combined, decreased the mRNA expression of casein genes (CSN1S1, CSN2, and CSN3) and the expression of two caseins (CSN2 and CSN3), and reduced histone H3 acetylation by suppressing histone acetyltransferase (HAT) activity and promoting histone deacetylase (HDAC) activity. Collectively, this study revealed that PGN and LTA induced inflammation probably due to decreasing DNA methylation through regulating DNMT activity, and decreased lactation possibly through reducing histone H3 acetylation by regulating HAT and HDAC activity in bovine mammary epithelial cells.
Collapse
Affiliation(s)
- Yongjiang Wu
- College of Animal Science and Technology, Southwest University, Beibei District, Chongqing 400716, China; (Y.W.); (J.C.); (Y.S.); (Z.W.); (J.C.)
| | - Jingbo Chen
- College of Animal Science and Technology, Southwest University, Beibei District, Chongqing 400716, China; (Y.W.); (J.C.); (Y.S.); (Z.W.); (J.C.)
| | - Yawang Sun
- College of Animal Science and Technology, Southwest University, Beibei District, Chongqing 400716, China; (Y.W.); (J.C.); (Y.S.); (Z.W.); (J.C.)
| | - Xianwen Dong
- Institute for Herbivorous Livestock Research, Chongqing Academy of Animal Science, Chongqing 402460, China;
| | - Zili Wang
- College of Animal Science and Technology, Southwest University, Beibei District, Chongqing 400716, China; (Y.W.); (J.C.); (Y.S.); (Z.W.); (J.C.)
| | - Juncai Chen
- College of Animal Science and Technology, Southwest University, Beibei District, Chongqing 400716, China; (Y.W.); (J.C.); (Y.S.); (Z.W.); (J.C.)
| | - Guozhong Dong
- College of Animal Science and Technology, Southwest University, Beibei District, Chongqing 400716, China; (Y.W.); (J.C.); (Y.S.); (Z.W.); (J.C.)
| |
Collapse
|
19
|
Onuzulu CD, Rotimi OA, Rotimi SO. Epigenetic modifications associated with in utero exposure to endocrine disrupting chemicals BPA, DDT and Pb. REVIEWS ON ENVIRONMENTAL HEALTH 2019; 34:309-325. [PMID: 31271561 DOI: 10.1515/reveh-2018-0059] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are xenobiotics which adversely modify the hormone system. The endocrine system is most vulnerable to assaults by endocrine disruptors during the prenatal and early development window, and effects may persist into adulthood and across generations. The prenatal stage is a period of vulnerability to environmental chemicals because the epigenome is usually reprogrammed during this period. Bisphenol A (BPA), lead (Pb), and dichlorodiphenyltrichloroethane (DDT) were chosen for critical review because they have become serious public health concerns globally, especially in Africa where they are widely used without any regulation. In this review, we introduce EDCs and describe the various modes of action of EDCs and the importance of the prenatal and developmental windows to EDC exposure. We give a brief overview of epigenetics and describe the various epigenetic mechanisms: DNA methylation, histone modifications and non-coding RNAs, and how each of them affects gene expression. We then summarize findings from previous studies on the effects of prenatal exposure to the endocrine disruptors BPA, Pb and DDT on each of the previously described epigenetic mechanisms. We also discuss how the epigenetic alterations caused by these EDCs may be related to disease processes.
Collapse
Affiliation(s)
- Chinonye Doris Onuzulu
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Ogun State, Nigeria
| | - Oluwakemi Anuoluwapo Rotimi
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Ogun State, Nigeria
| | - Solomon Oladapo Rotimi
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Ogun State, Nigeria
| |
Collapse
|
20
|
Wang L, Zhao J, Li Y, Wang Z, Kang S. Genome-wide analysis of DNA methylation in endometriosis using Illumina Human Methylation 450 K BeadChips. Mol Reprod Dev 2019; 86:491-501. [PMID: 30740831 DOI: 10.1002/mrd.23127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 12/13/2022]
Abstract
Endometriosis is a common chronic gynecologic disorder characterized by the presence and growth of endometrial-like tissue outside of the uterine cavity. Although the exact etiology remains unclear, epigenetic modifications, such as DNA methylation, are thought to contribute to the pathogenesis of endometriosis. Here, we used the Illumina Human Methylation 450 K BeadChip Array to analyze the genome-wide DNA methylation profiles of six endometriotic lesions and six eutopic endometria from patients with ovarian endometriosis and six endometria of women without endometriosis. Compared with the eutopic endometria of women with endometriosis, 12,159 differentially methylated CpG sites and 375 differentially methylated promoter regions were identified in endometriotic lesions. GO analyses showed that these putative differentially methylated genes were primarily associated with immune response, inflammatory response, response to steroid hormone stimulus, cell adhesion, negative regulation of apoptosis, and activation of the MAPK activity. In addition, the expression levels of DNMT1, DNMT3A, DNMT3B, and MBD2 in endometriotic lesions and eutopic endometria were significantly decreased compared with control endometria. Our findings suggest that aberrant DNA methylation status in endometriotic lesions may play a significant role in the pathogenesis and progression of endometriosis.
Collapse
Affiliation(s)
- Lixian Wang
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jian Zhao
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Li
- Department of Molecular Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zihe Wang
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shan Kang
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
21
|
Gonzalez-Fierro A, Dueñas-González A. Emerging DNA methylation inhibitors for cancer therapy: challenges and prospects. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019; 4:27-35. [DOI: 10.1080/23808993.2019.1571906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
Affiliation(s)
| | - Alfonso Dueñas-González
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM/Instituto Nacional de Can cerología, México City, Mexico
| |
Collapse
|
22
|
Romani M, Pistillo MP, Banelli B. Epigenetic Targeting of Glioblastoma. Front Oncol 2018; 8:448. [PMID: 30386738 PMCID: PMC6198064 DOI: 10.3389/fonc.2018.00448] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma is one of the first tumors where the biological changes accompanying a single epigenetic modification, the methylation of the MGMT gene, were found to be of clinical relevance. The exploration of the epigenomic landscape of glioblastoma has allowed to identify patients carrying a diffuse hypermethylation at gene promoters and with better outcome. Epigenetic and genetic data have led to the definition of major subgroups of glioma and were the basis of the current WHO classification of CNS tumors and of a novel classification based solely on DNA methylation data that shows a remarkable diagnostic precision.The reversibility of epigenetic modifications is considered a therapeutic opportunity in many tumors also because these alterations have been mechanistically linked to the biological characteristics of glioblastoma. Several alterations like IDH1/2 mutations that interfere with "epigenetic modifier" enzymes, the mutations of the histone 3 variants H3.1 and H3.3 that alter the global H3K27me3 levels and the altered expression of histone methyltransferases and demethylases are considered potentially druggable targets in glioma and molecules targeting these alterations are being tested in preclinical and clinical trials. The recent advances on the knowledge of the players of the "epigenetic orchestra" and of their mutual interactions are indicating new paths that may eventually open new therapeutic options for this invariably lethal cancer.
Collapse
Affiliation(s)
- Massimo Romani
- Laboratory of Tumor Epigenetics, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maria Pia Pistillo
- Laboratory of Tumor Epigenetics, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Barbara Banelli
- Laboratory of Tumor Epigenetics, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Health Sciences, University of Genoa, Genova, Italy
| |
Collapse
|
23
|
Gore AV, Tomins KA, Iben J, Ma L, Castranova D, Davis AE, Parkhurst A, Jeffery WR, Weinstein BM. An epigenetic mechanism for cavefish eye degeneration. Nat Ecol Evol 2018; 2:1155-1160. [PMID: 29807993 PMCID: PMC6023768 DOI: 10.1038/s41559-018-0569-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/02/2018] [Indexed: 12/23/2022]
Abstract
Coding and non-coding mutations in DNA contribute significantly to phenotypic variability during evolution. However, less is known about the role of epigenetics in this process. Although previous studies have identified eye development genes associated with the loss-of-eyes phenotype in the Pachón blind cave morph of the Mexican tetra Astyanax mexicanus, no inactivating mutations have been found in any of these genes. Here, we show that excess DNA methylation-based epigenetic silencing promotes eye degeneration in blind cave A. mexicanus. By performing parallel analyses in A. mexicanus cave and surface morphs, and in the zebrafish Danio rerio, we have discovered that DNA methylation mediates eye-specific gene repression and globally regulates early eye development. The most significantly hypermethylated and downregulated genes in the cave morph are also linked to human eye disorders, suggesting that the function of these genes is conserved across vertebrates. Our results show that changes in DNA methylation-based gene repression can serve as an important molecular mechanism generating phenotypic diversity during development and evolution.
Collapse
Affiliation(s)
- Aniket V Gore
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA.
| | - Kelly A Tomins
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - James Iben
- Molecular Genomics Laboratory, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Li Ma
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Andrew E Davis
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Amy Parkhurst
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA.
| |
Collapse
|
24
|
Tang H, Lu W, Yang Z, Chen Y, Wang J, Lu S, Jiang K. Significance of incorporation of DNMT1 and HLA-DRα with TNM staging in patients with hepatocellular carcinoma after curative resection. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9372-9381. [PMID: 31966809 PMCID: PMC6966003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/24/2017] [Indexed: 06/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of hepatic cancer and is particularly a problem in China. Bio-molecular markers have been demonstrated to be of prognostic significance and might help predict tumor behavior. In our study, we aimed to assess the prognostic values of DNA methyltransferase 1 (DNMT1), HLA-DRα, and β-catenin, as well as the combined use of molecular biomarkers, clinicopathological parameters and the TNM staging system to find a method for superior prognostic performance for HCC by analyzing a Chinese HCC cohort. We revealed the significant prognostic roles of DNMT1 (OR: 2.570; 95% CI: 1.401-4.715; P = 0.002) and HLA-DRα (0.350; 0.189-0.616; 0.001), and further developed an estimation formula to predict prognosis in HCC patients after curative resection, based on TNM staging, operative blood loss, abnormal total bilirubin, DNMT1 and HLA-DRα. The receiver operating characteristic curve analysis showed that prediction from the multivariate logistic regression had an area of 0.847 and performed better than the conventional TNM staging system, as well as other current HCC staging systems. Our study demonstrated the prognostic values of DNMT1 and HLA-DRα in HCC patients after curative resection. Additionally, we developed a prognostic estimation formula featured better stratification ability than the conventional TNM staging and provided a practicable stratification method for HCC patients after curative resection.
Collapse
Affiliation(s)
- Haowen Tang
- Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General HospitalBeijing, China
- Graduate School of Medicine, The University of TokyoTokyo, Japan
| | - Wenping Lu
- Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General HospitalBeijing, China
| | - Zhanyu Yang
- Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General HospitalBeijing, China
| | - Yongliang Chen
- Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General HospitalBeijing, China
| | - Jing Wang
- Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General HospitalBeijing, China
| | - Shichun Lu
- Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General HospitalBeijing, China
| | - Kai Jiang
- Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General HospitalBeijing, China
| |
Collapse
|
25
|
Nagaraju GP, Wu C, Merchant N, Chen Z, Lesinski GB, El-Rayes BF. Epigenetic effects of inhibition of heat shock protein 90 (HSP90) in human pancreatic and colon cancer. Cancer Lett 2017; 402:110-116. [PMID: 28583846 DOI: 10.1016/j.canlet.2017.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/10/2017] [Accepted: 05/02/2017] [Indexed: 01/08/2023]
Abstract
Silencing of tumor suppressor and DNA repair genes through methylation plays a role in cancer development, growth and response to therapy in colorectal and pancreatic cancers. Heat shock protein 90 (HSP90) regulates transcription of DNA methyltransferase enzymes (DNMT). In addition, DNMTs are client proteins of HSP90. The aim of this study is to evaluate the effects of HSP90 inhibition on DNA methylation in colorectal and pancreatic cancer cell lines. Our data shows that inhibition of HSP90 using ganetespib resulted in downregulation of mRNA and protein expression of DNMT1, DNMT3A, and DNMT3B in HT-29 and MIA PaCa-2 cell lines. This in turn was associated with a drop in the fraction of methylated cytosine residues and re-expression of silenced genes including MLH-1, P16 and SPARC. These effects were validated in HT-29 tumors implanted subcutaneously in mice following in vivo administration of ganetespib. This work demonstrates the effectiveness of ganetespib, an HSP90 inhibitor in modulating DNA methylation through downregulation of DNMT expression.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Christina Wu
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Neha Merchant
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Zhengjia Chen
- Department of Biostatistics, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Bassel F El-Rayes
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
26
|
Kirsanova OV, Sergeev AV, Yasko IS, Gromova ES. The impact of 6-thioguanine incorporation into DNA on the function of DNA methyltransferase Dnmt3a. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 36:392-405. [PMID: 28498075 DOI: 10.1080/15257770.2017.1287921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The incorporation of chemotherapeutic agent 6-thioguanine (SG) into DNA is a prerequisite for its cytotoxic action. This modification of DNA impedes the activity of enzymes involved in DNA repair and replication. Here, using hemimethylated DNA substrates we demonstrated that DNA methylation by Dnmt3a-CD is reduced if DNA is damaged by the incorporation of SG into one or two CpG sites separated by nine base pairs. An increase in the number of SG substitutions did not enhance the effect. Dnmt3a-CD binding to either of SG-containing DNA substrates was not distorted. Our results suggest that SG incorporation into DNA may influence epigenetic regulation via DNA methylation.
Collapse
Affiliation(s)
- Olga V Kirsanova
- a Department of Chemistry , M. V. Lomonosov Moscow State University , Moscow , Russia
| | - Alexander V Sergeev
- a Department of Chemistry , M. V. Lomonosov Moscow State University , Moscow , Russia
| | - Ivan S Yasko
- a Department of Chemistry , M. V. Lomonosov Moscow State University , Moscow , Russia
| | - Elizaveta S Gromova
- a Department of Chemistry , M. V. Lomonosov Moscow State University , Moscow , Russia
| |
Collapse
|
27
|
In silico design of the first DNA-independent mechanism-based inhibitor of mammalian DNA methyltransferase Dnmt1. PLoS One 2017; 12:e0174410. [PMID: 28399172 PMCID: PMC5388339 DOI: 10.1371/journal.pone.0174410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 03/08/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND We use our earlier experimental studies of the catalytic mechanism of DNA methyltransferases to prepare in silico a family of novel mechanism-based inhibitors of human Dnmt1. Highly specific inhibitors of DNA methylation can be used for analysis of human epigenome and for the creation of iPS cells. RESULTS We describe a set of adenosyl-1-methyl-pyrimidin-2-one derivatives as novel mechanism-based inhibitors of mammalian DNA methyltransferase Dnmt1. The inhibitors have been designed to bind simultaneously in the active site and the cofactor site and thus act as transition-state analogues. Molecular dynamics studies showed that the lead compound can form between 6 to 9 binding interactions with Dnmt1. QM/MM analysis showed that the upon binding to Dnmt1 the inhibitor can form a covalent adduct with active site Cys1226 and thus act as a mechanism-based suicide-inhibitor. The inhibitor can target DNA-bond and DNA-free form of Dnmt1, however the suicide-inhibition step is more likely to happen when DNA is bound to Dnmt1. The validity of presented analysis is described in detail using 69 modifications in the lead compound structure. In total 18 of the presented 69 modifications can be used to prepare a family of highly specific inhibitors that can differentiate even between closely related enzymes such as Dnmt1 and Dnmt3a DNA methyltransferases. CONCLUSIONS Presented results can be used for preparation of some highly specific and potent inhibitors of mammalian DNA methylation with specific pharmacological properties.
Collapse
|
28
|
DNA methylation in hematopoietic development and disease. Exp Hematol 2016; 44:783-790. [PMID: 27178734 DOI: 10.1016/j.exphem.2016.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/28/2022]
Abstract
DNA methylation is an important epigenetic modification that can have profound and widespread effects on gene expression and on cellular fate and function. Recent work has indicated that DNA methylation plays a critical role in hematopoietic development and hematopoietic disease. DNA methyltransferases and Ten-eleven translocation enzymes are required to add and remove methyl "marks" from DNA, respectively, and both sets of genes have been found necessary for proper formation and maintenance of hematopoietic stem cells and for differentiation of downstream hematopoietic lineages during development. DNA methylation and demethylation enzymes have also been implicated in hematopoietic disorders such as acute myeloid leukemia and myelodysplastic syndrome. Here, we review some of the recent literature regarding the role of DNA methylation in hematopoietic health and disease.
Collapse
|
29
|
KOUKOURA OURANIA, SIFAKIS STAVROS, SPANDIDOS DEMETRIOSA. DNA methylation in endometriosis (Review). Mol Med Rep 2016; 13:2939-48. [PMID: 26934855 PMCID: PMC4805102 DOI: 10.3892/mmr.2016.4925] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/22/2016] [Indexed: 12/01/2022] Open
Abstract
Endometriosis is defined by the presence and growth of functional endometrial tissue, outside the uterine cavity, primarily in the ovaries, pelvic peritoneum and rectovaginal septum. Although it is a benign disease, it presents with malignant characteristics, such as invasion to surrounding tissues, metastasis to distant locations and recurrence following treatment. Accumulating evidence suggests that various epigenetic aberrations may play an essential role in the pathogenesis of endometriosis. Aberrant DNA methylation represents a possible mechanism repsonsible for this disease, linking gene expression alterations observed in endometriosis with hormonal and environmental factors. Several lines of evidence indicate that endometriosis may partially be due to selective epigenetic deregulations influenced by extrinsic factors. Previous studies have shed light into the epigenetic component of endometriosis, reporting variations in the epigenetic patterns of genes known to be involved in the aberrant hormonal, immunologic and inflammatory status of endometriosis. Although recent studies, utilizing advanced molecular techniques, have allowed us to further elucidate the possible association of DNA methylation with altered gene expression, whether these molecular changes represent the cause or merely the consequence of the disease is a question which remains to be answered. This review provides an overview of the current literature on the role of DNA methylation in the pathophysiology and malignant evolution of endometriosis. We also provide insight into the mechanisms through which DNA methylation-modifying agents may be the next step in the research of the pharmaceutical treatment of endometriosis.
Collapse
Affiliation(s)
- OURANIA KOUKOURA
- Department of Obstetrics and Gynecology, University Hospital of Larissa, Larissa 41500, Greece
| | - STAVROS SIFAKIS
- Department of Obstetrics and Gynecology, University Hospital of Heraklion, Heraklion 71003, Greece
| | - DEMETRIOS A. SPANDIDOS
- Laboratory of Clinical Virology, University of Crete Medical School, Heraklion 71409, Greece
| |
Collapse
|
30
|
Kesäniemi JE, Heikkinen L, Knott KE. DNA Methylation and Potential for Epigenetic Regulation in Pygospio elegans. PLoS One 2016; 11:e0151863. [PMID: 27008314 PMCID: PMC4805255 DOI: 10.1371/journal.pone.0151863] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/04/2016] [Indexed: 01/24/2023] Open
Abstract
Transitions in developmental mode are common evolutionarily, but how and why they occur is not understood. Developmental mode describes larval phenotypes, including morphology, ecology and behavior of larvae, which typically are generalized across different species. The polychaete worm Pygospio elegans is one of few species polymorphic in developmental mode, with multiple larval phenotypes, providing a possibility to examine the potential mechanisms allowing transitions in developmental mode. We investigated the presence of DNA methylation in P. elegans, and, since maternal provisioning is a key factor determining eventual larval phenotype, we compared patterns of DNA methylation in females during oogenesis in this species. We demonstrate that intragenic CpG site DNA methylation and many relevant genes necessary for DNA methylation occur in P. elegans. Methylation-sensitive AFLP analysis showed that gravid females with offspring differing in larval developmental mode have significantly different methylation profiles and that the females with benthic larvae and non-reproductive females from the same location also differ in their epigenetic profiles. Analysis of CpG sites in transcriptome data supported our findings of DNA methylation in this species and showed that CpG observed/expected ratios differ among females gravid with embryos destined to different developmental modes. The differences in CpG site DNA methylation patterns seen among the samples suggest a potential for epigenetic regulation of gene expression (through DNA methylation) in this species.
Collapse
Affiliation(s)
- Jenni E. Kesäniemi
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- * E-mail:
| | - Liisa Heikkinen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - K. Emily Knott
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
31
|
Lukashevich OV, Cherepanova NA, Jurkovska RZ, Jeltsch A, Gromova ES. Conserved motif VIII of murine DNA methyltransferase Dnmt3a is essential for methylation activity. BMC BIOCHEMISTRY 2016; 17:7. [PMID: 27001594 PMCID: PMC4802922 DOI: 10.1186/s12858-016-0064-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/02/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Dnmt3a is a DNA methyltransferase that establishes de novo DNA methylation in mammals. The structure of the Dnmt3a C-terminal domain is similar to the bacterial M. HhaI enzyme, a well-studied prokaryotic DNA methyltransferase. No X-ray structure is available for the complex of Dnmt3a with DNA and the mechanistic details of DNA recognition and catalysis by mammalian Dnmts are not completely understood. RESULTS Mutant variants of the catalytic domain of the murine Dnmt3a carrying substitutions of highly conserved N167, R200, and R202 have been generated by site directed mutagenesis and purified. Their methylation activity, DNA binding affinity, ability to flip the target cytosine out of the DNA double helix and covalent complex formation with DNA have been examined. Substitutions of N167 lead to reduced catalytic activity and reduced base flipping. Catalytic activity, base flipping, and covalent conjugate formation were almost completely abolished for the mutant enzymes with substitutions of R200 or R202. CONCLUSIONS We conclude that R202 plays a similar role in catalysis in Dnmt3a-CD as R232 in M.SssI and R165 in M.HhaI, which could be positioning of the cytosine for nucleophilic attack by a conserved Cys. R200 of Dnmt3a-CD is important in both catalysis and cytosine flipping. Both conserved R200 and R202 are involved in creating and stabilizing of the transient covalent intermediate of the methylation reaction. N167 might contribute to the positioning of the residues from the motif VI, but does not play a direct role in catalysis.
Collapse
Affiliation(s)
- Olga V Lukashevich
- Department of Chemistry, Moscow State University, 119991, Moscow, Russia
| | | | - Renata Z Jurkovska
- BioMedX Innovation Center, Im Neuenheimer Feld 583, 69120, Heidelberg, Germany
| | - Albert Jeltsch
- Institute of Biochemistry, Faculty of Chemistry, University Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | | |
Collapse
|
32
|
Gore AV, Athans B, Iben JR, Johnson K, Russanova V, Castranova D, Pham VN, Butler MG, Williams-Simons L, Nichols JT, Bresciani E, Feldman B, Kimmel CB, Liu PP, Weinstein BM. Epigenetic regulation of hematopoiesis by DNA methylation. eLife 2016; 5:e11813. [PMID: 26814702 PMCID: PMC4744183 DOI: 10.7554/elife.11813] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/06/2015] [Indexed: 11/13/2022] Open
Abstract
During embryonic development, cell type-specific transcription factors promote cell identities, while epigenetic modifications are thought to contribute to maintain these cell fates. Our understanding of how genetic and epigenetic modes of regulation work together to establish and maintain cellular identity is still limited, however. Here, we show that DNA methyltransferase 3bb.1 (dnmt3bb.1) is essential for maintenance of hematopoietic stem and progenitor cell (HSPC) fate as part of an early Notch-runx1-cmyb HSPC specification pathway in the zebrafish. Dnmt3bb.1 is expressed in HSPC downstream from Notch1 and runx1, and loss of Dnmt3bb.1 activity leads to reduced cmyb locus methylation, reduced cmyb expression, and gradual reduction in HSPCs. Ectopic overexpression of dnmt3bb.1 in non-hematopoietic cells is sufficient to methylate the cmyb locus, promote cmyb expression, and promote hematopoietic development. Our results reveal an epigenetic mechanism supporting the maintenance of hematopoietic cell fate via DNA methylation-mediated perdurance of a key transcription factor in HSPCs. DOI:http://dx.doi.org/10.7554/eLife.11813.001 The cells in our blood are constantly being replaced with new cells that are produced by stem cells called hematopoietic stem and progenitor cells (or HSPCs for short). The HSPCs form early on in the development of the embryo and continue in the same role throughout the life of the animal. A gene called runx1 is required for HSPCs to form, but is not required for these cells to maintain their role (cell identity) in the long term. In mice, this gene is only expressed for a brief period of time as the HSPCs form, and is switched off in the mature stem cells. Another gene called cmyb – which is switched on by runx1 – is also required for HSPCs to form. However, unlike runx1, cmyb continues to be expressed in mature HSPCs and is required to maintain HSPC identity. It is not known how the temporary activation of runx1 causes the long-term expression of cmyb. One possible explanation is that the cmyb gene may be subject to a process called DNA methylation. This process is carried out by enzymes called DNA methyltransferases and can have long-term effects on the expression of genes by modifying the structure of the DNA that encodes them. Here, Gore et al. investigate the role of a particular DNA methyltransferase in the formation of HSPCs in zebrafish embryos. The experiments show that this enzyme is activated in developing HSPCs in response to an increase in runx1 expression. The loss of this enzyme’s activity reduces both the amount that cmyb is methylated and its level of expression, which results in a gradual decline in the number of HSPCs in zebrafish. Further experiments show that if the DNA methyltransferase is artificially activated in cells that don’t normally form blood cells, these cells change their identity to do so. This switch is accompanied by methylation of cmyb and an increase in its expression. Gore et al.’s findings reveal that the temporary activation of runx1 triggers the production of an enzyme that methylates cmyb to maintain the identity of HSPCs. Future studies should help to reveal exactly how runx1 promotes DNA methylation, and whether this process can be harnessed to promote HSPC formation for research or medical treatments. DOI:http://dx.doi.org/10.7554/eLife.11813.002
Collapse
Affiliation(s)
- Aniket V Gore
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Brett Athans
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - James R Iben
- Program in Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Kristin Johnson
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Valya Russanova
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Daniel Castranova
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Van N Pham
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Matthew G Butler
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Lisa Williams-Simons
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - James T Nichols
- Institute of Neuroscience, University of Oregon, Eugene, United States
| | - Erica Bresciani
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, United States
| | - Bejamin Feldman
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Charles B Kimmel
- Institute of Neuroscience, University of Oregon, Eugene, United States
| | - Paul P Liu
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, United States
| | - Brant M Weinstein
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
33
|
Witek MA, Conn GL. Functional dichotomy in the 16S rRNA (m1A1408) methyltransferase family and control of catalytic activity via a novel tryptophan mediated loop reorganization. Nucleic Acids Res 2015; 44:342-53. [PMID: 26609134 PMCID: PMC4705659 DOI: 10.1093/nar/gkv1306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/09/2015] [Indexed: 12/29/2022] Open
Abstract
Methylation of the bacterial small ribosomal subunit (16S) rRNA on the N1 position of A1408 confers exceptionally high-level resistance to a broad spectrum of aminoglycoside antibiotics. Here, we present a detailed structural and functional analysis of the Catenulisporales acidiphilia 16S rRNA (m1A1408) methyltransferase (‘CacKam’). The apo CacKam structure closely resembles other m1A1408 methyltransferases within its conserved SAM-binding fold but the region linking core β strands 6 and 7 (the ‘β6/7 linker’) has a unique, extended structure that partially occludes the putative 16S rRNA binding surface, and sequesters the conserved and functionally critical W203 outside of the CacKam active site. Substitution of conserved residues in the SAM binding pocket reveals a functional dichotomy in the 16S rRNA (m1A1408) methyltransferase family, with two apparently distinct molecular mechanisms coupling cosubstrate/ substrate binding to catalytic activity. Our results additionally suggest that CacKam exploits the W203-mediated remodeling of the β6/7 linker as a novel mechanism to control 30S substrate recognition and enzymatic turnover.
Collapse
Affiliation(s)
- Marta A Witek
- Department of Biochemistry, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta GA 30322, USA
| |
Collapse
|
34
|
Environmental Epigenetics: Crossroad between Public Health, Lifestyle, and Cancer Prevention. BIOMED RESEARCH INTERNATIONAL 2015; 2015:587983. [PMID: 26339624 PMCID: PMC4538403 DOI: 10.1155/2015/587983] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/01/2015] [Indexed: 12/31/2022]
Abstract
Epigenetics provides the key to transform the genetic information into phenotype and because of its reversibility it is considered an ideal target for therapeutic interventions. This paper reviews the basic mechanisms of epigenetic control: DNA methylation, histone modifications, chromatin remodeling, and ncRNA expression and their role in disease development. We describe also the influence of the environment, lifestyle, nutritional habits, and the psychological influence on epigenetic marks and how these factors are related to cancer and other diseases development. Finally we discuss the potential use of natural epigenetic modifiers in the chemoprevention of cancer to link together public health, environment, and lifestyle.
Collapse
|
35
|
Zhang W, Xu Y, Ma G, Qi W, Gu H, Jiang P. Genetic Polymorphism of DNA Methyltransferase 3A rs1550117 A>G and Risk of Cancer: A Meta-analysis. J INVEST SURG 2015. [DOI: 10.3109/08941939.2015.1010024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
36
|
Xu H, Sun J, Shi C, Sun C, Yu L, Wen Y, Zhao S, Liu J, Xu J, Li H, An T, Zhou X, Ren L, Wang Q, Yu S. miR-29s inhibit the malignant behavior of U87MG glioblastoma cell line by targeting DNMT3A and 3B. Neurosci Lett 2015; 590:40-6. [PMID: 25625222 DOI: 10.1016/j.neulet.2015.01.060] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/06/2015] [Accepted: 01/23/2015] [Indexed: 02/07/2023]
Abstract
miR-29s (including miR-29a-c) have been confirmed to be effective tumor suppressors for a variety of malignant tumors including glioblastoma. Promoter hypermethylation resulting from DNMT3A and 3B overexpression is an important epigenetic mechanism for tumor suppressive gene silencing. Bioinformatics predicts both DNMT3A and 3B are targets of miR-29s, but the anti-glioblastoma effects of miR-29s induced DNMT3A/3B downregulation deserve further investigation. We herein demonstrated that miR-29s effectively blocked DNMT3A and 3B expression by degrading their mRNAs in U87MG glioblastoma cell line. Exogenous miR-29s substantially inhibited the proliferation, migration and invasion of U87MG cells, and promoted their apoptosis. These effects could be perfectly mimicked by a small interfering RNA against DNMT3A and 3B, and partially compromised by DNMT3A/3B expression plasmids co-transfection, suggesting that miR-29s exerted the above tumor suppressive effects at least partly by silencing DNMT3A/3B. These findings provide a rationale for miR-29s based therapeutic strategies against glioblastoma.
Collapse
Affiliation(s)
- Hui Xu
- Department of Neuropathology, Tianjin Neurologic Institute, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Jing Sun
- Department of Neuropathology, Tianjin Neurologic Institute, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Cuijuan Shi
- Department of Neuropathology, Tianjin Neurologic Institute, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Cuiyun Sun
- Department of Neuropathology, Tianjin Neurologic Institute, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Lin Yu
- Department of Biochemistry, Basic Medical College of Tianjin Medical University, Tianjin 300070, China
| | - Yanjun Wen
- Department of Neuropathology, Tianjin Neurologic Institute, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Shujun Zhao
- Department of Neuropathology, Tianjin Neurologic Institute, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China; Laboratory of Hormone and Development, Ministry of Health, Institute of Endocrinology, Tianjin Medical Univeristy, Tianjin 300070, China
| | - Jing Liu
- Department of Neuropathology, Tianjin Neurologic Institute, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Jinling Xu
- Department of Neuropathology, Tianjin Neurologic Institute, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Huining Li
- Department of Neuropathology, Tianjin Neurologic Institute, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Tongling An
- Department of Neuropathology, Tianjin Neurologic Institute, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Xuexia Zhou
- Department of Neuropathology, Tianjin Neurologic Institute, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Linlin Ren
- Department of Neuropathology, Tianjin Neurologic Institute, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China
| | - Qian Wang
- Department of Neuropathology, Tianjin Neurologic Institute, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China.
| | - Shizhu Yu
- Department of Neuropathology, Tianjin Neurologic Institute, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, China.
| |
Collapse
|
37
|
Abstract
DNA methylation patterns are disrupted in various malignancies, suggesting a role in the development of cancer, but genetic aberrations directly linking the DNA methylation machinery to malignancies were rarely observed, so this association remained largely correlative. Recently, however, mutations in the gene encoding DNA methyltransferase 3A (DNMT3A) were reported in patients with acute myeloid leukaemia (AML), and subsequently in patients with various other haematological malignancies, pointing to DNMT3A as a critically important new tumour suppressor. Here, we review the clinical findings related to DNMT3A, tie these data to insights from basic science studies conducted over the past 20 years and present a roadmap for future research that should advance the agenda for new therapeutic strategies.
Collapse
Affiliation(s)
- Liubin Yang
- 1] Department of Molecular and Human Genetics, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA. [2]
| | - Rachel Rau
- 1] Department of Pediatrics, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA. [2]
| | - Margaret A Goodell
- 1] Department of Molecular and Human Genetics, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA. [2] Department of Pediatrics, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
38
|
Li S, Chowdhury R, Liu F, Chou AP, Li T, Mody RR, Lou JJ, Chen W, Reiss J, Soto H, Prins R, Liau LM, Mischel PS, Nghiemphu PL, Yong WH, Cloughesy TF, Lai A. Tumor-suppressive miR148a is silenced by CpG island hypermethylation in IDH1-mutant gliomas. Clin Cancer Res 2014; 20:5808-22. [PMID: 25224277 DOI: 10.1158/1078-0432.ccr-14-0234] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE IDH1/2-mutant gliomas harbor a distinct glioma-CpG island methylation phenotype (G-CIMP) that may promote the initiation and progression of secondary pathway gliomas by silencing tumor-suppressive genes. The potential role of tumor-suppressive microRNAs (miRNA; miR) in this process is not understood. EXPERIMENTAL DESIGN To identify potential tumor-suppressive miRNA hypermethylated in glioma, the methylation profiles of IDH1/2(WT) gliomas (n = 11) and IDH1(MUT) glioma (n = 20) were compared by using massively parallel reduced representation bisulfite sequencing (RRBS). The methylation status of selected miRNA was validated by using targeted bisulfite sequencing (BiSEQ) in a large cohort of glioma tissue samples including 219 IDH1(WT) and 72 IDH1/2(MUT) samples. The expression of selected miRNAs was determined by using the TaqMan qPCR. Functional analyses of miR148a were conducted and target genes were identified. RESULTS We identify miR148a as a novel, G-CIMP-associated miRNA whose methylation is tightly correlated with IDH1 mutation and associated with improved survival in patients with malignant glioma. We confirm that downregulation of miR148a can occur via DNA methylation. We demonstrate that IDH1 mutation provides a mechanism of miR148a methylation and downregulation, and that restoration of miR148a reduced tumorigenic properties of glioma cells, possibly by targeting DNMT1. CONCLUSIONS We identify miR148a as a novel G-CIMP-associated miRNA, and provide results suggesting that miR148a restoration may have therapeutic implications.
Collapse
Affiliation(s)
- Sichen Li
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Reshmi Chowdhury
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Fei Liu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Arthur P Chou
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Tie Li
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Reema R Mody
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jerry J Lou
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Weidong Chen
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jean Reiss
- Department of Pathology & Lab Med-Clinical Labs, UCLA Health System, University of California Los Angeles, Los Angeles, California
| | - Horacio Soto
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Robert Prins
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Paul S Mischel
- Laboratory of Molecular Pathology, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California
| | - Phioanh L Nghiemphu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - William H Yong
- Department of Pathology & Lab Med-Clinical Labs, UCLA Health System, University of California Los Angeles, Los Angeles, California
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
39
|
Chung CJ, Chang CH, Liu CS, Huang CP, Chang YH, Chien SN, Tsai PH, Hsieh HA. Association of DNA methyltransferases 3A and 3B polymorphisms, and plasma folate levels with the risk of urothelial carcinoma. PLoS One 2014; 9:e104968. [PMID: 25126948 PMCID: PMC4134234 DOI: 10.1371/journal.pone.0104968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/15/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Interindividual genetic variations of human DNA methyltransferases (DNMTs), which involve the methyl donor from the folate-related one-carbon metabolism pathway, are hypothesized as a risk factor for urothelial carcinoma (UC). Therefore, we evaluated the role of gene-environment interaction in UC carcinogenesis. METHODS A hospital-based case-control study was conducted by recruiting 192 patients with UC and 381 controls. Their plasma folate levels were measured using a competitive immunoassay kit. In addition, DNMT3A -448A>G and DNMT3B -579G>T genotyping was evaluated using a polymerase chain reaction-restriction fragment length polymorphism technique. Multivariate logistic regression and 95% confidence intervals (CIs) were applied to estimate the UC risk. RESULTS We observed that patients with UC exhibited a higher prevalence rate of folate insufficiency (folate levels ≤6 ng/mL) compared with the controls (35.94% and 18.37%, respectively). Furthermore, folate levels were higher in the prevalent UC patients than in the incident UC patients. However, folate insufficiency was similarly associated with a nearly two-fold increase in the risk of UC regardless of the UC patient group. In addition, the frequencies of the variant alleles for DNMT3A and DNMT3B were 0.80 and 0.92, respectively, and no association was observed with UC risk. However, participants with a variant homozygous genotype of DNMT3B -579G>T and folate insufficiency or with high cumulative cigarette smoking exhibited an increased risk of UC. CONCLUSION Overall, environmental factors may contribute more significantly to UC carcinogenesis compared with genetic susceptibility. Future studies should investigate other polymorphisms of DNMT3A and DNMT3B to determine genetic susceptibility.
Collapse
Affiliation(s)
- Chi-Jung Chung
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chao-Hsiang Chang
- Department of Urology, China Medical University and Hospital, Taichung, Taiwan
- Department of Medicine, College of Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Chiu-Shong Liu
- Department of Medicine, College of Medicine, China Medical University and Hospital, Taichung, Taiwan
- Department of Family Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Ping Huang
- Department of Urology, China Medical University and Hospital, Taichung, Taiwan
| | - Yi-Huei Chang
- Department of Urology, China Medical University and Hospital, Taichung, Taiwan
| | - Ssu-Ning Chien
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan
| | - Ping-Huan Tsai
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan
| | - Hui-An Hsieh
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan
| |
Collapse
|
40
|
Chen BF, Chan WY. The de novo DNA methyltransferase DNMT3A in development and cancer. Epigenetics 2014; 9:669-77. [PMID: 24589714 DOI: 10.4161/epi.28324] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA methylation, one of the best-characterized epigenetic modifications, plays essential roles in development, aging and diseases. The de novo DNA methyltransferase DNMT3A is responsible for the establishment of de novo genomic DNA methylation patterns and, as such, involved in normal development as well as in many diseases including cancer. In recent years, our understanding of this important protein has made significant progress, which was facilitated by stunning development in the analysis of the DNA methylome of multiple organs and cell types. In this review, recent developments in the characterization of DNMT3A were discussed with special emphasis on the roles of DNMT3A in development and cancer.
Collapse
Affiliation(s)
- Bi-Feng Chen
- Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics; School of Biomedical Sciences; Shenzhen Research Institute; the Chinese University of Hong Kong; Hong Kong SAR, PR China
| | - Wai-Yee Chan
- Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics; School of Biomedical Sciences; Shenzhen Research Institute; the Chinese University of Hong Kong; Hong Kong SAR, PR China
| |
Collapse
|
41
|
Gros C, Chauvigné L, Poulet A, Menon Y, Ausseil F, Dufau I, Arimondo PB. Development of a universal radioactive DNA methyltransferase inhibition test for high-throughput screening and mechanistic studies. Nucleic Acids Res 2013; 41:e185. [PMID: 23980028 PMCID: PMC3799459 DOI: 10.1093/nar/gkt753] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/15/2013] [Accepted: 07/30/2013] [Indexed: 12/24/2022] Open
Abstract
DNA methylation is an important epigenetic mark in eukaryotes, and aberrant pattern of this modification is involved in numerous diseases such as cancers. Interestingly, DNA methylation is reversible and thus is considered a promising therapeutic target. Therefore, there is a need for identifying new small inhibitors of C5 DNA methyltransferases (DNMTs). Despite the development of numerous in vitro DNMT assays, there is a lack of reliable tests suitable for high-throughput screening, which can also give insights into inhibitor mechanisms of action. We developed a new test based on scintillation proximity assay meeting these requirements. After optimizing our assay on human DNMT1 and calibrating it with two known inhibitors, we carried out S-Adenosyl-l-Methionine and DNA competition studies on three inhibitors and were able to determine each mechanism of action. Finally, we showed that our test was applicable to 3 other methyltransferases sources: human DNMT3A, bacterial M.SssI and cellular extracts as well.
Collapse
Affiliation(s)
| | | | | | | | | | - Isabelle Dufau
- CNRS-Pierre Fabre USR n° 3388 ETaC, CRDPF, 3 Avenue H. Curien, 31035 Toulouse Cedex 01, France
| | - Paola B. Arimondo
- CNRS-Pierre Fabre USR n° 3388 ETaC, CRDPF, 3 Avenue H. Curien, 31035 Toulouse Cedex 01, France
| |
Collapse
|
42
|
Clinical impact of DNMT3A mutations in younger adult patients with acute myeloid leukemia: results of the AML Study Group (AMLSG). Blood 2013; 121:4769-77. [DOI: 10.1182/blood-2012-10-461624] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key PointsDNMT3A mutations are frequent in younger adults with AML and have no significant impact on survival end points. Only moderate effects on outcome, depending on molecular subgroup and DNMT3A mutation type, could be observed.
Collapse
|
43
|
Yang J, Lior-Hoffmann L, Wang S, Zhang Y, Broyde S. DNA cytosine methylation: structural and thermodynamic characterization of the epigenetic marking mechanism. Biochemistry 2013; 52:2828-38. [PMID: 23528166 DOI: 10.1021/bi400163k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA cytosine methyltransferases regulate the expression of the genome through the precise epigenetic marking of certain cytosines with a methyl group, and aberrant methylation is a hallmark of human diseases including cancer. Targeting these enzymes for drug design is currently a high priority. We have utilized ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations to investigate extensively the reaction mechanism of the representative DNA methyltransferase HhaI (M.HhaI) from prokaryotes, whose overall mechanism is shared with the mammalian enzymes. We obtain for the first time full free energy profiles for the complete reaction, together with reaction dynamics in atomistic detail. Our results show an energetically preferred mechanism in which nucleophilic attack of cytosine C5 on the S-adenosyl-L-methionine (AdoMet) methyl group is concerted with formation of the Michael adduct between a conserved Cys in the active site with cytosine C6. Spontaneous and reversible proton transfer between a conserved Glu in the active site and cytosine N3 at the transition state was observed in our simulations, revealing the chemical participation of this Glu residue in the catalytic mechanism. Subsequently, the β-elimination of the C5 proton utilizes as base an OH(-) derived from a conserved crystal water that is part of a proton wire water channel, and this syn β-elimination reaction is the rate-limiting step. Design of novel cytosine methylation inhibitors would be advanced by our structural and thermodynamic characterization of the reaction mechanism.
Collapse
Affiliation(s)
- Jin Yang
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | | | | | |
Collapse
|
44
|
Trials with 'epigenetic' drugs: an update. Mol Oncol 2012; 6:657-82. [PMID: 23103179 DOI: 10.1016/j.molonc.2012.09.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/30/2012] [Indexed: 02/06/2023] Open
Abstract
Epigenetic inactivation of pivotal genes involved in correct cell growth is a hallmark of human pathologies, in particular cancer. These epigenetic mechanisms, including crosstalk between DNA methylation, histone modifications and non-coding RNAs, affect gene expression and are associated with disease progression. In contrast to genetic mutations, epigenetic changes are potentially reversible. Re-expression of genes epigenetically inactivated can result in the suppression of disease state or sensitization to specific therapies. Small molecules that reverse epigenetic inactivation, so-called epi-drugs, are now undergoing clinical trials. Accordingly, the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for cancer treatment have approved some of these drugs. Here, we focus on the biological features of epigenetic molecules, analyzing the mechanism(s) of action and their current use in clinical practice.
Collapse
|
45
|
Mazzio EA, Soliman KFA. Basic concepts of epigenetics: impact of environmental signals on gene expression. Epigenetics 2012; 7:119-30. [PMID: 22395460 DOI: 10.4161/epi.7.2.18764] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Through epigenetic modifications, specific long-term phenotypic consequences can arise from environmental influence on slowly evolving genomic DNA. Heritable epigenetic information regulates nucleosomal arrangement around DNA and determines patterns of gene silencing or active transcription. One of the greatest challenges in the study of epigenetics as it relates to disease is the enormous diversity of proteins, histone modifications and DNA methylation patterns associated with each unique maladaptive phenotype. This is further complicated by a limitless combination of environmental cues that could alter the epigenome of specific cell types, tissues, organs and systems. In addition, complexities arise from the interpretation of studies describing analogous but not identical processes in flies, plants, worms, yeast, ciliated protozoans, tumor cells and mammals. This review integrates fundamental basic concepts of epigenetics with specific focus on how the epigenetic machinery interacts and operates in continuity to silence or activate gene expression. Topics covered include the connection between DNA methylation, methyl-CpG-binding proteins, transcriptional repression complexes, histone residues, histone modifications that mediate gene repression or relaxation, histone core variant stability, H1 histone linker flexibility, FACT complex, nucleosomal remodeling complexes, HP1 and nuclear lamins.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, FL USA
| | | |
Collapse
|
46
|
Copeland RA. Protein methyltransferase inhibitors as personalized cancer therapeutics. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.ddstr.2011.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Kar S, Deb M, Sengupta D, Shilpi A, Parbin S, Torrisani J, Pradhan S, Patra S. An insight into the various regulatory mechanisms modulating human DNA methyltransferase 1 stability and function. Epigenetics 2012; 7:994-1007. [PMID: 22894906 DOI: 10.4161/epi.21568] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DNA methylation is one of the principal epigenetic signals that participate in cell specific gene expression in vertebrates. DNA methylation plays a quintessential role in the control of gene expression, cellular differentiation and development. It also plays a central role in the preservation of chromatin structure and chromosomal integrity, parental imprinting, X-chromosome inactivation, aging and carcinogenesis. The foremost contributor in the mammalian methylation scheme is DNMT1, a maintenance methyltransferase that faithfully copies the pre-existing methyl marks onto hemimethylated daughter strands during DNA replication to maintain the established methylation patterns across successive cell divisions. The ever-changing cellular physiology and the significant part that DNA methylation plays in genome regulation necessitate rigid management of this enzyme. In mammalian cells, a host of intrinsic and extrinsic mechanisms regulate the expression, activity and stability of DNMT1. Transcriptional regulation, post-transcriptional auto-inhibitory controls and post-translational modifications of the enzyme are responsible for the efficient inheritance of DNA methylation patterns. Also, a large number of intra- and intercellular signaling cascades and numerous interactions with other modulator molecules that affect the catalytic activity of the enzyme at multiple levels function as major checkpoints of the DNMT1 control system. An in-depth understanding of the DNMT1 enzyme, its targeting and function is crucial for comprehending how DNA methylation is coordinated with other critical developmental and physiological processes. This review aims to provide a comprehensive account of the various regulatory mechanisms and interactions of DNMT1 so as to elucidate its function at the molecular level and understand the dynamics of DNA methylation at the cellular level.
Collapse
Affiliation(s)
- Swayamsiddha Kar
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | | | | | | | | | | | | | | |
Collapse
|
48
|
DNA methylation inhibitors in cancer: recent and future approaches. Biochimie 2012; 94:2280-96. [PMID: 22967704 DOI: 10.1016/j.biochi.2012.07.025] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 07/30/2012] [Indexed: 12/14/2022]
Abstract
This review presents the different human DNA methyltransferases (DNMTs), their biological roles, their mechanisms of action and their role in cancer. The description of assays for detecting DNMT inhibitors (DNMTi) follows. The different known DNMTi are reported along with their advantages, drawbacks and clinical trials. A discussion on the features of the future DNMT inhibitors will conclude this review.
Collapse
|
49
|
LaRochelle O, Bertoli S, Vergez F, Sarry JE, Mansat-De Mas V, Dobbelstein S, Dastugue N, Strzelecki AC, Cavelier C, Creancier L, Pillon A, Kruczynski A, Demur C, Sarry A, Huguet F, Huynh A, Récher C, Delabesse E. Do AML patients with DNMT3A exon 23 mutations benefit from idarubicin as compared to daunorubicin? A single center experience. Oncotarget 2012; 2:850-61. [PMID: 22081665 PMCID: PMC3260002 DOI: 10.18632/oncotarget.347] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mutations in DNMT3A encoding DNA methyltransferase 3A were recently described in patients with acute myeloid leukemia. To assess their prognostic significance, we determined the mutational status of DNMT3A exon 23 in 288 patients with AML excluding acute promyelocytic leukemia, aged from 18 to 65 years and treated in Toulouse University Hospital. A mutation was detected in 39 patients (13.5%). All DNMT3A exon 23+ patients had intermediate-risk cytogenetics. Mutations significantly correlated with a higher WBC count (p<0.001), NPM1 (p<0.001) and FLT3-ITD mutations (p=0.027). DNMT3A mutations were conserved through xenotransplantation in immunodeficient mice. No difference in outcome between DNMT3A exon 23+ and DNMT3A exon 23- patients was found even if the results were stratified by NPM1 or FLT3-ITD status. However, DNMT3A exon 23+ patients had better median DFS (not reached vs 11.6 months, p=0.009) and OS (not reached vs 14.3 months, p=0.005) as compared to DNMT3A exon 23- patients when treated with idarubicin, whereas patients treated with daunorubicin had similar outcome regardless the DNMT3A status. This study shows that DNMT3A mutations have no impact on outcome but could be a predictive factor for response to idarubicin and thus, could have a direct influence in the way AML patients should be managed.
Collapse
|
50
|
Maternal nutritional status, C(1) metabolism and offspring DNA methylation: a review of current evidence in human subjects. Proc Nutr Soc 2011; 71:154-65. [PMID: 22124338 PMCID: PMC3491641 DOI: 10.1017/s0029665111003338] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evidence is growing for the long-term effects of environmental factors during early-life on later disease susceptibility. It is believed that epigenetic mechanisms (changes in gene function not mediated by DNA sequence alteration), particularly DNA methylation, play a role in these processes. This paper reviews the current state of knowledge of the involvement of C1 metabolism and methyl donors and cofactors in maternal diet-induced DNA methylation changes in utero as an epigenetic mechanism. Methyl groups for DNA methylation are mostly derived from the diet and supplied through C1 metabolism by way of choline, betaine, methionine or folate, with involvement of riboflavin and vitamins B6 and B12 as cofactors. Mouse models have shown that epigenetic features, for example DNA methylation, can be altered by periconceptional nutritional interventions such as folate supplementation, thereby changing offspring phenotype. Evidence of early nutrient-induced epigenetic change in human subjects is scant, but it is known that during pregnancy C1 metabolism has to cope with high fetal demands for folate and choline needed for neural tube closure and normal development. Retrospective studies investigating the effect of famine or season during pregnancy indicate that variation in early environmental exposure in utero leads to differences in DNA methylation of offspring. This may affect gene expression in the offspring. Further research is needed to examine the real impact of maternal nutrient availability on DNA methylation in the developing fetus.
Collapse
|