1
|
Vandghanooni S, Eskandani M, Sanaat Z, Omidi Y. Recent advances in the production, reprogramming, and application of CAR-T cells for treating hematological malignancies. Life Sci 2022; 309:121016. [PMID: 36179813 DOI: 10.1016/j.lfs.2022.121016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 10/31/2022]
Abstract
As genetically engineered cells, chimeric antigen receptor (CAR)-T cells express specific receptors on their surface to target and eliminate malignant cells. CAR proteins are equipped with elements that enhance the activity and survival of T cells. Once injected, CAR-T cells act as a "living drug" against tumor cells in the body. Up to now, CAR-T cell therapy has been demonstrated as a robust adoptive cell transfer (ACT) immunotherapeutic modality for eliminating tumor cells in refractory hematological malignancies. CAR-T cell therapy modality involves several steps, including the collecting of the blood from patients, the isolation of peripheral blood mononuclear cells (PBMCs), the enrichment of CD4+/CD8+ T cell, the genetic reprogramming, the expansion of modified T cells, and the injection of genetically engineered T cells. The production of CAR-T cells is a multi-step procedure, which needs precise and safety management systems, including good manufacturing practice (GMP), and in-line quality control and assurance. The current study describes the structure of CARs and concentrates on the next generations of CARs that are engaged in enhancing the anti-tumor responses and safety of the engineered T cells. This paper also highlights the important concerns in quality control and nonclinical research of CAR-T cells, as well as general insights into the manufacture, reprogramming, and application of CAR-T cells based on new and enhanced techniques for treating hematological malignancies. Besides, the application of the CRISPR-Cas9 genome editing technology and nanocarrier-based delivery systems containing CAR coding sequences to overcome the limitations of CAR-T cell therapy has also been explained.
Collapse
Affiliation(s)
- Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
2
|
Zhou L, Li H, Yang S. Age does matter in adolescents and young adults vs. older adults with lung adenocarcinoma: A retrospective analysis comparing clinical characteristics and outcomes in response to systematic treatments. Oncol Lett 2022; 24:362. [PMID: 36238846 PMCID: PMC9494353 DOI: 10.3892/ol.2022.13482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Lin Zhou
- Department of Thoracic Surgery, YueBei People's Hospital, Shaoguan, Guangdong 512025, P.R. China
| | - Huiwu Li
- Medical Research Center, YueBei People's Hospital, Shaoguan, Guangdong 512025, P.R. China
| | - Shuhui Yang
- Department of Pathology, YueBei People's Hospital, Shaoguan, Guangdong 512025, P.R. China
| |
Collapse
|
3
|
Saide A, Damiano S, Ciarcia R, Lauritano C. Promising Activities of Marine Natural Products against Hematopoietic Malignancies. Biomedicines 2021; 9:645. [PMID: 34198841 PMCID: PMC8228764 DOI: 10.3390/biomedicines9060645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
According to the WHO classification of tumors, more than 150 typologies of hematopoietic and lymphoid tumors exist, and most of them remain incurable diseases that require innovative approaches to improve therapeutic outcome and avoid side effects. Marine organisms represent a reservoir of novel bioactive metabolites, but they are still less studied compared to their terrestrial counterparts. This review is focused on marine natural products with anticancer activity against hematological tumors, highlighting recent advances and possible perspectives. Until now, there are five commercially available marine-derived compounds for the treatment of various hematopoietic cancers (e.g., leukemia and lymphoma), two molecules in clinical trials, and series of compounds and/or extracts from marine micro- and macroorganisms which have shown promising properties. In addition, the mechanisms of action of several active compounds and extracts are still unknown and require further study. The continuous upgrading of omics technologies has also allowed identifying enzymes with possible bioactivity (e.g., l-asparaginase is currently used for the treatment of leukemia) or the enzymes involved in the synthesis of bioactive secondary metabolites which can be the target of heterologous expression and genetic engineering.
Collapse
Affiliation(s)
- Assunta Saide
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Naples, Italy;
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Naples, Italy;
| | - Chiara Lauritano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| |
Collapse
|
4
|
Woźniak M, Makuch S, Pastuch-Gawołek G, Wiśniewski J, Szeja W, Nowak M, Krawczyk M, Agrawal S. The Effect of a New Glucose-Methotrexate Conjugate on Acute Lymphoblastic Leukemia and Non-Hodgkin's Lymphoma Cell Lines. Molecules 2021; 26:2547. [PMID: 33925555 PMCID: PMC8123764 DOI: 10.3390/molecules26092547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Patients with hematologic malignancies require intensive therapies, including high-dose chemotherapy. Antimetabolite-methotrexate (MTX) has been used for many years in the treatment of leukemia and in lymphoma patients. However, the lack of MTX specificity causes a significant risk of morbidity, mortality, and severe side effects that impairs the quality of patients' life. Therefore, novel targeted therapies based on the malignant cells' common traits have become an essential treatment strategy. Glucose transporters have been found to be overexpressed in neoplastic cells, including hematologic malignancies. In this study, we biologically evaluated a novel glucose-methotrexate conjugate (Glu-MTX) in comparison to a free MTX. The research aimed to assess the effectiveness of Glu-MTX on chosen human lymphoma and leukemia cell lines. Cell cytotoxicity was verified by MTT viability test and flow cytometry. Moreover, the cell cycle and cellular uptake of Glu-MTX were evaluated. Our study reveals that conjugation of methotrexate with glucose significantly increases drug uptake and results in similar cytotoxicity of the synthesized compound. Although the finding has been confined to in vitro studies, our observations shed light on a potential therapeutic approach that increases the selectivity of chemotherapeutics and can improve leukemia and lymphoma patients' outcomes.
Collapse
Affiliation(s)
- Marta Woźniak
- Department of Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.W.); (S.M.); (M.N.)
| | - Sebastian Makuch
- Department of Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.W.); (S.M.); (M.N.)
| | - Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (G.P.-G.); (W.S.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Jerzy Wiśniewski
- Central Laboratory of Instrumental Analysis, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland;
| | - Wiesław Szeja
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (G.P.-G.); (W.S.)
| | - Martyna Nowak
- Department of Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.W.); (S.M.); (M.N.)
| | - Monika Krawczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (G.P.-G.); (W.S.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Siddarth Agrawal
- Department of Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.W.); (S.M.); (M.N.)
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
5
|
Balzarotti M, Santoro A. Checkpoint inhibitors in primary mediastinal B-cell lymphoma: a step forward in refractory/relapsing patients? ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1035. [PMID: 32953835 PMCID: PMC7475490 DOI: 10.21037/atm.2020.04.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Rizeq B, Gupta I, Ilesanmi J, AlSafran M, Rahman MDM, Ouhtit A. The Power of Phytochemicals Combination in Cancer Chemoprevention. J Cancer 2020; 11:4521-4533. [PMID: 32489469 PMCID: PMC7255361 DOI: 10.7150/jca.34374] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022] Open
Abstract
Conventional therapies for cancer treatment have posed many challenges, including toxicity, multidrug resistance and economic expenses. In contrast, complementary alternative medicine (CAM), employing phytochemicals have recently received increased attention owing to their capability to modulate a myriad of molecular mechanisms with a less toxic effect. Increasing evidence from preclinical and clinical studies suggest that phytochemicals can favorably modulate several signaling pathways involved in cancer development and progression. Combinations of phytochemicals promote cell death, inhibit cell proliferation and invasion, sensitize cancerous cells, and boost the immune system, thus making them striking alternatives in cancer therapy. We previously investigated the effect of six phytochemicals (Indol-3-Carbinol, Resveratrol, C-phycocyanin, Isoflavone, Curcumin and Quercetin), at their bioavailable levels on breast cancer cell lines and were compared to primary cell lines over a period of 6 days. This study showed the compounds had a synergestic effect in inhibiting cell proliferation, reducing cellular migration and invasion, inducing both cell cycle arrest and apoptosis. Despite the vast number of basic science and preclinical cancer studies involving phytochemicals, the number of CAM clinical trials in cancer treatment still remains nascent. In this review, we summarize findings from preclinical and clinical studies, including our work involving use of phytochemicals, individually as well as in combination and further discuss the potential of these phytochemicals to pave way to integrate CAM in primary health care.
Collapse
Affiliation(s)
- Balsam Rizeq
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Ishita Gupta
- College of Medicine, Qatar University, Doha, Qatar
| | - Josephine Ilesanmi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mohammed AlSafran
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - MD Mizanur Rahman
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Allal Ouhtit
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
7
|
Sprooten J, Ceusters J, Coosemans A, Agostinis P, De Vleeschouwer S, Zitvogel L, Kroemer G, Galluzzi L, Garg AD. Trial watch: dendritic cell vaccination for cancer immunotherapy. Oncoimmunology 2019; 8:e1638212. [PMID: 31646087 PMCID: PMC6791419 DOI: 10.1080/2162402x.2019.1638212] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Dendritic- cells (DCs) have received considerable attention as potential targets for the development of anticancer vaccines. DC-based anticancer vaccination relies on patient-derived DCs pulsed with a source of tumor-associated antigens (TAAs) in the context of standardized maturation-cocktails, followed by their reinfusion. Extensive evidence has confirmed that DC-based vaccines can generate TAA-specific, cytotoxic T cells. Nonetheless, clinical efficacy of DC-based vaccines remains suboptimal, reflecting the widespread immunosuppression within tumors. Thus, clinical interest is being refocused on DC-based vaccines as combinatorial partners for T cell-targeting immunotherapies. Here, we summarize the most recent preclinical/clinical development of anticancer DC vaccination and discuss future perspectives for DC-based vaccines in immuno-oncology.
Collapse
Affiliation(s)
- Jenny Sprooten
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jolien Ceusters
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
- Department of Gynecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
- Center for Cancer Biology (CCB), VIB, Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
- Université de Paris Descartes, Paris, France
| | - Abhishek D. Garg
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Biava PM, Nicolini A. New Insights into the Complexity of Cancer and of Inflammatory Diseases. Curr Med Chem 2019; 26:940. [PMID: 31113340 DOI: 10.2174/092986732606190513093422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Pier Mario Biava
- Scientific Institute of Research and Care Multimedica Milano, Milano, Italy
| | | |
Collapse
|
9
|
Niscola P, de Fabritiis P. Is cell therapy the answer for hematological malignancies? Expert Opin Biol Ther 2018; 18:495-497. [PMID: 29557205 DOI: 10.1080/14712598.2018.1454900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|