1
|
Oushyani Roudsari Z, Esmaeili Z, Nasirzadeh N, Heidari Keshel S, Sefat F, Bakhtyari H, Nadri S. Microfluidics as a promising technology for personalized medicine. BIOIMPACTS : BI 2024; 15:29944. [PMID: 39963565 PMCID: PMC11830131 DOI: 10.34172/bi.29944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 02/20/2025]
Abstract
Introduction Due to the recent advances in biomedicine and the increasing understanding of the molecular mechanism of diseases, healthcare approaches have tended towards preventive and personalized medicine. Consequently, in recent decades, the utilization of interdisciplinary technologies such as microfluidic systems had a significant increase to provide more accurate high throughput diagnostic/therapeutic methods. Methods In this article, we will review a summary of innovations in microfluidic technologies toward improving personalized biomolecular diagnostics, drug screening, and therapeutic strategies. Results Microfluidic systems by providing a controllable space for fluid flow, three-dimensional growth of cells, and miniaturization of molecular experiments are useful tools in the field of personalization of health and treatment. These conditions have enabled the potential to carry out studies like; disease modeling, drug screening, and improving the accuracy of diagnostic methods. Conclusion Microfluidic devices have become promising point-of-care (POC) and personalized medicine instruments due to their ability to perform diagnostic tests with small sample volumes, cost reduction, high resolution, and automation.
Collapse
Affiliation(s)
- Zahra Oushyani Roudsari
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Esmaeili
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nafiseh Nasirzadeh
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
- Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford, UK
| | - Hassan Bakhtyari
- Department of Pediatrics, School of Medicine, Ayatollah Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samad Nadri
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Metabolic Diseases Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Duan C, Yu M, Hu C, Xia H, Kankala RK. Polymeric microcarriers for minimally-invasive cell delivery. Front Bioeng Biotechnol 2023; 11:1076179. [PMID: 36777246 PMCID: PMC9908582 DOI: 10.3389/fbioe.2023.1076179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Tissue engineering (TE) aims at restoring tissue defects by applying the three-dimensional (3D) biomimetic pre-formed scaffolds to restore, maintain, and enhance tissue growth. Broadly speaking, this approach has created a potential impact in anticipating organ-building, which could reduce the need for organ replacement therapy. However, the implantation of such cell-laden biomimetic constructs based on substantial open surgeries often results in severe inflammatory reactions at the incision site, leading to the generation of a harsh adverse environment where cell survival is low. To overcome such limitations, micro-sized injectable modularized units based on various biofabrication approaches as ideal delivery vehicles for cells and various growth factors have garnered compelling interest owing to their minimally-invasive nature, ease of packing cells, and improved cell retention efficacy. Several advancements have been made in fabricating various 3D biomimetic microscale carriers for cell delivery applications. In this review, we explicitly discuss the progress of the microscale cell carriers that potentially pushed the borders of TE, highlighting their design, ability to deliver cells and substantial tissue growth in situ and in vivo from different viewpoints of materials chemistry and biology. Finally, we summarize the perspectives highlighting current challenges and expanding opportunities of these innovative carriers.
Collapse
Affiliation(s)
- Chunyan Duan
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan, China,*Correspondence: Ranjith Kumar Kankala, ; Chunyan Duan,
| | - Mingjia Yu
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan, China
| | - Changji Hu
- School of New Energy and Environmental Protection Engineering, Foshan Polytechnic, Foshan, China
| | - Hongying Xia
- Fujian Provincial Key Laboratory of Biochemical Technology, Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Ranjith Kumar Kankala
- Fujian Provincial Key Laboratory of Biochemical Technology, Institute of Biomaterials and Tissue Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, China,*Correspondence: Ranjith Kumar Kankala, ; Chunyan Duan,
| |
Collapse
|
3
|
Fosse V, Oldoni E, Gerardi C, Banzi R, Fratelli M, Bietrix F, Ussi A, Andreu AL, McCormack E. Evaluating Translational Methods for Personalized Medicine-A Scoping Review. J Pers Med 2022; 12:1177. [PMID: 35887673 PMCID: PMC9324577 DOI: 10.3390/jpm12071177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 07/16/2022] [Indexed: 12/09/2022] Open
Abstract
The introduction of personalized medicine, through the increasing multi-omics characterization of disease, brings new challenges to disease modeling. The scope of this review was a broad evaluation of the relevance, validity, and predictive value of the current preclinical methodologies applied in stratified medicine approaches. Two case models were chosen: oncology and brain disorders. We conducted a scoping review, following the Joanna Briggs Institute guidelines, and searched PubMed, EMBASE, and relevant databases for reports describing preclinical models applied in personalized medicine approaches. A total of 1292 and 1516 records were identified from the oncology and brain disorders search, respectively. Quantitative and qualitative synthesis was performed on a final total of 63 oncology and 94 brain disorder studies. The complexity of personalized approaches highlights the need for more sophisticated biological systems to assess the integrated mechanisms of response. Despite the progress in developing innovative and complex preclinical model systems, the currently available methods need to be further developed and validated before their potential in personalized medicine endeavors can be realized. More importantly, we identified underlying gaps in preclinical research relating to the relevance of experimental models, quality assessment practices, reporting, regulation, and a gap between preclinical and clinical research. To achieve a broad implementation of predictive translational models in personalized medicine, these fundamental deficits must be addressed.
Collapse
Affiliation(s)
- Vibeke Fosse
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway;
| | - Emanuela Oldoni
- EATRIS ERIC, European Infrastructure for Translational Medicine, 1081 HZ Amsterdam, The Netherlands; (E.O.); (F.B.); (A.U.); (A.L.A.)
| | - Chiara Gerardi
- Centre for Health Regulatory Policies, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (C.G.); (R.B.)
| | - Rita Banzi
- Centre for Health Regulatory Policies, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (C.G.); (R.B.)
| | - Maddalena Fratelli
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy;
| | - Florence Bietrix
- EATRIS ERIC, European Infrastructure for Translational Medicine, 1081 HZ Amsterdam, The Netherlands; (E.O.); (F.B.); (A.U.); (A.L.A.)
| | - Anton Ussi
- EATRIS ERIC, European Infrastructure for Translational Medicine, 1081 HZ Amsterdam, The Netherlands; (E.O.); (F.B.); (A.U.); (A.L.A.)
| | - Antonio L. Andreu
- EATRIS ERIC, European Infrastructure for Translational Medicine, 1081 HZ Amsterdam, The Netherlands; (E.O.); (F.B.); (A.U.); (A.L.A.)
| | - Emmet McCormack
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway;
- Centre for Pharmacy, Department of Clinical Science, The University of Bergen, 5021 Bergen, Norway
| | | |
Collapse
|
4
|
Miny L, Maisonneuve BGC, Quadrio I, Honegger T. Modeling Neurodegenerative Diseases Using In Vitro Compartmentalized Microfluidic Devices. Front Bioeng Biotechnol 2022; 10:919646. [PMID: 35813998 PMCID: PMC9263267 DOI: 10.3389/fbioe.2022.919646] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
The human brain is a complex organ composed of many different types of cells interconnected to create an organized system able to efficiently process information. Dysregulation of this delicately balanced system can lead to the development of neurological disorders, such as neurodegenerative diseases (NDD). To investigate the functionality of human brain physiology and pathophysiology, the scientific community has been generated various research models, from genetically modified animals to two- and three-dimensional cell culture for several decades. These models have, however, certain limitations that impede the precise study of pathophysiological features of neurodegeneration, thus hindering therapeutical research and drug development. Compartmentalized microfluidic devices provide in vitro minimalistic environments to accurately reproduce neural circuits allowing the characterization of the human central nervous system. Brain-on-chip (BoC) is allowing our capability to improve neurodegeneration models on the molecular and cellular mechanism aspects behind the progression of these troubles. This review aims to summarize and discuss the latest advancements of microfluidic models for the investigations of common neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Louise Miny
- NETRI, Lyon, France
- BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France
| | | | - Isabelle Quadrio
- BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, Bron, France
| | | |
Collapse
|
5
|
Shroff T, Aina K, Maass C, Cipriano M, Lambrecht J, Tacke F, Mosig A, Loskill P. Studying metabolism with multi-organ chips: new tools for disease modelling, pharmacokinetics and pharmacodynamics. Open Biol 2022; 12:210333. [PMID: 35232251 PMCID: PMC8889168 DOI: 10.1098/rsob.210333] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Non-clinical models to study metabolism including animal models and cell assays are often limited in terms of species translatability and predictability of human biology. This field urgently requires a push towards more physiologically accurate recapitulations of drug interactions and disease progression in the body. Organ-on-chip systems, specifically multi-organ chips (MOCs), are an emerging technology that is well suited to providing a species-specific platform to study the various types of metabolism (glucose, lipid, protein and drug) by recreating organ-level function. This review provides a resource for scientists aiming to study human metabolism by providing an overview of MOCs recapitulating aspects of metabolism, by addressing the technical aspects of MOC development and by providing guidelines for correlation with in silico models. The current state and challenges are presented for two application areas: (i) disease modelling and (ii) pharmacokinetics/pharmacodynamics. Additionally, the guidelines to integrate the MOC data into in silico models could strengthen the predictive power of the technology. Finally, the translational aspects of metabolizing MOCs are addressed, including adoption for personalized medicine and prospects for the clinic. Predictive MOCs could enable a significantly reduced dependence on animal models and open doors towards economical non-clinical testing and understanding of disease mechanisms.
Collapse
Affiliation(s)
- Tanvi Shroff
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany,Department for Microphysiological Systems, Institute for Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Österbergstraße 3, 72074 Tübingen, Germany
| | - Kehinde Aina
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | | | - Madalena Cipriano
- Department for Microphysiological Systems, Institute for Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Österbergstraße 3, 72074 Tübingen, Germany
| | - Joeri Lambrecht
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Alexander Mosig
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Peter Loskill
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany,Department for Microphysiological Systems, Institute for Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Österbergstraße 3, 72074 Tübingen, Germany,3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Wang Y, Kankala RK, Ou C, Chen A, Yang Z. Advances in hydrogel-based vascularized tissues for tissue repair and drug screening. Bioact Mater 2022; 9:198-220. [PMID: 34820566 PMCID: PMC8586021 DOI: 10.1016/j.bioactmat.2021.07.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
The construction of biomimetic vasculatures within the artificial tissue models or organs is highly required for conveying nutrients, oxygen, and waste products, for improving the survival of engineered tissues in vitro. In recent times, the remarkable progress in utilizing hydrogels and understanding vascular biology have enabled the creation of three-dimensional (3D) tissues and organs composed of highly complex vascular systems. In this review, we give an emphasis on the utilization of hydrogels and their advantages in the vascularization of tissues. Initially, the significance of vascular elements and the regeneration mechanisms of vascularization, including angiogenesis and vasculogenesis, are briefly introduced. Further, we highlight the importance and advantages of hydrogels as artificial microenvironments in fabricating vascularized tissues or organs, in terms of tunable physical properties, high similarity in physiological environments, and alternative shaping mechanisms, among others. Furthermore, we discuss the utilization of such hydrogels-based vascularized tissues in various applications, including tissue regeneration, drug screening, and organ-on-chips. Finally, we put forward the key challenges, including multifunctionalities of hydrogels, selection of suitable cell phenotype, sophisticated engineering techniques, and clinical translation behind the development of the tissues with complex vasculatures towards their future development.
Collapse
Affiliation(s)
- Ying Wang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Caiwen Ou
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Zhilu Yang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| |
Collapse
|
7
|
Kabay G, Manz A, Dincer C. Microfluidic Roadmap for Translational Nanotheranostics. SMALL METHODS 2022; 6:e2101217. [PMID: 34957704 DOI: 10.1002/smtd.202101217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Nanotheranostic materials (NTMs) shed light on the mechanisms responsible for complex diseases such as cancer because they enable making a diagnosis, monitoring the disease progression, and applying a targeted therapy simultaneously. However, several issues such as the reproducibility and mass production of NTMs hamper their application for clinical practice. To address these issues and facilitate the clinical application of NTMs, microfluidic systems have been increasingly used. This perspective provides a glimpse into the current state-of-art of NTM research, emphasizing the methods currently employed at each development stage of NTMs and the related open problems. This work reviews microfluidic technologies used to develop NTMs, ranging from the fabrication and testing of a single NTM up to their manufacturing on a large scale. Ultimately, a step-by-step vision on the future development of NTMs for clinical practice enabled by microfluidics techniques is provided.
Collapse
Affiliation(s)
- Gozde Kabay
- University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110, Freiburg, Germany
- University of Freiburg, FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, 79110, Freiburg, Germany
| | - Andreas Manz
- Korea Institute of Science and Technology (KIST) in Europe, 66123, Saarbrücken, Germany
| | - Can Dincer
- University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110, Freiburg, Germany
- University of Freiburg, FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, 79110, Freiburg, Germany
| |
Collapse
|
8
|
Lee SY, Lee DY, Kang JH, Jeong JW, Kim JH, Kim HW, Oh DH, Kim JM, Rhim SJ, Kim GD, Kim HS, Jang YD, Park Y, Hur SJ. Alternative experimental approaches to reduce animal use in biomedical studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Frum T, Spence JR. hPSC-derived organoids: models of human development and disease. J Mol Med (Berl) 2021; 99:463-473. [PMID: 32857169 PMCID: PMC7914270 DOI: 10.1007/s00109-020-01969-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/30/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022]
Abstract
Organoids derived from human pluripotent stem cells (hPSCs) have emerged as important models for investigating human-specific aspects of development and disease. Here we discuss hPSC-derived organoids through the lens of development-highlighting how stages of human development align with the development of hPSC-derived organoids in the tissue culture dish. Using hPSC-derived lung and intestinal organoids as examples, we discuss the value and application of such systems for understanding human biology, as well as strategies for enhancing organoid complexity and maturity.
Collapse
Affiliation(s)
- Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
A Paradigm Gap in Host–Pathogen Interaction Studies: Lesson from the COVID-19 Pandemic. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1353:47-70. [DOI: 10.1007/978-3-030-85113-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Fernández-Costa JM, Fernández-Garibay X, Velasco-Mallorquí F, Ramón-Azcón J. Bioengineered in vitro skeletal muscles as new tools for muscular dystrophies preclinical studies. J Tissue Eng 2021; 12:2041731420981339. [PMID: 33628411 PMCID: PMC7882756 DOI: 10.1177/2041731420981339] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/26/2020] [Indexed: 12/26/2022] Open
Abstract
Muscular dystrophies are a group of highly disabling disorders that share degenerative muscle weakness and wasting as common symptoms. To date, there is not an effective cure for these diseases. In the last years, bioengineered tissues have emerged as powerful tools for preclinical studies. In this review, we summarize the recent technological advances in skeletal muscle tissue engineering. We identify several ground-breaking techniques to fabricate in vitro bioartificial muscles. Accumulating evidence shows that scaffold-based tissue engineering provides topographical cues that enhance the viability and maturation of skeletal muscle. Functional bioartificial muscles have been developed using human myoblasts. These tissues accurately responded to electrical and biological stimulation. Moreover, advanced drug screening tools can be fabricated integrating these tissues in electrical stimulation platforms. However, more work introducing patient-derived cells and integrating these tissues in microdevices is needed to promote the clinical translation of bioengineered skeletal muscle as preclinical tools for muscular dystrophies.
Collapse
Affiliation(s)
- Juan M. Fernández-Costa
- Biosensors for Bioengineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Xiomara Fernández-Garibay
- Biosensors for Bioengineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ferran Velasco-Mallorquí
- Biosensors for Bioengineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| |
Collapse
|
12
|
Wang Y, Kankala RK, Zhang J, Hao L, Zhu K, Wang S, Zhang YS, Chen A. Modeling Endothelialized Hepatic Tumor Microtissues for Drug Screening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002002. [PMID: 33173735 PMCID: PMC7610277 DOI: 10.1002/advs.202002002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/07/2020] [Indexed: 05/03/2023]
Abstract
Compared to various traditional 2D approaches, the scaffold-based 3D tumor models have emerged as an effective strategy to investigate the complex mechanisms behind cancer progression and responses to drug treatments, by providing biomimetic extracellular matrix and stromal-like microenvironments including the vascular elements. Herein, the development of a 3D endothelialized hepatic tumor microtissue model based on the fusion of multicellular aggregates of human hepatocellular carcinoma cells and human umbilical vein endothelial cells cocultured in poly(lactic-co-glycolic acid)-based porous microspheres (PLGA PMs) is reported. In contrast to the conventional 2D culture, the cells within the PLGA PMs exhibit significantly higher half-maximal inhibitory concentration values against anticancer drugs, including doxorubicin and cisplatin. Furthermore, the feasibility of coculturing other cell types, such as fibroblasts (L929) and HepG2 cells, is investigated. Together, the findings emphasize the significance of engineered 3D hepatic tumor microtissue models using PLGA PM-based multicellular aggregates for drug screening applications.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Biomaterials and Tissue EngineeringHuaqiao UniversityXiamen361021P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue EngineeringHuaqiao UniversityXiamen361021P. R. China
- Fujian Provincial Key Laboratory of Biochemical TechnologyHuaqiao UniversityXiamen361021P. R. China
| | - Jianting Zhang
- Institute of Biomaterials and Tissue EngineeringHuaqiao UniversityXiamen361021P. R. China
- Fujian Provincial Key Laboratory of Biochemical TechnologyHuaqiao UniversityXiamen361021P. R. China
| | - Liuzhi Hao
- Institute of Biomaterials and Tissue EngineeringHuaqiao UniversityXiamen361021P. R. China
| | - Kai Zhu
- Department of Cardiac SurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Shibin Wang
- Institute of Biomaterials and Tissue EngineeringHuaqiao UniversityXiamen361021P. R. China
- Fujian Provincial Key Laboratory of Biochemical TechnologyHuaqiao UniversityXiamen361021P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in MedicineBrigham and Women's HospitalDepartment of MedicineHarvard Medical SchoolCambridgeMA02139USA
| | - Aizheng Chen
- Institute of Biomaterials and Tissue EngineeringHuaqiao UniversityXiamen361021P. R. China
- Fujian Provincial Key Laboratory of Biochemical TechnologyHuaqiao UniversityXiamen361021P. R. China
| |
Collapse
|
13
|
Lama S, Merlin-Zhang O, Yang C. In Vitro and In Vivo Models for Evaluating the Oral Toxicity of Nanomedicines. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2177. [PMID: 33142878 PMCID: PMC7694082 DOI: 10.3390/nano10112177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Toxicity studies for conventional oral drug formulations are standardized and well documented, as required by the guidelines of administrative agencies such as the US Food & Drug Administration (FDA), the European Medicines Agency (EMA) or European Medicines Evaluation Agency (EMEA), and the Japanese Pharmaceuticals and Medical Devices Agency (PMDA). Researchers tend to extrapolate these standardized protocols to evaluate nanoformulations (NFs) because standard nanotoxicity protocols are still lacking in nonclinical studies for testing orally delivered NFs. However, such strategies have generated many inconsistent results because they do not account for the specific physicochemical properties of nanomedicines. Due to their tiny size, accumulated surface charge and tension, sizeable surface-area-to-volume ratio, and high chemical/structural complexity, orally delivered NFs may generate severe topical toxicities to the gastrointestinal tract and metabolic organs, including the liver and kidney. Such toxicities involve immune responses that reflect different mechanisms than those triggered by conventional formulations. Herein, we briefly analyze the potential oral toxicity mechanisms of NFs and describe recently reported in vitro and in vivo models that attempt to address the specific oral toxicity of nanomedicines. We also discuss approaches that may be used to develop nontoxic NFs for oral drug delivery.
Collapse
Affiliation(s)
| | | | - Chunhua Yang
- Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Institute for Biomedical Sciences, Petite Science Center, Suite 754, 100 Piedmont Ave SE, Georgia State University, Atlanta, GA 30303, USA; (S.L.); (O.M.-Z.)
| |
Collapse
|
14
|
The Microfluidic Trainer: Design, Fabrication and Validation of a Tool for Testing and Improving Manual Skills. MICROMACHINES 2020; 11:mi11090872. [PMID: 32961810 PMCID: PMC7570042 DOI: 10.3390/mi11090872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022]
Abstract
Microfluidic principles have been widely applied for more than 30 years to solve biological and micro-electromechanical problems. Despite the numerous advantages, microfluidic devices are difficult to manage as their handling comes with several technical challenges. We developed a new portable tool, the microfluidic trainer (MT), that assesses the operator handling skills and that may be used for maintaining or improving the ability to inject fluid in the inlet of microfluidic devices for in vitro cell culture applications. After several tests, we optimized the MT tester cell to reproduce the real technical challenges of a microfluidic device. In addition to an exercise path, we included an overfilling indicator and a correct infilling indicator at the inlet (control path). We manufactured the MT by engraving a 3 mm-high sheet of methacrylate with 60W CO2 laser plotter to create multiple capillary paths. We validated the device by enrolling 21 volunteers (median age 33) to fill both the MT and a commercial microfluidic device. The success rate obtained with MT significantly correlated with those of a commercial microfluidic culture plate, and its 30 min-continuous use for three times significantly improved the performance. Overall, our data demonstrate that MT is a valid assessment tool of individual performances in using microfluidic devices and may represent a low-cost solution to training, improve or warm up microfluidic handling skills.
Collapse
|
15
|
3D In Vitro Human Organ Mimicry Devices for Drug Discovery, Development, and Assessment. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/6187048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The past few decades have shown significant advancement as complex in vitro humanized systems have substituted animal trials and 2D in vitro studies. 3D humanized platforms mimic the organs of interest with their stimulations (physical, electrical, chemical, and mechanical). Organ-on-chip devices, including in vitro modelling of 3D organoids, 3D microfabrication, and 3D bioprinted platforms, play an essential role in drug discovery, testing, and assessment. In this article, a thorough review is provided of the latest advancements in the area of organ-on-chip devices targeting liver, kidney, lung, gut, heart, skin, and brain mimicry devices for drug discovery, development, and/or assessment. The current strategies, fabrication methods, and the specific application of each device, as well as the advantages and disadvantages, are presented for each reported platform. This comprehensive review also provides some insights on the challenges and future perspectives for the further advancement of each organ-on-chip device.
Collapse
|
16
|
State-of-the-Art Technology of Model Organisms for Current Human Medicine. Diagnostics (Basel) 2020; 10:diagnostics10060392. [PMID: 32532032 PMCID: PMC7345323 DOI: 10.3390/diagnostics10060392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Since the 1980s, molecular biology has been used to investigate medical field mechanisms that still require the use of crude biological materials in order to achieve their necessary goals. Transcription factor-induced pluripotent stem cells are used in regenerative medicine to screen drugs and to support lost tissues. However, these cells insufficiently reconstruct whole organs and require various intact cells, such as damaged livers and diabetic pancreases. For efficient gene transfer in medical use, virally mediated gene transfers are used, although immunogenic issues are investigated. To obtain efficient detective and diagnostic power in intractable diseases, biological tools such as roundworms and zebrafish have been found to be useful for high-throughput screening (HST) and diagnosis. Taken together, this biological approach will help to fill the gaps between medical needs and novel innovations in the field of medicine.
Collapse
|
17
|
Baddal B. Next-generation technologies for studying host-pathogen interactions: a focus on dual transcriptomics, CRISPR/Cas9 screening and organs-on-chips. Pathog Dis 2020; 77:5593955. [PMID: 31626299 DOI: 10.1093/femspd/ftz060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
Pathogens constantly interact with their hosts and the environment, and therefore have evolved unique virulence mechanisms to target and breach host defense barriers and manipulate host immune response to establish an infection. Advances in technologies that allow genome mining, gene editing such as CRISPR/Cas9, genomic, epigenomic and transcriptomic studies such as dual RNA-seq, coupled with bioinformatics, have accelerated the field of host-pathogen interactions within a broad range of infection models. Underpinning of the molecular changes that accompany invasion of eukaryotic cells with pathogenic microorganisms at the intersection of host, pathogen and their local environment has provided a better understanding of infectious disease mechanisms and antimicrobial strategies. The recent evolution of physiologically relevant three-dimensional (3-D) tissue/organ models and microfluidic organ-on-chip devices also provided a window to a more predictive framework of infectious disease processes. These approaches combined hold the potential to highly impact discovery of novel drug targets and vaccine candidates of the future. Here, we review three of the available and emerging technologies-dual RNA-seq, CRISPR/Cas9 screening and organs-on-chips, applicable to the high throughput study and deciphering of interaction networks between pathogens and their hosts that are critical for the development of novel therapeutics.
Collapse
Affiliation(s)
- Buket Baddal
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Near East Boulevard, Nicosia 99010, Cyprus
| |
Collapse
|
18
|
Han F, Wang J, Ding L, Hu Y, Li W, Yuan Z, Guo Q, Zhu C, Yu L, Wang H, Zhao Z, Jia L, Li J, Yu Y, Zhang W, Chu G, Chen S, Li B. Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Front Bioeng Biotechnol 2020; 8:83. [PMID: 32266221 PMCID: PMC7105900 DOI: 10.3389/fbioe.2020.00083] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Exploring innovative solutions to improve the healthcare of the aging and diseased population continues to be a global challenge. Among a number of strategies toward this goal, tissue engineering and regenerative medicine (TERM) has gradually evolved into a promising approach to meet future needs of patients. TERM has recently received increasing attention in Asia, as evidenced by the markedly increased number of researchers, publications, clinical trials, and translational products. This review aims to give a brief overview of TERM development in Asia over the last decade by highlighting some of the important advances in this field and featuring major achievements of representative research groups. The development of novel biomaterials and enabling technologies, identification of new cell sources, and applications of TERM in various tissues are briefly introduced. Finally, the achievement of TERM in Asia, including important publications, representative discoveries, clinical trials, and examples of commercial products will be introduced. Discussion on current limitations and future directions in this hot topic will also be provided.
Collapse
Affiliation(s)
- Fengxuan Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiayuan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luguang Ding
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yuanbin Hu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wenquan Li
- Department of Otolaryngology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Li Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Huan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Zhongliang Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luanluan Jia
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiaying Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yingkang Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Song Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
19
|
|
20
|
Pfannkuche JJ, Guo W, Cui S, Ma J, Lang G, Peroglio M, Richards RG, Alini M, Grad S, Li Z. Intervertebral disc organ culture for the investigation of disc pathology and regeneration - benefits, limitations, and future directions of bioreactors. Connect Tissue Res 2019; 61:304-321. [PMID: 31556329 DOI: 10.1080/03008207.2019.1665652] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Low back pain is the leading cause of disability worldwide and in many patients the source of pain can be attributed to pathological changes within the intervertebral disc (IVD). As present treatment options fail to address the underlying biological problem, novel therapies are currently subject to intense research. The physiologic IVD microenvironment features a highly complex interaction of biochemical and mechanical factors influencing cell metabolism and extracellular matrix turnover and is therefore difficult to simulate for research purposes on IVD pathology. The first whole organ culture models were not able to sufficiently replicate human in vivo conditions as mechanical loading, the predominant way of IVD nutrient supply and waste exchange, remained disregarded. To mimic the unique IVD niche more realistically, whole organ culture bioreactors have been developed, allowing for dynamic loading of IVDs and nutrient exchange. Recent advancements on bioreactor systems have facilitated whole organ culture of various IVDs for extended periods. IVD organ culture bioreactors have the potential to bridge the gap between in vitro and in vivo systems and thus may give valuable insights on IVD pathology and/or potential novel treatment approaches if the respective model is adjusted according to a well-defined research question. In this review, we outline the potential of currently utilized IVD bioreactor systems and present suggestions for further developments to more reliably investigate IVD biology and novel treatment approaches.
Collapse
Affiliation(s)
- Judith-Johanna Pfannkuche
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedic and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Wei Guo
- AO Research Institute Davos, Davos, Switzerland.,The first affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Shangbin Cui
- AO Research Institute Davos, Davos, Switzerland.,The first affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Junxuan Ma
- AO Research Institute Davos, Davos, Switzerland
| | - Gernot Lang
- Department of Orthopedic and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | | | - R Geoff Richards
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedic and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| |
Collapse
|
21
|
Cavero I, Guillon JM, Holzgrefe HH. Human organotypic bioconstructs from organ-on-chip devices for human-predictive biological insights on drug candidates. Expert Opin Drug Saf 2019; 18:651-677. [DOI: 10.1080/14740338.2019.1634689] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Icilio Cavero
- Independent Consultant in Safety Pharmacology, Paris, France
| | | | | |
Collapse
|
22
|
Affiliation(s)
- Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi-Chen Ethan Li
- Department of Chemical Engineering Feng Chia University Taichung 40724, Taiwan
| |
Collapse
|