1
|
Imanimoghadam M, Yaghoobi E, Alizadeh F, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Improving Chemotherapy Effectiveness: Utilizing CuS Nanoparticles Coated with AS1411 Aptamer and Chitosan for Targeted Delivery of Doxorubicin to Cancerous Cells. J Pharm Sci 2024; 113:1865-1873. [PMID: 38342338 DOI: 10.1016/j.xphs.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
Here, a novel targeted nanostructure complex was designed as an alternative to the traditional treatment approaches for breast cancer. A delivery system utilizing CuS nanoparticles (CuS NPs) was developed for the purpose of targeted administration of doxorubicin (Dox), an anticancer agent. To regulate Dox release, chitosan (CS), a biodegradable and hydrophilic polymer with biocompatible properties, was applied to coat the Dox-loaded CuS NPs. Furthermore, AS1411 aptamer, served as a targeting agent for breast cancer cells (MCF-7 and 4T1 cells), was conjugated with CS-Dox-CuS NPs effectively. To assess the effectiveness of APT-CS-CuS NPs, various methods such as flow cytometry analysis, MTT assay, fluorescence imaging, and in vivo antitumor efficacy were employed. The hollow core and porous surface of CuS NPs improved the Dox loading capacity and entrapment efficiency (almost 100%). The rate of drug release at the tumor site (citrate buffer with pH 5.6) exhibited a marked increase in comparison to that observed within the physiological environment (phosphate buffer with pH 7.4). The targeted formulation (APT-CS-Dox-CuS NPs) significantly increased cytotoxicity of the Dox payload in target cells, including 4T1 (p ≤ 0.0001 (****)) and MCF7 (p ≤ 0.01 (**)) cells compared to CHO cells. Moreover, the ability of tumor growth inhibition of the targeted system was significantly (p ≤ 0.05 (*)) more than free Dox in tumor-bearing mice. The findings indicate that the targeted formulation augmented effectiveness and specificity while minimizing harm to non-targeted cells, signifying its potential as a sophisticated cancer drug delivery system.
Collapse
Affiliation(s)
| | - Elnaz Yaghoobi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Fatemeh Alizadeh
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Safarkhani M, Far BF, Huh Y, Rabiee N. Thermally Conductive MXene. ACS Biomater Sci Eng 2023; 9:6516-6530. [PMID: 38019724 DOI: 10.1021/acsbiomaterials.3c01420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
MXene materials, which consist of nitrides, carbides, or carbonitrides of transition metals, possess a distinctive multilayered structure resulting from the specific etching of the "A" layer from MAX phase precursors. This unique structure allows for tunable properties through intercalation and surface modification. Beyond their structural novelty, MXenes exhibit exceptional thermal conductivity, mechanical resilience, and versatile surface functionalization capabilities, rendering them highly versatile for a wide range of applications. They are particularly renowned for their multifaceted utility and are emerging as outstanding candidates in applications requiring robust thermal conductivity. MXenes, when integrated into textile, fiber, and film forms, have gained increasing relevance in fields where efficient heat management is essential. This work provides a comprehensive exploration of MXene materials, delving into their inherent structure and thermal properties. This Perspective places particular emphasis on their crucial role in efficient heat dissipation, which is vital for the development of wearable heaters and related technologies. Engineered compounds such as MXenes have become indispensable for personal and industrial heating applications, and the advancement of wearable electronic devices necessitates heaters with specific properties, including transparency, mechanical reliability, and adaptability. Recent advancements in emergent thermally conductive MXene compounds are discussed in this study, shedding light on their potential contributions across various domains, including wearable heaters and biosensors for healthcare and environmental monitoring. Furthermore, the versatile nature of MXene materials extends to their application in interfacial solar steam generation, representing a breakthrough approach for solar water desalination. This multifaceted utility underscores the vast potential of MXenes in addressing various pressing challenges.
Collapse
Affiliation(s)
- Moein Safarkhani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran 1684611367, Iran
| | - YunSuk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia 6150, Australia
| |
Collapse
|
3
|
Functionalization of Nanosystems in Cancer Treatment. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
4
|
Xu L, Xie L, Fang C, Lou W, Jiang T. New progress in tumor treatment based on nanoparticles combined with irreversible electroporation. NANO SELECT 2022. [DOI: 10.1002/nano.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Lei Xu
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Department of Ultrasound Medicine Affiliated Jinhua Hospital Zhejiang University School of Medicine Jinhua Zhejiang 321000 P.R. China
| | - Liting Xie
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Zhejiang University Cancer Center Hangzhou Zhejiang 310000 P.R. China
| | - ChengYu Fang
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
| | - WenJing Lou
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
| | - Tianan Jiang
- Department of Ultrasound Medicine The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P.R. China
- Zhejiang University Cancer Center Hangzhou Zhejiang 310000 P.R. China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province Hangzhou Zhejiang 310000 P.R. China
| |
Collapse
|
5
|
Mahmud N, Anik MI, Hossain MK, Khan MI, Uddin S, Ashrafuzzaman M, Rahaman MM. Advances in Nanomaterial-Based Platforms to Combat COVID-19: Diagnostics, Preventions, Therapeutics, and Vaccine Developments. ACS APPLIED BIO MATERIALS 2022; 5:2431-2460. [PMID: 35583460 PMCID: PMC9128020 DOI: 10.1021/acsabm.2c00123] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2, a ribonucleic acid (RNA) virus that emerged less than two years ago but has caused nearly 6.1 million deaths to date. Recently developed variants of the SARS-CoV-2 virus have been shown to be more potent and expanded at a faster rate. Until now, there is no specific and effective treatment for SARS-CoV-2 in terms of reliable and sustainable recovery. Precaution, prevention, and vaccinations are the only ways to keep the pandemic situation under control. Medical and scientific professionals are now focusing on the repurposing of previous technology and trying to develop more fruitful methodologies to detect the presence of viruses, treat the patients, precautionary items, and vaccine developments. Nanomedicine or nanobased platforms can play a crucial role in these fronts. Researchers are working on many effective approaches by nanosized particles to combat SARS-CoV-2. The role of a nanobased platform to combat SARS-CoV-2 is extremely diverse (i.e., mark to personal protective suit, rapid diagnostic tool to targeted treatment, and vaccine developments). Although there are many theoretical possibilities of a nanobased platform to combat SARS-CoV-2, until now there is an inadequate number of research targeting SARS-CoV-2 to explore such scenarios. This unique mini-review aims to compile and elaborate on the recent advances of nanobased approaches from prevention, diagnostics, treatment to vaccine developments against SARS-CoV-2, and associated challenges.
Collapse
Affiliation(s)
- Niaz Mahmud
- Department of Biomedical Engineering,
Military Institute of Science and Technology, Dhaka 1216,
Bangladesh
| | - Muzahidul I. Anik
- Department of Chemical Engineering,
University of Rhode Island, Kingston, Rhode Island 02881,
United States
| | - M. Khalid Hossain
- Interdisciplinary Graduate School of Engineering
Science, Kyushu University, Fukuoka 816-8580,
Japan
- Atomic Energy Research Establishment,
Bangladesh Atomic Energy Commission, Dhaka 1349,
Bangladesh
| | - Md Ishak Khan
- Department of Neurosurgery, University of
Pennsylvania, Philadelphia, Pennsylvania 19104, United
States
| | - Shihab Uddin
- Department of Applied Chemistry, Graduate School of
Engineering, Kyushu University, Fukuoka 819-0395,
Japan
- Department of Chemical Engineering,
Massachusetts Institute of Technology, Cambridge
Massachusetts 02139, United States
| | - Md. Ashrafuzzaman
- Department of Biomedical Engineering,
Military Institute of Science and Technology, Dhaka 1216,
Bangladesh
| | - Md Mushfiqur Rahaman
- Department of Emergency Medicine, NYU
Langone Health, New York, New York 10016, United
States
| |
Collapse
|
6
|
Mena-Giraldo P, Orozco J. Polymeric Micro/Nanocarriers and Motors for Cargo Transport and Phototriggered Delivery. Polymers (Basel) 2021; 13:3920. [PMID: 34833219 PMCID: PMC8621231 DOI: 10.3390/polym13223920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Smart polymer-based micro/nanoassemblies have emerged as a promising alternative for transporting and delivering a myriad of cargo. Cargo encapsulation into (or linked to) polymeric micro/nanocarrier (PC) strategies may help to conserve cargo activity and functionality when interacting with its surroundings in its journey to the target. PCs for cargo phototriggering allow for excellent spatiotemporal control via irradiation as an external stimulus, thus regulating the delivery kinetics of cargo and potentially increasing its therapeutic effect. Micromotors based on PCs offer an accelerated cargo-medium interaction for biomedical, environmental, and many other applications. This review collects the recent achievements in PC development based on nanomicelles, nanospheres, and nanopolymersomes, among others, with enhanced properties to increase cargo protection and cargo release efficiency triggered by ultraviolet (UV) and near-infrared (NIR) irradiation, including light-stimulated polymeric micromotors for propulsion, cargo transport, biosensing, and photo-thermal therapy. We emphasize the challenges of positioning PCs as drug delivery systems, as well as the outstanding opportunities of light-stimulated polymeric micromotors for practical applications.
Collapse
Affiliation(s)
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 # 52-20, Medellin 050010, Colombia;
| |
Collapse
|
7
|
Anik MI, Mahmud N, Al Masud A, Hasan M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. NANO SELECT 2021. [DOI: 10.1002/nano.202100255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Muzahidul I. Anik
- Department of Chemical Engineering University of Rhode Island South Kingstown Rhode Island USA
| | - Niaz Mahmud
- Department of Biomedical Engineering Military Institute of Science and Technology Dhaka Bangladesh
| | - Abdullah Al Masud
- Department of Chemical Engineering Bangladesh University of Engineering and Technology Dhaka Bangladesh
| | - Maruf Hasan
- Department of Biomedical Engineering Military Institute of Science and Technology Dhaka Bangladesh
| |
Collapse
|
8
|
Baker A, Khan MS, Iqbal MZ, Khan MS. Tumor-targeted Drug Delivery by Nanocomposites. Curr Drug Metab 2021; 21:599-613. [PMID: 32433002 DOI: 10.2174/1389200221666200520092333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/30/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tumor-targeted delivery by nanoparticles is a great achievement towards the use of highly effective drug at very low doses. The conventional development of tumor-targeted delivery by nanoparticles is based on enhanced permeability and retention (EPR) effect and endocytosis based on receptor-mediated are very demanding due to the biological and natural complications of tumors as well as the restrictions on the design of the accurate nanoparticle delivery systems. METHODS Different tumor environment stimuli are responsible for triggered multistage drug delivery systems (MSDDS) for tumor therapy and imaging. Physicochemical properties, such as size, hydrophobicity and potential transform by MSDDS because of the physiological blood circulation different, intracellular tumor environment. This system accomplishes tumor penetration, cellular uptake improved, discharge of drugs on accurate time, and endosomal discharge. RESULTS Maximum drug delivery by MSDDS mechanism to target therapeutic cells and also tumor tissues and sub cellular organism. Poorly soluble compounds and bioavailability issues have been faced by pharmaceutical industries, which are resolved by nanoparticle formulation. CONCLUSION In our review, we illustrate different types of triggered moods and stimuli of the tumor environment, which help in smart multistage drug delivery systems by nanoparticles, basically a multi-stimuli sensitive delivery system, and elaborate their function, effects, and diagnosis.
Collapse
Affiliation(s)
- Abu Baker
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Mohd Salman Khan
- Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Muhammad Zafar Iqbal
- Department of Studies and Research in Zoology, Government First Grade College, Karwar, 581301, India
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| |
Collapse
|
9
|
Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, Cosco D. Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Front Pharmacol 2021; 12:601626. [PMID: 33613290 PMCID: PMC7887387 DOI: 10.3389/fphar.2021.601626] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Advances in nanotechnology have favored the development of novel colloidal formulations able to modulate the pharmacological and biopharmaceutical properties of drugs. The peculiar physico-chemical and technological properties of nanomaterial-based therapeutics have allowed for several successful applications in the treatment of cancer. The size, shape, charge and patterning of nanoscale therapeutic molecules are parameters that need to be investigated and modulated in order to promote and optimize cell and tissue interaction. In this review, the use of polymeric nanoparticles as drug delivery systems of anticancer compounds, their physico-chemical properties and their ability to be efficiently localized in specific tumor tissues have been described. The nanoencapsulation of antitumor active compounds in polymeric systems is a promising approach to improve the efficacy of various tumor treatments.
Collapse
Affiliation(s)
- Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Elena Giuliano
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Eeda Venkateswararao
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Stefania Bulotta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
10
|
Sonju JJ, Dahal A, Singh SS, Jois SD. Peptide-functionalized liposomes as therapeutic and diagnostic tools for cancer treatment. J Control Release 2021; 329:624-644. [PMID: 33010333 PMCID: PMC8082750 DOI: 10.1016/j.jconrel.2020.09.055] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022]
Abstract
Clinically efficacious medication in anticancer therapy has been successfully designed with liposome-based nanomedicine. The liposomal formulation in cancer drug delivery can be facilitated with a functionalized peptide that mediates the specific drug delivery opportunities with increased drug penetrability, specific accumulation in the targeted site, and enhanced therapeutic efficacy. This review aims to focus on recent advances in peptide-functionalized liposomal formulation techniques in cancer diagnosis and treatment regarding recently published literature. It also will highlight different aspects of novel liposomal formulation techniques that incorporate surface functionalization with peptides for better anticancer effect and current challenges in peptide-functionalized liposomal drug formulation.
Collapse
Affiliation(s)
- Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Sitanshu S Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Seetharama D Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
11
|
Molavipordanjani S, Khodashenas S, Abedi SM, Moghadam MF, Mardanshahi A, Hosseinimehr SJ. 99mTc-radiolabeled HER2 targeted exosome for tumor imaging. Eur J Pharm Sci 2020; 148:105312. [PMID: 32198014 DOI: 10.1016/j.ejps.2020.105312] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/03/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
Exosomes represent unique features including nontoxicity, non-immunogenicity, biodegradability, and targeting ability that make them suitable candidates for clinical applications. Therefore, in this study, 99mTc-radiolabel HER2 targeted exosomes (99mTc-exosomes) were provided for tumor imaging. These exomes are obtained from genetically engineered cells and possessed DARPin G3 as a ligand for HER2 receptors. These exosomes were radiolabeled using fac-[99mTc(CO)3(H2O)3]+ synthon. The quality control showed high radiochemical purity (RCP) for 99mTc-exosomes (>96%). 99mTc-exosomes displayed a higher affinity toward SKOV-3 cells (higher HER2 expression) in comparison with MCF-7, HT29, U87-MG, A549 cell lines at different levels of HER2 expression. Trastuzumab (an antibody with a high affinity toward HER2) inhibited the binding of 99mTc-exosomes to SKOV-3 cells up to 40%. Biodistribution study in SKOV-3 tumor bearing nude mice confirmed the ability of 99mTc-exosomes for accumulation in the tumor. 99mTc-exosomes can visualize tumor in SKOV-3 tumor-bearing nude mouse. The blockage of HER2 receptors using trastuzumab (excessive amount) suggests the 99mTc-exosomes binding to the receptors and reduced the accumulation of 99mTc-exosomes in the tumor site. This suggest that 99mTc-exosomes interact with HER2 receptors and act through specific targeting.
Collapse
Affiliation(s)
- Sajjad Molavipordanjani
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shabanali Khodashenas
- Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Mardanshahi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|