1
|
Hernández-Pérez T, Paredes-López O. Selected Mesoamerican Crops - Anti-Obesity Potential and Health Promotion. A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:563-570. [PMID: 39105985 PMCID: PMC11410843 DOI: 10.1007/s11130-024-01211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 08/07/2024]
Abstract
Mesoamerica is the center of origin of a great number of food crops that nowadays are part of a healthy diet. Pre-Columbian civilizations utilized more than 90% of these foods as ingredient or in main dishes, as well as for remedies and religious ceremonies. Since several years ago, Mesoamerican foods have been recognized by their outstanding concentration of bioactive compounds, including, phenolic compounds, pigments, essential fatty acids, amino acids, peptides, carbohydrates and vitamins, which provide a great number of health benefits. As a result of their unique composition, these ancient crops have several positive effects, such as hypoglycemic, antioxidant, anti-obesity, anti-inflammatory, anti-ageing, neuroprotective, anti-diarrheal, and anti-hypercholesterolemic capacity. Hence, this review is focused mainly in the anti-obesity and antioxidant potential of some of the most cultivated, harvested, as well as commercialized and consumed, food crops native of Mesoamerica, like, nopal and its fruit (Opuntia ficus indica spp.), chia (Salvia hispanica L.), pumpkin (Cucurbita spp.) and cacao (Theobroma cacao).
Collapse
Affiliation(s)
- Talía Hernández-Pérez
- Centro de Investigación y de Estudios Avanzados del IPN (Instituto Politécnico Nacional), Irapuato, Guanajuato, 36824, México
| | - Octavio Paredes-López
- Centro de Investigación y de Estudios Avanzados del IPN (Instituto Politécnico Nacional), Irapuato, Guanajuato, 36824, México.
| |
Collapse
|
2
|
Guzman DC, Brizuela NO, Peraza AV, Herrera MO, Mejia GB, Juarez Olguin H. Post COVID-19 Vertigo in a Patient with Hypothyroidism: A Case Report. Diabetes Metab Syndr Obes 2024; 17:1845-1851. [PMID: 38706809 PMCID: PMC11069111 DOI: 10.2147/dmso.s459711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
Case Summary Female nurse, 44-years-old with a weight of 127 pounds. She attended our emergency clinic for an urgent care due to post COVID-19 vertigo and anxiety. Her problem began with severe, short-lived attacks of objective-circular type vertigo, accompanied by nausea and vomiting. The symptoms occurred when she assumed a lying position, turn right and sat or stood upright. Interventions The patient received medical prescription for hypothyroidism, vertigo and anxiety symptoms. Oral route feeding was started and was well tolerated. Outcomes The patient showed good evolution with the treatment. Currently, she is at home with daily intake of levothyroxine and losartan without complications. Conclusion The clinical case suggests that in patients with hypothyroidism, COVID-19 infection may trigger and exacerbate vertigo and anxiety.
Collapse
Affiliation(s)
- David Calderon Guzman
- Laboratory of Neurosciences. Instituto Nacional de Pediatria (INP), Mexico City, Mexico
| | - Norma Osnaya Brizuela
- Laboratory of Neurosciences. Instituto Nacional de Pediatria (INP), Mexico City, Mexico
| | | | | | | | | |
Collapse
|
3
|
Gómez-García I, Fernández-Quintela A, González M, Gómez-Zorita S, Muguerza B, Trepiana J, Portillo MP. Usefulness of Opuntia spp. on the Management of Obesity and Its Metabolic Co-Morbidities. Nutrients 2024; 16:1282. [PMID: 38732528 PMCID: PMC11085070 DOI: 10.3390/nu16091282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The plants of the Opuntia genus mainly grow in arid and semi-arid climates. Although the highest variety of wild species is found in Mexico, Opuntia spp. is widely distributed throughout the world. Extracts of these cacti have been described as important sources of bioactive substances that can have beneficial properties for the prevention and treatment of certain metabolic disorders. The objective of this review is to summarise the presently available knowledge regarding Opuntia ficus-indica (nopal or prickly pear), and some other species (O. streptacantha and O. robusta) on obesity and several metabolic complications. Current data show that Opuntia ficus-indica products used in preclinical studies have a significant capacity to prevent, at least partially, obesity and certain derived co-morbidities. On this subject, the potential beneficial effects of Opuntia are related to a reduction in oxidative stress and inflammation markers. Nevertheless, clinical studies have evidenced that the effects are highly contingent upon the experimental design. Moreover, the bioactive compound composition of nopal extracts has not been reported. As a result, there is a lack of information to elucidate the mechanisms of action responsible for the observed effects. Accordingly, further studies are needed to demonstrate whether Opuntia products can represent an effective tool to prevent and/or manage body weight and some metabolic disorders.
Collapse
Affiliation(s)
- Iker Gómez-García
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria-Gasteiz, Spain; (I.G.-G.); (A.F.-Q.); (S.G.-Z.); (M.P.P.)
| | - Alfredo Fernández-Quintela
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria-Gasteiz, Spain; (I.G.-G.); (A.F.-Q.); (S.G.-Z.); (M.P.P.)
- Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Marcela González
- Nutrition and Food Science Department, Faculty of Biochemistry and Biological Sciences, National University of Litoral and National Scientific and Technical Research Council (CONICET), Santa Fe 3000, Argentina;
| | - Saioa Gómez-Zorita
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria-Gasteiz, Spain; (I.G.-G.); (A.F.-Q.); (S.G.-Z.); (M.P.P.)
- Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Begoña Muguerza
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnología, Universitat Rovira i Virgili, 43007 Tarragona, Spain;
| | - Jenifer Trepiana
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria-Gasteiz, Spain; (I.G.-G.); (A.F.-Q.); (S.G.-Z.); (M.P.P.)
- Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 28029 Madrid, Spain
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria-Gasteiz, Spain; (I.G.-G.); (A.F.-Q.); (S.G.-Z.); (M.P.P.)
- Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Adarthaiya S, Sehgal A. Moringa oleifera Lam. as a potential plant for alleviation of the metabolic syndrome-A narrative review based on in vivo and clinical studies. Phytother Res 2024; 38:755-775. [PMID: 38015048 DOI: 10.1002/ptr.8079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
The metabolic syndrome (MetS) refers to the co-occurrence of risk factors, including hyperglycaemia, increased body weight, hypertension and dyslipidemia, which eventually lead to diabetes and cardiovascular disease, a common health problem worldwide. Recently, there has been an increasing interest in the use of plant-based products for the management of MetS, because of their less detrimental and more beneficial effects. Moringa oleifera (Moringaceae), commonly known as drumstick, is cultivated worldwide for its nutritional and medicinal properties. This review focuses on the in vivo and human studies concerning the potential of M. oleifera in the alleviation of MetS and its comorbidities. The search for relevant articles was carried out in PubMed and Google Scholar databases. Randomised controlled and clinical trials from the PubMed database were included in this review. The results suggested that the administration of M. oleifera, in vivo, shows clear signs of improvement in MetS indices. Despite fewer human studies, the existing data documented convincing results that uphold the potential of M. oleifera against MetS. Therefore, future research discussing the probable mechanism of action is much needed which could further assure the usage of M. oleifera in the treatment regimen of MetS.
Collapse
Affiliation(s)
- Saikrupa Adarthaiya
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Amit Sehgal
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
5
|
Aispuro-Hernández E, de Jesús Vergara-Jiménez M, Cárdenas-Torres FI, Lagarda-Díaz I, Martínez-Téllez MÁ, Soto-Córdova FJ, Corrales-Maldonado CG, Del Carmen Vargas-Arispuro I, Ontiveros N. Fruit Juices of Etcho (Pachycereus pecten-aboriginum) and Giant Cardon (Pachycereus pringlei) are Sources of Health-Promoting Ingredients with Potential Anticancer Properties. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:728-734. [PMID: 37658958 DOI: 10.1007/s11130-023-01099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
Mexico is one of the main diversification centers of cacti in the world, with more than 500 endemic species, most of which remain nutritionally and functionally uncharacterized. The columnar cacti of the genus Pachycereus comprise five underutilized endemic Mexican species, whose nutraceutical properties have only been studied in the P. weberi species. Therefore, this study aimed to evaluate the nutritional quality and bioactive properties of etcho (P. pecten-aboriginum) and giant cardon (P. pringlei) fruit. The physical, chemical, and nutritional composition of etcho and giant cardon fruits were characterized, as well as the profile and content of bioactive compounds, antioxidant activity (ABTS•+ and DPPH•), and antiproliferative capacity in cervical (HeLa) and breast cancer (MDA-MB-231, MCF-7, and T-47D) cell lines. Our results suggest that etcho and giant cardon fruits are rich sources of essential nutrients and bioactive phytochemicals (including K, Mg, P, dietary fiber, polyphenolic compounds, vitamin C, betalains, and myo-inositol) with antioxidant and anticancer potential by inhibiting the proliferation of all evaluated cell lines with IC50 values in the range of 198 to 287 µg of gallic acid equivalents/mL. Therefore, etcho and giant cardon fruits could be used for nutraceutical purposes, and their consumption could promote health benefits.
Collapse
Affiliation(s)
- Emmanuel Aispuro-Hernández
- Posgrado en Ciencias de la Nutrición y Alimentos Medicinales, Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, 80019, México
| | - Marcela de Jesús Vergara-Jiménez
- Posgrado en Ciencias de la Nutrición y Alimentos Medicinales, Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, 80019, México
| | - Feliznando Isidro Cárdenas-Torres
- Posgrado en Ciencias de la Nutrición y Alimentos Medicinales, Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, 80019, México
| | - Irlanda Lagarda-Díaz
- Departamento de Física, Investigadores por México CONAHCyT-Universidad de Sonora, Hermosillo, Sonora, 83000, México
| | | | | | | | | | - Noé Ontiveros
- Facultad de Ciencias Biológicas y de Salud, Departamento de Ciencias Químico-Biológicas y Agropecuarias, Laboratorio de Análisis Clínicos e Investigación (LACIUS, U.N.), Universidad de Sonora, Navojoa, Sonora, 85880, México.
| |
Collapse
|
6
|
Ozyigit II, Dogan I, Hocaoglu-Ozyigit A, Yalcin B, Erdogan A, Yalcin IE, Cabi E, Kaya Y. Production of secondary metabolites using tissue culture-based biotechnological applications. FRONTIERS IN PLANT SCIENCE 2023; 14:1132555. [PMID: 37457343 PMCID: PMC10339834 DOI: 10.3389/fpls.2023.1132555] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/22/2023] [Indexed: 07/18/2023]
Abstract
Plants are the sources of many bioactive secondary metabolites which are present in plant organs including leaves, stems, roots, and flowers. Although they provide advantages to the plants in many cases, they are not necessary for metabolisms related to growth, development, and reproduction. They are specific to plant species and are precursor substances, which can be modified for generations of various compounds in different plant species. Secondary metabolites are used in many industries, including dye, food processing and cosmetic industries, and in agricultural control as well as being used as pharmaceutical raw materials by humans. For this reason, the demand is high; therefore, they are needed to be obtained in large volumes and the large productions can be achieved using biotechnological methods in addition to production, being done with classical methods. For this, plant biotechnology can be put in action through using different methods. The most important of these methods include tissue culture and gene transfer. The genetically modified plants are agriculturally more productive and are commercially more effective and are valuable tools for industrial and medical purposes as well as being the sources of many secondary metabolites of therapeutic importance. With plant tissue culture applications, which are also the first step in obtaining transgenic plants with having desirable characteristics, it is possible to produce specific secondary metabolites in large-scale through using whole plants or using specific tissues of these plants in laboratory conditions. Currently, many studies are going on this subject, and some of them receiving attention are found to be taken place in plant biotechnology and having promising applications. In this work, particularly benefits of secondary metabolites, and their productions through tissue culture-based biotechnological applications are discussed using literature with presence of current studies.
Collapse
Affiliation(s)
| | - Ilhan Dogan
- Department of Medical Services and Techniques, Akyazi Vocational School of Health Services, Sakarya University of Applied Science, Sakarya, Türkiye
| | - Asli Hocaoglu-Ozyigit
- Department of Biology, Faculty of Science, Marmara University, Istanbul, Türkiye
- Biology Program, Institute of Pure and Applied Sciences, Tekirdag Namık Kemal University, Tekirdag, Türkiye
| | - Bestenur Yalcin
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Bahcesehir University, Istanbul, Türkiye
| | - Aysegul Erdogan
- Application and Research Centre for Testing and Analysis, EGE MATAL, Chromatography and Spectroscopy Laboratory, Ege University, Izmir, Türkiye
| | - Ibrahim Ertugrul Yalcin
- Department of Civil Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Türkiye
| | - Evren Cabi
- Department of Biology, Faculty of Arts and Sciences, Tekirdag Namık Kemal University, Tekirdag, Türkiye
| | - Yilmaz Kaya
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Türkiye
| |
Collapse
|
7
|
Monteiro SS, Almeida RL, Santos NC, Pereira EM, Silva AP, Oliveira HML, Pasquali MADB. New Functional Foods with Cactus Components: Sustainable Perspectives and Future Trends. Foods 2023; 12:2494. [PMID: 37444232 DOI: 10.3390/foods12132494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The growing interest in a healthy lifestyle has contributed to disseminating perspectives on more sustainable natural resource management. This review describes promising aspects of using cacti in the food industry, addressing sustainable, nutritional, and functional aspects of the plant's production. Our study provides an overview of the potential of cacti for the food industry to encourage the sustainable cultivation of underutilized cactus species and their commercial exploitation. The commercial production of cacti has advantages over other agricultural practices by mitigating damage to ecosystems and encouraging migration to sustainable agriculture. The application of cactus ingredients in food development has been broad, whether in producing breads, jellies, gums, dyes, probiotics, and postbiotic and paraprobiotic foods. However, in the field of probiotic foods, future research should focus on technologies applied in processing and researching interactions between probiotics and raw materials to determine the functionality and bioactivity of products.
Collapse
Affiliation(s)
- Shênia Santos Monteiro
- Post-Graduate Program in Engineering and Management of Natural Resources, Center for Technology and Natural Resources, Federal University of Campina Grande, Campina Grande 58429-140, Brazil
| | - Raphael Lucas Almeida
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Newton Carlos Santos
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | | | - Amanda Priscila Silva
- Post-Graduate Program in Process Engineering, Center for Science and Technology, Federal University of Campina Grande, Campina Grande 58429-140, Brazil
| | - Hugo Miguel Lisboa Oliveira
- Post-Graduate Program in Process Engineering, Center for Science and Technology, Federal University of Campina Grande, Campina Grande 58429-140, Brazil
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-140, Brazil
| | - Matheus Augusto de Bittencourt Pasquali
- Post-Graduate Program in Engineering and Management of Natural Resources, Center for Technology and Natural Resources, Federal University of Campina Grande, Campina Grande 58429-140, Brazil
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-140, Brazil
| |
Collapse
|
8
|
Mexican Ancestral Foods (Theobroma cacao, Opuntia ficus indica, Persea americana and Phaseolus vulgaris) Supplementation on Anthropometric, Lipid and Glycemic Control Variables in Obese Patients: A Systematic Review and Meta-Analysis. Foods 2023; 12:foods12061177. [PMID: 36981103 PMCID: PMC10047948 DOI: 10.3390/foods12061177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Diet containing Mexican ancestral foods such as cocoa, nopal, avocado, and common bean have been individually reported to have beneficial effects on obesity and comorbidities. Methods: A systematic review and meta-analysis on the effect of Mexican ancestral foods on the anthropometric, lipid, and glycemic control variables in obese patients was performed following PRISMA guidelines. Data were analyzed using a random-effects model. Results: We selected 4664 articles from an initial search, of which only fifteen studies satisfied the inclusion criteria. Data for 1670 participants were analyzed: 843 in the intervention group and 827 in the control group. A significant reduction in body mass index (mean difference: −0.80 (−1.31 to −0.30)) (95% confidence interval), p = 0.002, heterogeneity I2 = 92% was showed after the ingestion of cocoa, nopal, avocado, or common bean. The mean difference for body weight was −0.57 (−1.93 to 0.79), waist of circumference: −0.16 (−2.54 to −2.21), total cholesterol: −5.04 (−11.5 to 1.08), triglycerides: −10.11 (−27.87 to 7.64), fasting glucose: −0.81 (−5.81 to 4.19), and insulin: −0.15 (−0.80 to 0.50). Mexican ancestral food supplementation seems to improve anthropometric, lipid, and glycemic control variables in obesity; however, more randomized controlled trials are needed to have further decisive evidence about dosage and method of supplementation and to increase the sample size.
Collapse
|
9
|
Abstract
In the last years, the use of natural phytochemical compounds as protective agents in the prevention and treatment of obesity and the related-metabolic syndrome has gained much attention worldwide. Different studies have shown health benefits for many vegetables such Opuntia ficus-indica and Beta vulgaris and their pigments collectively referred as betalains. Betalains exert antioxidative, anti-inflammation, lipid lowering, antidiabetic and anti-obesity effects. This review summarizes findings in the literature and highlights the therapeutic potential of betalains and their natural source as valid alternative for supplementation in obesity-related disorders treatment. Further research is needed to establish the mechanisms through which these natural pigments exert their beneficial effects and to translate the promising findings from animal models to humans.
Collapse
Affiliation(s)
- Pasquale Calvi
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Palermo, Italy.,Dipartment of Biomedicine, Neuroscience and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Simona Terzo
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Palermo, Italy
| | - Antonella Amato
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Palermo, Italy
| |
Collapse
|
10
|
Daniloski D, D'Cunha NM, Speer H, McKune AJ, Alexopoulos N, Panagiotakos DB, Petkoska AT, Naumovski N. Recent developments on Opuntia spp., their bioactive composition, nutritional values, and health effects. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Indicaxanthin from Opuntia ficus-indica Fruit Ameliorates Glucose Dysmetabolism and Counteracts Insulin Resistance in High-Fat-Diet-Fed Mice. Antioxidants (Basel) 2021; 11:antiox11010080. [PMID: 35052584 PMCID: PMC8773302 DOI: 10.3390/antiox11010080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity-related dysmetabolic conditions are amongst the most common causes of death globally. Indicaxanthin, a bioavailable betalain pigment from Opuntia ficus-indica fruit, has been demonstrated to modulate redox-dependent signalling pathways, exerting significant anti-oxidative and anti-inflammatory effects in vitro and in vivo. In light of the strict interconnections between inflammation, oxidative stress and insulin resistance (IR), a nutritionally relevant dose of indicaxanthin has been evaluated in a high-fat diet (HFD) model of obesity-related IR. To this end, biochemical and histological analysis, oxidative stress and inflammation evaluations in liver and adipose tissue were carried out. Our results showed that indicaxanthin treatment significantly reduced body weight, daily food intake and visceral fat mass. Moreover, indicaxanthin administration induced remarkable, beneficial effects on HFD-induced glucose dysmetabolism, reducing fasting glycaemia and insulinaemia, improving glucose and insulin tolerance and restoring the HOMA index to physiological values. These effects were associated with a reduction in hepatic and adipose tissue oxidative stress and inflammation. A decrease in RONS, malondialdehyde and NO levels, in TNF-α, CCL-2 and F4-80 gene expression, in p65, p-JNK, COX-2 and i-NOS protein levels, in crown-like structures and hepatic inflammatory foci was, indeed, observed. The current findings encourage further clinical studies to confirm the effectiveness of indicaxanthin to prevent and treat obesity-related dysmetabolic conditions.
Collapse
|
12
|
Herrera MD, Zegbe JA, Melero-Meraz V, Cruz-Bravo RK. Functional Properties of Prickly Pear Cactus Fruit Peels Undergoing Supplemental Irrigation and Fruit Storage Conditions. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:427-433. [PMID: 34665433 DOI: 10.1007/s11130-021-00927-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Prickly pear cactus fruit peels have been seen as organic waste. This study explored the effect of supplemental irrigation during fruit growth of 'Roja Lisa' (Opuntia ficus-indica) prickly pear cactus on the antioxidant, hypoglycemic and hypolipidemic properties of peel extracts from fruits collected at harvest and after storage conditions. The treatments were non-irrigated and supplemental irrigation and the storage conditions were cold or room temperature, and freshly harvested fruit. After each fruit quality evaluation, peels from each treatment combination were pooled and the concentrations of phenolic compounds, inhibition of an in vitro digestive enzyme, antioxidant capacity, and in vivo hypoglycemic (- control = 268 mg/dL versus fruit peel extracts = 204 mg/dL at 30 min) and hypolipidemic (- control = 203 mg/dL versus fruit peel extracts = 148 mg/dL at 30 min) properties were determined. Therefore, fruit peels could potentially be harnessed for human health benefits, instead of treated as organic waste.
Collapse
Affiliation(s)
- Mayra Denise Herrera
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Zacatecas, Carretera Zacatecas-Fresnillo km 24.5, Calera de Víctor Rosales, Zacatecas, 98500, México
| | - Jorge A Zegbe
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Zacatecas, Carretera Zacatecas-Fresnillo km 24.5, Calera de Víctor Rosales, Zacatecas, 98500, México.
| | - Valentín Melero-Meraz
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Zacatecas, Carretera Zacatecas-Fresnillo km 24.5, Calera de Víctor Rosales, Zacatecas, 98500, México
| | - Raquel K Cruz-Bravo
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Zacatecas, Carretera Zacatecas-Fresnillo km 24.5, Calera de Víctor Rosales, Zacatecas, 98500, México
| |
Collapse
|
13
|
Gómez-Maqueo A, Soccio M, Cano MP. In Vitro Antioxidant Capacity of Opuntia spp. Fruits Measured by the LOX-FL Method and its High Sensitivity Towards Betalains. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:354-362. [PMID: 34363561 PMCID: PMC8426225 DOI: 10.1007/s11130-021-00914-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 05/03/2023]
Abstract
Current in vitro methodologies neglect or subestimate the contribution of betalains to antioxidant capacity in foods because they do not reflect their in vivo biological mechanisms. In this study, we assessed the sensibility of the lipoxygenase-fluorescein (LOX-FL) method towards betalains, phenolic compounds and ascorbic acid from Opuntia spp. fruits; and (ii) the antioxidant capacity of peel and pulp extracts from Opuntia ficus-indica L. Mill (var. Fresa, Colorada and Blanco) and Opuntia stricta var. Dillenii; by comparing the LOX-FL method to traditional antioxidant methods (ORAC and TEAC). The spectrophotometric monitoring of the LOX-FL reaction avoided interference caused by betalain pigments. Indicaxanthin and betanin showed high antiperoxidative and radical scavenging mechanisms in the LOX-FL assay. O. stricta var. Dillenii tissues the highest antioxidant capacity which correlated with betanin content. ORAC and TEAC antioxidant methods were less sensible towards betalain antioxidant activity. To our knowledge, this is the first time the LOX-FL antioxidant method has been used on betalains and betalain-rich foods.
Collapse
Affiliation(s)
- Andrea Gómez-Maqueo
- Biotechnology and Microbiology of Food Department, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049, Madrid, Spain
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, 64700, Monterrey, Mexico
- Food Structure Team, Clinical Nutrition Research Center, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Research and Technology, 14 Medical Drive #07-02, MD 6 Building, Yong Loo Lin School of Medicine, Singapore, 117599, Singapore
| | - Mario Soccio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122, Foggia, Italy
| | - M Pilar Cano
- Biotechnology and Microbiology of Food Department, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049, Madrid, Spain.
| |
Collapse
|
14
|
Jensen GS. Improved Joint Mobility Associated with Reduced Inflammation Related to Consumption of Nopal Cactus Fruit Juice: Results from a Placebo-Controlled Trial Using Digital Inclinometry to Objectively Document Mobility of All Major Joints. Clin Interv Aging 2020; 15:2341-2352. [PMID: 33328728 PMCID: PMC7734066 DOI: 10.2147/cia.s267451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/01/2020] [Indexed: 12/30/2022] Open
Abstract
Objective To evaluate the effects of daily consumption of Nopal cactus fruit juice (NFJ) on joint mobility in a population experiencing chronic pain but otherwise in good health. Study Design A double-blind, placebo-controlled study design was used to enroll 40 people after written informed consent, randomized to consume 3 oz/day of NFJ versus placebo. At baseline and 8 weeks, joint range of motion (ROM) was examined by digital inclinometry along the vertical weight-bearing axis of the body from neck to knees and the shoulders. Blood samples were tested for cytokines and C-reactive protein (CRP). Questionnaires addressed wellness, pain, and reliance on pain medications. Results After 8 weeks of consuming NFJ, participants showed improved ROM beyond that of participants consuming placebo. Cervical and thoracic/lumbar ROM for the NFJ group was significantly improved when compared to placebo (cervical: P<0.03, thoracic/lumbar: P<0.04). People consuming NFJ relied less on pain medication to complete daily activities (P<0.1) and experienced reduced interference from pain and breathing issues (not significant). Serum levels of Eotaxin, involved in airway inflammation, showed significant differences between placebo and NFJ groups after 8 weeks (P<0.048). Changes in CRP levels showed a larger reduction in the NFJ group (-13%) than in the placebo group (-4%) (not significant). In the subgroup with CRP levels between 1 and 9.9 mg/L at baseline, CRP levels decreased in the NFJ group (-30%) but increased in the placebo group (31%) (P<0.015). Conclusion Consumption of NFJ for 8 weeks was associated with statistically significant improvements in joint mobility and physical functioning compared to the placebo group, allowing participants in the NFJ group to be more physically active; daily activities were easier, including walking, sitting, and lying. This was associated with reduced use of pain medication, possibly associated with anti-inflammatory properties of NFJ, as suggested by reduced Eotaxin and CRP levels.
Collapse
Affiliation(s)
- Gitte S Jensen
- Natural Products Research, NIS Labs, Klamath Falls, Oregon, 97601, USA
| |
Collapse
|
15
|
Study of Xoconostle ( Opuntia spp.) Powder as Source of Dietary Fiber and Antioxidants. Foods 2020; 9:foods9040403. [PMID: 32244651 PMCID: PMC7231072 DOI: 10.3390/foods9040403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 11/17/2022] Open
Abstract
The objective of this study is to evaluate the nutritional composition, antioxidant properties, and functional characteristics of two cultivars of xoconostle Opuntia xoconostle F.A.C. Weber in Diguet cv. Cuaresmeño (XC) and Opuntia matudae Scheinvar cv. Rosa (XR). The samples were frozen (-32 °C, 48 h), lyophilized (96 h, -55 ± 1 °C, vacuum of 0.040 Mbar), and homogenized (size particle 500 μm) to get the xoconostle powder. Both cultivars (XC and XR) had a high content of carbohydrates characterized by soluble sugars (9.8 ± 0.7 and 29.9 ± 0.5 g/100 g dm) and dietary fiber (30.8 ± 0.7 and 36.8 ± 0.9 g/100 g dm), as well as lower proportions of organic acids, mainly citric acid (18.8 ± 0.0 and 13.6 ± 0.0 mg/100 g dm). These samples also had a high content of phenolic compounds (1580.3 ± 33.1 and 1068.5 ± 70.8 mg GAE/100 g dm), vitamin C (723.1 ± 16 and 320.2 ± 7.5 mg/100 g dm), and antioxidant activity ABTS·+ and DPPH· (between 1348.1 ± 74.0 and 3318.7 ± 178.8 µmol TE/100 g dm). Since xoconostle samples had a high content of dietary fiber, they were characterized by the capacity of water retention (water holding capacity 6.00 ± 0.1 and 5.5 ± 0.2 g H2O/g dm) and gel formation (swelling 5.2 ± 0.0 and 5.5 ± 0.0 g H2O/g dm), related with the retention of lipids and glucose in the food matrix similar to other foods. XR was characterized by a higher amount of dietary fiber, sugars and organic acids, while XC had higher phenols content and antioxidant properties, with higher values of functional properties. Then, our data suggest that both xoconostle cultivars in powder can be used as a functional ingredient for its fiber content and antioxidant properties, contributing with sensorial aspects as flavor and color. Therefore, these highly valued products can be used in the pharmaceutical and food industries.
Collapse
|
16
|
Affiliation(s)
- Tomy J. Gutiérrez
- Institute of Research in Materials Science and Technology Faculty of Engineering National Scientific and Technical Research Council (CONICET) P. O. Box B7608FLC, Colon 10850 Mar del Plata, Argentina
| | - Juscelino Tovar
- Department of Food Technology, Engineering and Nutrition Lund University P. O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|