1
|
Yu S, Zhu X, Zhao X, Li Y, Niu X, Chen Y, Ying J. Improvement of chronic metabolic inflammation and regulation of gut homeostasis: Tea as a potential therapy. Pharmacol Ther 2025; 269:108828. [PMID: 40020787 DOI: 10.1016/j.pharmthera.2025.108828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/27/2024] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Chronic metabolic inflammation is a common mechanism linked to the development of metabolic disorders such as obesity, diabetes, and cardiovascular disease (CVD). Chronic metabolic inflammation often related to alterations in gut homeostasis, and pathological processes involve the activation of endotoxin receptors, metabolic reprogramming, mitochondrial dysfunction, and disruption of intestinal nuclear receptor activity. Recent investigations into homeostasis and chronic metabolic inflammation have revealed a novel mechanism which is characterized by a timing interaction involving multiple components and targets. This article explores the positive impact of tea consumption on metabolic health of populations, with a special focus on the improvement of inflammatory indicators and the regulation of gut microbiota. Studies showed that tea consumption is related to the enrichment of gut microbiota. The relative proportion of Firmicutes/Bacteroidetes (F/B) is altered, while the abundance of Lactobacillus, Bifidobacterium, and A. muciniphila increased significantly in most of the studies. Thus, tea consumption could provide potential protection from the development of chronic diseases by improving gut homeostasis and reducing chronic metabolic inflammation. The direct impact of tea on intestinal homeostasis primarily targets lipopolysaccharide (LPS)-related pathways. This includes reducing the synthesis of intestinal LPS, inhibiting LPS translocation, and preventing the binding of LPS to TLR4 receptors to block downstream inflammatory pathways. The TLR4/MyD88/NF-κB p65 pathway is crucial for anti-metaflammatory responses. The antioxidant properties of tea are linked to enhancing mitochondrial function and mitigating mitochondria-related inflammation by eliminating free radicals, inhibiting NLRP3 inflammasomes, and modulating Nrf2/ARE activity. Tea also contributes to safeguarding the intestinal barrier through various mechanisms, such as promoting the synthesis of short-chain fatty acids in the intestine, activating intestinal aryl hydrocarbon receptor (AhR) and farnesoid X receptor (FXR), and improving enteritis. Functional components that improve chronic metabolic inflammation include tea polyphenols, tea pigments, TPS, etc. Tea metabolites such as 4-Hydroxyphenylacetic acid and 3,4-Dihydroxyflavan derivatives, etc., also contribute to anti-chronic metabolic inflammation effects of tea consumption. The raw materials and processing technologies affect the functional component compositions of tea; therefore, consuming different types of tea may result in varying action characteristics and mechanisms. However, there is currently limited elaboration on this aspect. Future research should conduct in-depth studies on the mechanism of tea and its functional components in improving chronic metabolic inflammation. Researchers should pay attention to whether there are interactions between tea and other foods or drugs, explore safe and effective usage and dosage, and investigate whether there are individual differences in the tea-drinking population leading to different effects of tea intervention. Ultimately, the application of tea drinking could be a universal therapy for regulating intestinal homeostasis, anti-chronic metabolic inflammatory responses, and promoting metabolic health.
Collapse
Affiliation(s)
- Shiyi Yu
- Nutrition and Health Research Institute, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430000, China
| | - Xuan Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiayu Zhao
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yan Li
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xinghe Niu
- Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; COFCO Nutrition and Health Research Institute, Beijing 102209, China
| | - Yinghua Chen
- Nutrition and Health Research Institute, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430000, China
| | - Jian Ying
- Nutrition and Health Research Institute, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430000, China.
| |
Collapse
|
2
|
Yeo YH, Abdelmalek M, Khan S, Moylan CA, Rodriquez L, Villanueva A, Yang JD. Current and emerging strategies for the prevention of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2025; 22:173-190. [PMID: 39653784 DOI: 10.1038/s41575-024-01021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 01/05/2025]
Abstract
Liver cancer is the third leading cause of cancer-related deaths globally, with incident cases expected to rise from 905,700 in 2020 to 1.4 million by 2040. Hepatocellular carcinoma (HCC) accounts for about 80% of all primary liver cancers. Viral hepatitis and chronic excessive alcohol consumption are major risk factors for HCC, but metabolic dysfunction-associated steatotic liver disease is also becoming a dominant cause. The increasing numbers of cases of HCC and changes in risk factors highlight the urgent need for updated and targeted prevention strategies. Preventive interventions encompass strategies to decrease the burden of chronic liver diseases and their progression to HCC. These strategies include nutritional interventions and medications that have shown promise in preclinical models. Although prevailing approaches focus on treating chronic liver disease, leveraging a wider range of interventions represents a promising area to safeguard at-risk populations. In this Review, we explore existing evidence for preventive strategies by highlighting established and potential paths to reducing HCC risk effectively and safely, especially in individuals with chronic liver diseases. We categorize the preventive strategies by the mechanism of action, including anti-inflammatory, antihyperglycaemic, lipid-lowering, nutrition and dietary, antiviral, and antifibrotic pathways. For each category, we discuss the efficacy and safety information derived from mechanistic, translational, observational and clinical trial data, pinpointing knowledge gaps and directions for future research.
Collapse
Affiliation(s)
- Yee Hui Yeo
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Manal Abdelmalek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Seema Khan
- Robert H. Lurie Comprehensive Cancer Center, Northwestern Memorial Hospital, Chicago, IL, USA
| | - Cynthia A Moylan
- Division of Gastroenterology, Duke University Health System, Durham, NC, USA
| | - Luz Rodriquez
- Gastrointestinal & Other Cancers Research Group, NCI, Rockville, MD, USA
| | - Augusto Villanueva
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Latambale G, Juvale K. Thiazolidinedione derivatives: emerging role in cancer therapy. Mol Divers 2025:10.1007/s11030-024-11093-3. [PMID: 39899123 DOI: 10.1007/s11030-024-11093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025]
Abstract
Cancer remains the leading cause of death worldwide, with the Globocan 2022 study reporting an estimated 9.7 million cancer deaths. Without the selectivity built for tumour cells, chemotherapeutic agents could be toxic to non-cancerous cells. Administration of such non-selective cytotoxic compounds causes severe side effects and could lead to death. Improved cancer treatments are required to overcome the limitations of the current cancer treatment. The potential of thiazolidinedione derivatives as anticancer drugs has recently drawn attention, despite their primary use as insulin sensitizers in the treatment of type 2 diabetes. The ability of thiazolidinedione derivatives to alter important molecular pathways implicated in carcinogenesis, such as cell proliferation, apoptosis, angiogenesis, Raf kinase, EGFR and HER-2 kinases, HDAC, COX-2 enzyme and metastasis, is highlighted in this review, which examines the growing relevance of these compounds in cancer treatment. Thiazolidinediones have anti-inflammatory, antioxidant, and antiproliferative properties in a variety of cancer types, including breast, colon, and prostate cancers, via activating the peroxisome proliferator-activated gamma receptor (PPARγ). In addition to examining the safety profile and difficulties in clinical translation, the paper looks at preclinical and clinical research that points to these medicines potential to improve the effectiveness of immunotherapy and chemotherapy. This review highlights the encouraging therapeutic possibilities and structure-activity relationship insight of TZDs for their anticancer activity and highlights the molecular level facets of the 'glitazone' pharmacophore for its anticancer activity.
Collapse
Affiliation(s)
- Ganesh Latambale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Kapil Juvale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
4
|
Maurya SK, Chaudhri S, Kumar S, Gupta S. Repurposing of Metabolic Drugs Metformin and Simvastatin as an Emerging Class of Cancer Therapeutics. Pharm Res 2025; 42:49-67. [PMID: 39775614 DOI: 10.1007/s11095-024-03811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Metabolic alterations are commonly associated with various cancers and are recognized as contributing factors to cancer progression, invasion, and metastasis. Drug repurposing, a strategy in drug discovery, utilizes existing knowledge to recommend established drugs for new indications based on clinical data or biological evidence. This approach is considered a less risky alternative to traditional drug development. Metformin, a biguanide, is a product of Galega officinalis (French lilac) primarily prescribed for managing type 2 diabetes, is recognized for its ability to reduce hepatic glucose production and enhance insulin sensitivity, particularly in peripheral tissues such as muscle. It also improves glucose uptake and utilization while decreasing intestinal glucose absorption. Statins, first isolated from the fungus Penicillium citrinum is another class of medication mainly used to lower cholesterol levels in individuals at risk for cardiovascular diseases, work by inhibiting the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which is essential for cholesterol biosynthesis in the liver. Metformin is frequently used in conjunction with statins to investigate their potential synergistic effects. Combination of metformin and simvastatin has gathered much attention in cancer research because of its potential advantages for cancer prevention and treatment. In this review, we analyze the effects of metformin and simvastatin, both individually and in combination, on key cancer hallmarks, and how this combination affects the expression of biomolecules and associated signaling pathways. We also summarize preclinical research, including clinical trials, on the efficacy, safety, and potential applications of repurposing metformin and simvastatin for cancer therapy.
Collapse
Affiliation(s)
- Santosh Kumar Maurya
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Smriti Chaudhri
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, 151401, Punjab, India.
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA.
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
5
|
Mai Y, Meng L, Deng G, Qin Y. The Role of Type 2 Diabetes Mellitus-Related Risk Factors and Drugs in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:159-171. [PMID: 38268569 PMCID: PMC10806369 DOI: 10.2147/jhc.s441672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
With changes in modern lifestyles, type 2 diabetes mellitus (T2DM) has become a global epidemic metabolic disease, and hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. T2DM is a complex metabolic disorder and has been considered an independent risk factor for HCC. Growing evidence supports that T2DM-related risk factors facilitate hepatocarcinogenesis via abundant mechanisms. With the wide implementation of microbiomics, transcriptomics, and immunotherapy, the understanding of the complex mechanisms of intestinal flora and immune cell subsets have advanced tremendously in T2DM-related HCC, uncovering new findings in T2DM-related HCC patients. In addition, reports have indicated the different effects of anti-DM drugs on the progression of HCC. In this review, we summarize the effects of major T2DM-related risk factors (including hyperglycemia, hyperinsulinemia, insulin, chronic inflammation, obesity, nonalcoholic fatty liver disease, gut microbiota and immunomodulation), and anti-DM drugs on the carcinogensis and progression of HCC, as well as their potential molecular mechanisms. In addition, other factors (miRNAs, genes, and lifestyle) related to T2DM-related HCC are discussed. We propose a refined concept by which T2DM-related risk factors and anti-DM drugs contribute to HCC and discuss research directions prompted by such evidence worth pursuing in the coming years. Finally, we put forward novel therapeutic approaches to improve the prognosis of T2DM-related HCC, including exploiting novel diagnostic biomarkers, combination therapy with immunocheckpoint inhibitors, and enhancement of the standardized management of T2DM patients.
Collapse
Affiliation(s)
- Yuhua Mai
- Department of Endocrinology, The First Affiliated Hospital of GuangXi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
| | - Liheng Meng
- Department of Endocrinology, The First Affiliated Hospital of GuangXi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Ganlu Deng
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Yingfen Qin
- Department of Endocrinology, The First Affiliated Hospital of GuangXi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
6
|
Bombarda-Rocha V, Silva D, Badr-Eddine A, Nogueira P, Gonçalves J, Fresco P. Challenges in Pharmacological Intervention in Perilipins (PLINs) to Modulate Lipid Droplet Dynamics in Obesity and Cancer. Cancers (Basel) 2023; 15:4013. [PMID: 37568828 PMCID: PMC10417315 DOI: 10.3390/cancers15154013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Perilipins (PLINs) are the most abundant proteins in lipid droplets (LD). These LD-associated proteins are responsible for upgrading LD from inert lipid storage structures to fully functional organelles, fundamentally integrated in the lipid metabolism. There are five distinct perilipins (PLIN1-5), each with specific expression patterns and metabolic activation, but all capable of regulating the activity of lipases on LD. This plurality creates a complex orchestrated mechanism that is directly related to the healthy balance between lipogenesis and lipolysis. Given the essential role of PLINs in the modulation of the lipid metabolism, these proteins can become interesting targets for the treatment of lipid-associated diseases. Since reprogrammed lipid metabolism is a recognized cancer hallmark, and obesity is a known risk factor for cancer and other comorbidities, the modulation of PLINs could either improve existing treatments or create new opportunities for the treatment of these diseases. Even though PLINs have not been, so far, directly considered for pharmacological interventions, there are many established drugs that can modulate PLINs activity. Therefore, the aim of this study is to assess the involvement of PLINs in diseases related to lipid metabolism dysregulation and whether PLINs can be viewed as potential therapeutic targets for cancer and obesity.
Collapse
Affiliation(s)
- Victória Bombarda-Rocha
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Allal Badr-Eddine
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
| | - Patrícia Nogueira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Wang R, Liu Z, Fan Z, Zhan H. Lipid metabolism reprogramming of CD8 + T cell and therapeutic implications in cancer. Cancer Lett 2023:216267. [PMID: 37315709 DOI: 10.1016/j.canlet.2023.216267] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Effector, memory and exhaustion are three phenotypes of CD8+ T cell. In tumor microenvironment (TME), metabolism dysfunction of the three should take the blame for immune escape. Against background of CD8+ T cell in normal development, multiple determinants in TME, including nutrition competition, PD-1 signals and other cancer- CD8+ T cell interaction, cause metabolism reprograming, including failure in energy metabolism and other abnormal lipid metabolism. Further, incompatibility of different CD8+ T cell metabolism pattern results in unresponsiveness of immune checkpoint blockade (ICB). Therefore, combination of ICB and drugs aiming at abnormal lipid metabolism provides promising direction to improve cancer therapy.
Collapse
Affiliation(s)
- Runxian Wang
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Zhenya Liu
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Zhiyao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Hanxiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
8
|
Zhao X, An X, Yang C, Sun W, Ji H, Lian F. The crucial role and mechanism of insulin resistance in metabolic disease. Front Endocrinol (Lausanne) 2023; 14:1149239. [PMID: 37056675 PMCID: PMC10086443 DOI: 10.3389/fendo.2023.1149239] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Insulin resistance (IR) plays a crucial role in the development and progression of metabolism-related diseases such as diabetes, hypertension, tumors, and nonalcoholic fatty liver disease, and provides the basis for a common understanding of these chronic diseases. In this study, we provide a systematic review of the causes, mechanisms, and treatments of IR. The pathogenesis of IR depends on genetics, obesity, age, disease, and drug effects. Mechanistically, any factor leading to abnormalities in the insulin signaling pathway leads to the development of IR in the host, including insulin receptor abnormalities, disturbances in the internal environment (regarding inflammation, hypoxia, lipotoxicity, and immunity), metabolic function of the liver and organelles, and other abnormalities. The available therapeutic strategies for IR are mainly exercise and dietary habit improvement, and chemotherapy based on biguanides and glucagon-like peptide-1, and traditional Chinese medicine treatments (e.g., herbs and acupuncture) can also be helpful. Based on the current understanding of IR mechanisms, there are still some vacancies to follow up and consider, and there is also a need to define more precise biomarkers for different chronic diseases and lifestyle interventions, and to explore natural or synthetic drugs targeting IR treatment. This could enable the treatment of patients with multiple combined metabolic diseases, with the aim of treating the disease holistically to reduce healthcare expenditures and to improve the quality of life of patients to some extent.
Collapse
Affiliation(s)
| | | | | | | | - Hangyu Ji
- *Correspondence: Fengmei Lian, ; Hangyu Ji,
| | | |
Collapse
|
9
|
Li R, Dong F, Zhang L, Ni X, Lin G. Role of adipocytokines in endometrial cancer progression. Front Pharmacol 2022; 13:1090227. [PMID: 36578551 PMCID: PMC9791063 DOI: 10.3389/fphar.2022.1090227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Endometrial cancer is considered a significant barrier to increasing life expectancy and remains one of the most common malignant cancers among women in many countries worldwide. The increasing mortality rates are potentially proportional to the increasing obesity incidence. Adipose tissue secretes numerous adipocytokines, which may play important roles in endometrial cancer progression. In this scenario, we describe the role of adipocytokines in cell proliferation, cell invasion, cell adhesion, inflammation, angiogenesis, and anti-apoptotic action. A better understanding of the mechanisms of these adipocytokines may open up new therapeutic avenues for women with endometrial cancer. In the future, larger prospective studies focusing on adipocytokines and specific inhibitors should be directed at preventing the rapidly increasing prevalence of gynecological malignancies.
Collapse
Affiliation(s)
- Ran Li
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Fang Dong
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Ling Zhang
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Xiuqin Ni
- School of Health Sciences, Jiangsu Food and Pharmaceutical Science College, Huaian, China
| | - Guozhi Lin
- Department of Obstetrics and Gynecology, Second Affiliated Hospital to Shandong First Medical University, Taian, China,*Correspondence: Guozhi Lin,
| |
Collapse
|
10
|
Turosz N, Chęcińska K, Chęciński M, Kamińska M, Nowak Z, Sikora M, Chlubek D. A Scoping Review of the Use of Pioglitazone in the Treatment of Temporo-Mandibular Joint Arthritis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16518. [PMID: 36554400 PMCID: PMC9779153 DOI: 10.3390/ijerph192416518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 05/27/2023]
Abstract
Thiazolidinediones (TZDs) are a group of diabetes medications currently being investigated for anti-arthritis effectiveness, one of which is pioglitazone. The purpose of this scoping review is to evaluate the potential use of pioglitazone in the treatment of temporomandibular joint (TMJ) arthritis. The criteria of eligibility were studies with the diagnosis of arthritis and pioglitazone treatment with a change in any inflammation index as an outcome. Of the 1169 records initially identified following the selection process, two animal studies and four clinical studies were included in the review. Improvements from the baseline were observed in each treatment group for each inflammation indicator. The results of the animal studies on the temporomandibular joints and on patients with rheumatoid and psoriatic arthritis indicate that the drug in question may have potential to treat arthritis, including within the temporomandibular joint.
Collapse
Affiliation(s)
- Natalia Turosz
- Ortomania, Bartosza Głowackiego 6/1, 30-085 Kraków, Poland
| | - Kamila Chęcińska
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
| | - Maciej Chęciński
- Department of Oral Surgery, Preventive Medicine Center, Komorowskiego 12, 30-106 Kraków, Poland
| | - Monika Kamińska
- Collegium Medicum, Jan Kochanowski University, aleja IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Zuzanna Nowak
- Department of Temporomandibular Disorders, Medical University of Silesia in Katowice, Traugutta sq.2, 41-800 Zabrze, Poland
| | - Maciej Sikora
- Department of Maxillofacial Surgery, Hospital of the Ministry of Interior, Wojska Polskiego 51, 25-375 Kielce, Poland
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
11
|
Gasparini P, Garofolo IC, Telles MM, Oyama LM, Veneza VDM, Moura Veiga TA, Flor Silveira VL, Caperuto LC. Bauhinia forficata link extract attenuates insulin resistance by preserving glucose uptake in gastrocnemius muscle. Nat Prod Res 2022; 37:2031-2036. [PMID: 35997243 DOI: 10.1080/14786419.2022.2113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Bioactive metabolites from Bauhinia forficata Link (Bf extract) hold therapeutic potential for type 2 diabetes mellitus (T2DM) but the mechanism remains poorly understood. This study aimed to test the extract from Bf leaves obtained by decoction on the prevention of T2DM in vivo. The Bf extract was tested on a streptozotocin-induced T2DM mouse model fed on a high-fat diet. The insulin resistance was attenuated in T2DM animals supplemented with Bf extract, which indicates glucose intolerance reduction and p-AKT/AKT ratio preservation in the gastrocnemius muscle. These observations suggested that Bf extract enhanced glucose uptake. Nevertheless, there was no preservation in β-cell insulin secretion in Bf extract-treated T2DM mice. Interestingly, the Bf extract reduced body weight gain without affecting total energy intake. Hence, Bf extract has a hypoglycemic effect which could attenuate the development of insulin resistance.
Collapse
Affiliation(s)
- Patricia Gasparini
- Departamento de Ciências Biológicas; Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF); Universidade Federal de São Paulo; Diadema, Brazil
| | - Ingrid Candido Garofolo
- Departamento de Ciências Biológicas; Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF); Universidade Federal de São Paulo; Diadema, Brazil
| | - Monica Marques Telles
- Departamento de Ciências Biológicas; Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF); Universidade Federal de São Paulo; Diadema, Brazil
| | - Lila Missae Oyama
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Viviane de Mello Veneza
- Departamento de Química; Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF); Universidade Federal de São Paulo, Diadema, Brazil
| | - Thiago André Moura Veiga
- Departamento de Química; Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF); Universidade Federal de São Paulo, Diadema, Brazil
| | - Vera Lucia Flor Silveira
- Departamento de Ciências Biológicas; Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF); Universidade Federal de São Paulo; Diadema, Brazil
| | - Luciana Chagas Caperuto
- Departamento de Ciências Biológicas; Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF); Universidade Federal de São Paulo; Diadema, Brazil
| |
Collapse
|
12
|
Chi T, Wang M, Wang X, Yang K, Xie F, Liao Z, Wei P. PPAR-γ Modulators as Current and Potential Cancer Treatments. Front Oncol 2021; 11:737776. [PMID: 34631571 PMCID: PMC8495261 DOI: 10.3389/fonc.2021.737776] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, cancer has become one of the leading causes of mortality. Peroxisome Proliferator-Activated Receptors (PPARs) is a family of critical sensors of lipids as well as regulators of diverse metabolic pathways. They are also equipped with the capability to promote eNOS activation, regulate immunity and inflammation response. Aside from the established properties, emerging discoveries are also made in PPAR's functions in the cancer field. All considerations are given, there exists great potential in PPAR modulators which may hold in the management of cancers. In particular, PPAR-γ, the most expressed subtype in adipose tissues with two isoforms of different tissue distribution, has been proven to be able to inhibit cell proliferation, induce cell cycle termination and apoptosis of multiple cancer cells, promote intercellular adhesion, and cripple the inflamed state of tumor microenvironment, both on transcriptional and protein level. However, despite the multi-functionalities, the safety of PPAR-γ modulators is still of clinical concern in terms of dosage, drug interactions, cancer types and stages, etc. This review aims to consolidate the functions of PPAR-γ, the current and potential applications of PPAR-γ modulators, and the challenges in applying PPAR-γ modulators to cancer treatment, in both laboratory and clinical settings. We sincerely hope to provide a comprehensive perspective on the prospect of PPAR-γ applicability in the field of cancer treatment.
Collapse
Affiliation(s)
- Tiange Chi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, China
| | - Mina Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Department of Acupuncture and Moxibustion, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xu Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Feiyu Xie
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Oncology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Shi YQ, Zhou XC, Du P, Yin MY, Xu L, Chen WJ, Xu CF. Relationships are between metformin use and survival in pancreatic cancer patients concurrent with diabetes: A systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e21687. [PMID: 32925714 PMCID: PMC7489714 DOI: 10.1097/md.0000000000021687] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/14/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Increased risk and cancer-related mortality is observed in pancreatic cancer (PC) patients with diabetes mellitus (DM). Whether using metformin as glucose-lowering therapy can result in survival benefit in this group of patients is still unclear. METHODS A meta-analysis of 21 studies that including 38,772 patients was performed to investigate the association between metformin and overall survival in patients with PC and concurrent DM. RESULTS A significant survival benefit was observed in metformin treatment group compared with non-metformin group (hazard ratio [HR] = 0.83, 95% confidence interval [CI]: 0.74-0.91). These associations were observed in both subgroups of Asian countries (HR = 0.69, 95% CI: 0.60-0.79) and Western countries (HR = 0.86, 95% CI: 0.76-0.95), the former was more obvious. Survival benefit was gained for patients at early stage (HR = 0.75, 95% CI: 0.64-0.85) and mixed stage (HR = 0.81, 95% CI: 0.70-0.91), but not for patients at advanced stage (HR = 0.99, 95% CI: 0.74-1.24). Similarly, survival benefit was also observed in patients receiving surgery (HR = 0.82, 95% CI: 0.69-0.94) and comprehensive treatment (HR = 0.85, 95% CI: 0.77-0.93), but not in chemotherapy group (HR = 0.99, 95% CI: 0.67-1.30). No obvious benefit was suggested when pooled by time-varying COX model (HR = 0.94, 95% CI: 0.86-1.03). CONCLUSIONS These results suggest that metformin is associated with survival benefit in patients with PC and concurrent DM. Further randomized controlled trials and prospective studies with larger sample sizes are required to confirm our findings.
Collapse
Affiliation(s)
- Yu-Qi Shi
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University
| | | | - Peng Du
- Department of Invasive Technology, The First Affiliated Hospital of Soochow University
| | | | | | | | - Chun-Fang Xu
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
14
|
Uchida D, Takaki A, Oyama A, Adachi T, Wada N, Onishi H, Okada H. Oxidative Stress Management in Chronic Liver Diseases and Hepatocellular Carcinoma. Nutrients 2020; 12:nu12061576. [PMID: 32481552 PMCID: PMC7352310 DOI: 10.3390/nu12061576] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic viral hepatitis B and C and non-alcoholic fatty liver disease (NAFLD) have been widely acknowledged to be the leading causes of liver cirrhosis and hepatocellular carcinoma. As anti-viral treatment progresses, the impact of NAFLD is increasing. NAFLD can coexist with chronic viral hepatitis and exacerbate its progression. Oxidative stress has been recognized as a chronic liver disease progression-related and cancer-initiating stress response. However, there are still many unresolved issues concerning oxidative stress, such as the correlation between the natural history of the disease and promising treatment protocols. Recent findings indicate that oxidative stress is also an anti-cancer response that is necessary to kill cancer cells. Oxidative stress might therefore be a cancer-initiating response that should be down regulated in the pre-cancerous stage in patients with risk factors for cancer, while it is an anti-cancer cell response that should not be down regulated in the post-cancerous stage, especially in patients using anti-cancer agents. Antioxidant nutrients should be administered carefully according to the patients’ disease status. In this review, we will highlight these paradoxical effects of oxidative stress in chronic liver diseases, pre- and post-carcinogenesis.
Collapse
|
15
|
Lira FS, Rosa-Neto JC. Immunometabolism Disorders: Pharmacologic and Nonpharmacologic Approaches. Curr Pharm Des 2020; 26:905. [PMID: 32336260 DOI: 10.2174/138161282609200423142125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- F S Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, SP, Brazil
| | - J C Rosa-Neto
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|