1
|
Huang Q, Zhu L, Huang F, Zhao Y, Wang H, Luan S, Xiao C. Novel quinazolin-6-yl Isoindolinone: Altering polysaccharide chemstructure for antibacterial efficacy against Staphylococcus aureus. Int J Biol Macromol 2024; 280:135650. [PMID: 39278453 DOI: 10.1016/j.ijbiomac.2024.135650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The ongoing development of novel strategies to combat Staphylococcus aureus and eliminate its biofilm formation has gained significant attention for human health. Antibiotic-resistant S. aureus necessitates the development of novel antibacterial agents with new mechanism of action. This study introduced a promising recently synthesized quinazolin-6-yl isoindolinone (IQE-X1), which exhibited potent antibacterial and antibiofilm efficacy with average median inhibitory concentration (IC50) of 3.37 μg mL-1 and minimal inhibitory concentration (MIC) of 12.5 μg mL-1, coupled with its ability to reduce cell surface hydrophobicity. IQE-X1 dose-dependently decreased extracellular polysaccharides (EPS) and its component monosaccharides, including rhamnose, arabinose, glucosamine, galactose, glucose, xylose, mannose, and ribose, accompanied by an increase in capsular polysaccharides (CP) and its individual monosaccharides, especially glucosamine. IQE-X1 demonstrated specificity in modulating the structural profiles of EPS and CP by altering the compositional ratios of their component monosaccharides. The potential mechanism of polysaccharide modulation was preliminarily elucidated through the response of β-N-acetylaminoglucosidase to IQE-X1 and their direct binding interaction. These findings provide new insights into the potential manipulation of the chemstructure of these biologically important macromolecules, EPS and CP, and highlight the antibacterial potential of IQE-X1 as a polysaccharide modulator for the development of more effective polysaccharide-targeted strategies against S. aureus.
Collapse
Affiliation(s)
- Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Lisong Zhu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Fengcheng Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yanjun Zhao
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hongye Wang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shaorong Luan
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ciying Xiao
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
2
|
Khalaf EM, Abood NA, Atta RZ, Ramírez-Coronel AA, Alazragi R, Parra RMR, Abed OH, Abosaooda M, Jalil AT, Mustafa YF, Narmani A, Farhood B. Recent progressions in biomedical and pharmaceutical applications of chitosan nanoparticles: A comprehensive review. Int J Biol Macromol 2023; 231:123354. [PMID: 36681228 DOI: 10.1016/j.ijbiomac.2023.123354] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Nowadays, the most common approaches in the prognosis, diagnosis, and treatment of diseases are along with undeniable limitations. Thus, the ever-increasing need for using biocompatible natural materials and novel practical modalities is required. Applying biomaterials, such as chitosan nanoparticles (CS NPs: FDA-approved long-chain polymer of N-acetyl-glucosamine and D-glucosamine for some pharmaceutical applications), can serve as an appropriate alternative to overcome these limitations. Recently, the biomedical applications of CS NPs have extensively been investigated. These NPs and their derivatives can not only prepare through different physical and chemical approaches but also modify with various molecules and bioactive materials. The potential properties of CS NPs, such as biocompatibility, biodegradability, serum stability, solubility, non-immunogenicity, anti-inflammatory properties, appropriate pharmacokinetics and pharmacodynamics, and so forth, have made them excellent candidates for biomedical applications. Therefore, CS NPs have efficiently applied for various biomedical applications, like regenerative medicine and tissue engineering, biosensors for the detection of microorganisms, and drug delivery systems (DDS) for the suppression of diseases. These NPs possess a high level of biosafety. In summary, CS NPs have the potential ability for biomedical and clinical applications, and it would be remarkably beneficial to develop new generations of CS-based material for the future of medicine.
Collapse
Affiliation(s)
- Eman M Khalaf
- Department of Pharmacy, Al Maarif University College, Ramadi, 31001 Anbar, Iraq
| | - Noor Adil Abood
- Medical Laboratory Techniques, Al-Ma'moon University, Baghdad, Iraq
| | - Raghad Z Atta
- Department of Medical Laboratory Techniques, College of Medical Technology, Al-Farahidi University, Baghdad, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Laboratory of Psychometrics, Comparative psychology and Ethology, Catholic University of Cuenca, Cuenca, Ecuador
| | - Reem Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Osama H Abed
- Dentistry Department, Al-Rasheed University College, Baghdad, Iraq
| | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Xu Q, Hu X, Wang Y. Alternatives to Conventional Antibiotic Therapy: Potential Therapeutic Strategies of Combating Antimicrobial-Resistance and Biofilm-Related Infections. Mol Biotechnol 2021; 63:1103-1124. [PMID: 34309796 DOI: 10.1007/s12033-021-00371-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Antibiotics have been denoted as the orthodox therapeutic agents for fighting bacteria-related infections in clinical practices for decades. Nevertheless, overuse of antibiotics has led to the upsurge of species with antimicrobial resistance (AMR) or multi-drug resistance. Bacteria can also grow into the biofilm, which accounts for at least two-thirds of infections. Distinct gene expression and self-produced heterogeneous hydrated extracellular polymeric substance matrix architecture of biofilm contribute to their tolerance and externally manifest as antibiotic resistance. In this review, the difficulties in combating biofilm formation and AMR are introduced, and novel alternatives to antibiotics such as metal nanoparticles and quaternary ammonium compounds, chitosan and its derivatives, antimicrobial peptides, stimuli-responsive materials, phage therapy and other therapeutic strategies, from compounds to hydrogel, from inorganic to biological, are discussed. We expect to provide useful information for the readers who are seeking for solutions to the problem of AMR and biofilm-related infections.
Collapse
Affiliation(s)
- Qian Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Xuefeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Bockuviene A, Zalneravicius R, Sereikaite J. Preparation, characterization and stability investigation of lycopene-chitooligosaccharides complexes. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Satitsri S, Muanprasat C. Chitin and Chitosan Derivatives as Biomaterial Resources for Biological and Biomedical Applications. Molecules 2020; 25:molecules25245961. [PMID: 33339290 PMCID: PMC7766609 DOI: 10.3390/molecules25245961] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023] Open
Abstract
Chitin is a long-chain polymer of N-acetyl-glucosamine, which is regularly found in the exoskeleton of arthropods including insects, shellfish and the cell wall of fungi. It has been known that chitin can be used for biological and biomedical applications, especially as a biomaterial for tissue repairing, encapsulating drug for drug delivery. However, chitin has been postulated as an inducer of proinflammatory cytokines and certain diseases including asthma. Likewise, chitosan, a long-chain polymer of N-acetyl-glucosamine and d-glucosamine derived from chitin deacetylation, and chitosan oligosaccharide, a short chain polymer, have been known for their potential therapeutic effects, including anti-inflammatory, antioxidant, antidiarrheal, and anti-Alzheimer effects. This review summarizes potential utilization and limitation of chitin, chitosan and chitosan oligosaccharide in a variety of diseases. Furthermore, future direction of research and development of chitin, chitosan, and chitosan oligosaccharide for biomedical applications is discussed.
Collapse
|
6
|
Bockuviene A, Sereikaite J. New β-Carotene-Chitooligosaccharides Complexes for Food Fortification: Stability Study. Foods 2020; 9:E765. [PMID: 32531942 PMCID: PMC7353500 DOI: 10.3390/foods9060765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022] Open
Abstract
The application of β-carotene in food industry is limited due to its chemical instability. The drawback may be overcome by designing new delivery systems. The stability of β-carotene complexed with chitooligosaccharides by kneading, freeze-drying and sonication methods was investigated under various conditions. The first-order kinetics parameters of the reaction of β-carotene degradation were calculated. The complexation improved the stability of β-carotene at high temperatures and ensured its long-term stability in the dark at 4 °C and 24 °C, and in the light at 24 °C. In water solutions, the best characteristics were exhibited by the complexes prepared by freeze-drying and sonication methods. In the powder form, the complexes retained their colour for the period of the investigation of four months. The calculated total colour differences of the complexes were qualified as appreciable, detectable by ordinary people, but not large. Therefore, β-carotene-chitooligosaccharides complexes could be used as a new delivery system suitable for food fortification.
Collapse
Affiliation(s)
- Alma Bockuviene
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10221 Vilnius, Lithuania;
- Department of Polymer Chemistry, Institute of Chemistry, Vilnius University, 01513 Vilnius, Lithuania
| | - Jolanta Sereikaite
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10221 Vilnius, Lithuania;
| |
Collapse
|