1
|
Abd-Elghany AA, Mohamad EA, Alqarni A, Hussein MA, Mansour MS. Chemosensitization and Molecular Docking Assessment of Dio-NPs on Resistant Breast Cancer Cells to Tamoxifen. Pharmaceuticals (Basel) 2025; 18:452. [PMID: 40283888 PMCID: PMC12030156 DOI: 10.3390/ph18040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/13/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Diosgenin, a powerful compound found in fenugreek and Dioscorea villosa, has diverse pharmacological effects. This study examines the anticancer potential of diosgenin nanoparticles (Dio-NPs) against DMBA-induced breast cancer in mice in combination with tamoxifen. Methods: In the current investigation, characterization of Dio-NPs was performed, including their size, shape, zeta potential, UV-vis, and FT-IR spectra. Dio-NPs (120 mg/kg) and tamoxifen (2 mg/kg) were given to mice with DMBA-induced breast cancer, either alone or in combination, over 4 weeks. We measured inflammatory and oxidative stress markers, as well as gene expressions related to apoptosis, using ELISA and qRT-PCR. Additionally, molecular docking studies were conducted to assess the binding affinity of diosgenin with specific proteins. Molecular dynamics simulations were conducted on CDK4, AKT, and CDK6 proteins with diosgenin using GROMACS. The systems were solved, neutralized, and equilibrated under NVT and NPT ensembles. Simulations ran for 100 ns, and trajectories were analyzed for RMSD, RMSF, RG, SASA, and hydrogen bonds. Results: The IC50 of Dio-NPs against MCF-7 cells was 47.96 ± 1.48 µg/mL. Dio-NPs had a zeta potential of -21.8 ± 0.6 mV and a size of 56.85 ± 3.19 nm and were uniform and spherical. The LD50 of Dio-NPs was 2400 mg/kg. DMBA exposure increased WBCs, inflammatory markers, oxidative stress, and gene expression of CDK2, CDK4, CDK6, and Akt, while reducing Hb%, RBCs, PLTs, GSH, superoxide dismutase, and catalase levels. Dio-NPs and tamoxifen, both alone and combined, significantly reduced these effects. The combination treatment was more effective than individual treatments. Histological analyses supported these findings. Molecular docking showed diosgenin had a stronger binding affinity with the target proteins compared to tamoxifen. The simulations revealed that diosgenin effectively binds to CDK4, AKT, and CDK6, maintaining their stability and structural integrity. CDK4, AKT, and CDK6 showed consistent RMSD, RG, and SASA values, with moderate flexibility and stable hydrogen bonding patterns, suggesting their potential as therapeutic targets. Conclusions: Combining diosgenin and tamoxifen effectively inhibits breast cancer progression in DMBA-treated mice. This is primarily due to the reduction in expression of CDK2, CDK4, CDK6, and Akt proteins, which enhances the sensitivity of resistant breast cancer cells to tamoxifen.
Collapse
Affiliation(s)
- Amr A. Abd-Elghany
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdul-Aziz University, Al-Kharj 16273, Saudi Arabia; (E.A.M.); (A.A.)
| | - Ebtesam A. Mohamad
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdul-Aziz University, Al-Kharj 16273, Saudi Arabia; (E.A.M.); (A.A.)
| | - Abdullah Alqarni
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdul-Aziz University, Al-Kharj 16273, Saudi Arabia; (E.A.M.); (A.A.)
| | - Mohammed A. Hussein
- Biochemistry Department, Faculty of Applied Medical Sciences, October 6 University, 6th of October City, Giza 28125, Egypt; (M.A.H.); (M.S.M.)
| | - Mohamed S. Mansour
- Biochemistry Department, Faculty of Applied Medical Sciences, October 6 University, 6th of October City, Giza 28125, Egypt; (M.A.H.); (M.S.M.)
| |
Collapse
|
2
|
Nafie MS, Fahmy SA, Kahwash SH, Diab MK, Dawood KM, Abbas AA. Recent advances on anticancer activity of benzodiazine heterocycles through kinase inhibition. RSC Adv 2025; 15:5597-5638. [PMID: 39974315 PMCID: PMC11836603 DOI: 10.1039/d4ra08134j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/11/2025] [Indexed: 02/21/2025] Open
Abstract
The benzodiazines (phthalazine, quinazoline, quinoxaline, and cinnoline) have emerged as attractive scaffolds for creating novel anticancer drugs. These nitrogen-containing heterocycles are intriguing because they have a variety of configurations and can change chemically, allowing us to tailor their pharmacokinetic and pharmacodynamic features. Numerous studies have found that derivatives of these compounds have potent anticancer properties via inhibiting topoisomerases, protein kinases, and receptor tyrosine kinases. These compounds impair critical processes that control cancer proliferation and survival. Most benzodiazine derivatives have achieved clinical success, demonstrating the heterocycles' therapeutic potential. The use of phthalazine, cinnoline, and quinazoline derivatives should open new avenues in developing better and more targeted cancer treatments. In this overview, we summarize recent advances in synthesizing these compounds and illustrate how they serve as promising chemotherapeutic agents. Therefore, current research organizes the latest information to provide a clearer picture of design strategies that boost efficacy and selectivity, allowing the identification of potential anticancer drug candidates down the line. This research study also highlights the need to establish heterocyclic derivatives as a promising source of new molecules for cancer treatment with improved efficacy and decreased effects.
Collapse
Affiliation(s)
- Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah Sharjah 27272 United Arab Emirates
- Department of Chemistry, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Sherif Ashraf Fahmy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg Robert-Koch-Str. 4 35037 Marburg Germany
| | - Shaima H Kahwash
- Department of Chemistry, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Mohamed K Diab
- Pest Physiology Department, Plant Protection Research Institute, Agricultural Research Center Giza 12311 Egypt
| | - Kamal M Dawood
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ashraf A Abbas
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| |
Collapse
|
3
|
Mansour MS, Mahmoud AA, Sayah MA, Mohamed ZN, Hussein MA, ALsherif DA. RES-CMCNPs Enhance Antioxidant, Proinflammatory, and Sensitivity of Tumor Solids to γ-irradiation in EAC-Bearing Mice. Pharm Nanotechnol 2025; 13:254-269. [PMID: 38676484 DOI: 10.2174/0122117385290497240324190453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 04/29/2024]
Abstract
OBJECTIVES Resveratrol (Res) is a bifunctional compound found in numerous plants, including grapes and mulberries. Nanotechnology has promising applications in medicine. The ability of various nanomaterials to serve as radiosensitizers against tumor cells were reported in several manuscripts. The present investigation aimed to assess the antitumor and radiosensitizing effects of Res-CMCNPs on EAC-bearing mice. METHODS Res-CMCNPs have been developed using the CMC emulsification cross-linking technique. Entrapment efficiency (%), particle size, Polydispersity index and ZETA potential, UV, FTIR spectra, and drug release were evaluated and described for RES-CMCNPs. The radiosensitizing properties of RES-CMCNPs were also evaluated in vitro and in vivo against EAC-carrying rodents. The LD50 of Res-CMCNPs was estimated and its 1/20 LD50 was prepared for treating EAC transplanted mice. RESULTS The results revealed that the Res-CMCNPs exhibited a high entrapment efficiency (85.46%) and a size of approximately 184.60 ±17.36 nm with zeta potential value equals -51.866 mv. Also, the UV spectra of Res and Res-CMCNPs have strong absorption at 225 and 290 nm. The percentage of resveratrol release at pHs 5.8 and 7.4 was found to be 56.73% and 51.60%, respectively, after 24 h at 100 rpm. Also, the FTIR analysis confirmed the chemical stability of resveratrol in Res-CMCNPs cross-linking. The IC50 values of Res-CMCNPs against EAC cells viability were 32.99, 25.46, and 22.21 μg after 24-, 48- and 72 h incubation, respectively, whereas those of Res- CMCNPs in combination with γ-irradiation after 6-, 10 and 12-mins exposure were 24.07, 16.06 and 7.48 μg, respectively. Also, the LD50 of Res-CMCNPs was 2180 mg/kg.b.w. The treatment of EAC-bearing mice with Res-CMCNPs plus γ-irradiation improved plasma levels of NO, caspase-3, P53 and NF-kB levels as well as liver MDA, GSH, SOD, CAT, LT-B4, aromatase, Bax, Bcl2 and TGF-β levels and exhibited more significant anticancer activity than administration of Res- CMCNPs and/or exposure to γ-irradiation individually. On the other hand, administration of Res- CMCNPs in combination with γ-irradiation attenuated liver mRNAs (21, 29b, 181a, and 451) gene expression. CONCLUSION Grafting resveratrol onto carboxymethyl chitosan appears to be a promising strategy for cancer therapy as a radiosensitizer, potentiating tumor cells' sensitivity to radiation by improving levels of proinflammatory features and antioxidant biomarkers.
Collapse
Affiliation(s)
- Mohamed S Mansour
- Biomedical Equipment Department, Faculty of Applied Health Sciences, October 6 University, October 6 City, 28125, Giza, Egypt
| | - Amira A Mahmoud
- Department of Radiology and Medical Imaging, Badr Academy, Cairo, Egypt
| | - Mohannad A Sayah
- Department of Radiography, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, 71111, P.O. Box 20 Ma'an, Jordan
| | - Zahraa N Mohamed
- Medical Laboratory Department, Faculty of Applied Health Sciences, October 6 University, 6th of October City, 28125, Giza, Egypt
| | - Mohammed A Hussein
- Biotechnology Department, Faculty of Applied Health Sciences, October 6 University, Sixth of October City, Egypt
| | - Diana A ALsherif
- Technology of Radiology and Medical Imaging Department, Faculty of Applied Health Science Technology, October 6 University, October 6th City, Egypt
| |
Collapse
|
4
|
Borik RM, Hussein MA. Design, Synthesis, and Molecular Docking of Quinazolines Bearing Caffeoyl Moiety for Targeting of PGK1/PKM2/STAT3 Signaling Pathway in the Human Breast Cancer. Curr Pharm Des 2025; 31:957-980. [PMID: 39506445 DOI: 10.2174/0113816128337881241016064641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND PGK1 and PKM2 are glycolytic enzymes, and their expression is upregulated in cancer cells. STAT3 is a transcription factor implicated in breast cancer progression and chemoresistance. Researchers worldwide continue to explore how targeting genes might lead to more effective anti-breast cancer therapies. The present study aims to synthesize quinazolines containing caffeoyl moiety for developing innovative anticancer agents against the human breast cancer cell line (MCF-7). METHODS A new quinazoline 2 was synthesized by reacting caffeic acid with 5-amino-phenylpyrazole carboxylate 1 in the presence of PCl3. Compound 2 reacted with NH2NH2.H2O to produce compound 3 through cyclo-condensation. Apoptosis and necrosis as well as inhibition activity compounds 2 and 3 against PGK1, and PKM2 were evaluated. The effect of compounds 2 and 3 on the levels of GSH, GR, SOD, GPx, CAT, MDA, Bax, Bcl-2, caspase-3, P53 and VEGF levels as well as PGK1, PKM2 and STAT3 gene expression were estimated in MCF-7 tumor cells. RESULTS The viability of MCF-7 cells was reduced to 22.42% and 45.86% after incubation with compounds 2 and 3 for 48 hours, respectively. The IC50 values for compounds 2 and 3 are 62.05 μg/mL and 16.73 μg/mL. Furthermore, compound 3 exhibited more significant apoptosis and necrosis than compound 2. IC50 values of compound 2 against PGK1, and PKM2 at interval concentration equals 1.04, and 0.32 μM/mL, respectively, after 210 minutes of incubation. Moreover, compound 3 were revealed strong inhibition of PGK1, and PKM2 with IC50 values equals 0.55 and 0.21 μg/mL, respectively after 210 minutes of incubation. Our results proved that the incubation of compounds 2 and 3 with MCF-7 cells increased the levels of apoptotic proteins, elevated MDA, Bax, caspase-3 and P53 levels, depleted GSH, GR, SOD, GPx, CAT, Bcl-2 levels and downregulated the levels of STAT3, PGK1, and PKM2 gene expression significantly. Our in silico results proved that compound 2 showed a stronger estimated binding affinity with a ΔG of -7.2, -7.5, and -7.9 kcal/mol., respectively towards PGK1, PKM2 and STAT3 proteins. Also, compound 3 exhibits a strong binding affinity with ΔG of -7.9, -8.5, and - 8.7 kcal/mol., towards PGK1, PKM2 and STAT3 proteins. CONCLUSION The results show that compounds 2 and 3 induce apoptotic activity by blocking the PGK1- PKM2-STAT3 signaling pathway. The present investigation opens exciting possibilities for developing innovative new anticancer quinazolines bearing caffeoyl moiety.
Collapse
Affiliation(s)
- Rita M Borik
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Mohammed A Hussein
- Biotechnology Department, Faculty of Applied Health Science Technology, October 6 University, Giza 28125, Egypt
| |
Collapse
|
5
|
Salah A, Mohammed El-Laban N, Mafiz Alam S, Shahidul Islam M, Abdalla Hussein M, Roshdy T. Optimization of Naringenin-loaded nanoparticles for targeting of Vanin-1, iNOS, and MCP-1 signaling pathway in HFD-induced obesity. Int J Pharm 2024; 654:123967. [PMID: 38438083 DOI: 10.1016/j.ijpharm.2024.123967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Naringenin, a natural dihydrochalcone flavonoid, exhibits diverse pharmacological properties. This study investigates the hypolipidemic effects of Nar-NPs on obese mice. The characteristics of Nar-NPs, including morphology, particle size, zeta potential, UV-vis, and FT-IR spectra, were examined. The anti-obesity properties of Nar-NPs were evaluated in obese rats, considering LD50, 1/20 LD50, and 1/50 LD50 for treatment preparation. Results indicated that synthesized Nar-NPs were uniform, spherical, and well-dispersed, with a size of 130.06 ± 1.98 nm and with a zeta potential of -25.6 ± 0.8 mV. Nar-NPs exhibited enhancement in the cumulative release of naringenin (56.87 ± 2.45 %) as compared to pure naringenin suspension 87.83 ± 1.84 % in 24 h of the study. The LD50 of Nar-NPs was determined as 412.5 mg/kg.b.w. HFD induced elevated glycemic, oxidative stress, and inflammatory biomarkers while reducing HDL-C, GSH, and superoxide dismutase (SOD) levels. Administration of Nar-NPs significantly mitigated body weight, glucose, insulin, leptin, TC, TG, SREBP1c, pAMPK, PPAR-α, as well as vanin-1, MCP-1, and iNOS mRNA gene expression. Histological investigations supported the biochemical and PCR findings. In a nutshell, the study suggests that the Nar-NPs could serve as a promising and viable pharmacological strategy for the treatment of obesity-related disorders.
Collapse
Affiliation(s)
- Ahmed Salah
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Nada Mohammed El-Laban
- Biotechnology Department, Faculty of Applied Health Sciences, October 6 University, Sixth of October City, Egypt
| | - Seikh Mafiz Alam
- Department of Chemistry, Aliah University, New Town, Kolkata 700 156, India
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Mohammed Abdalla Hussein
- Biotechnology Department, Faculty of Applied Health Sciences, October 6 University, Sixth of October City, Egypt
| | - Tamer Roshdy
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt
| |
Collapse
|
6
|
Alsherif DA, Hussein MA, Abuelkasem SS. Salvia officinalis Improves Glycemia and Suppresses Pro-inflammatory Features in Obese Rats with Metabolic Syndrome. Curr Pharm Biotechnol 2024; 25:623-636. [PMID: 37581324 DOI: 10.2174/1389201024666230811104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVES Obesity is regarded as the main cause of metabolic diseases and a core factor for all-cause mortality in the general population, notably from cardiovascular disease. The majority of people with type 2 diabetes have obesity and insulin resistance. Some evidence indicates that an individual with obesity is approximately 10 times more likely to develop type 2 diabetes than someone with moderate body weight. One of the most significant therapeutic herbs, Salvia officinalis (Lamiaceae) (SAGE), possesses potent medicinal importance. The aim of this article was to evaluate the anti-diabetic and antiobesity activity of SAGEAE against HFD-induced obesity in rats. METHODS Thirty adult albino rats were randomly divided into five equal groups: control, High-fat Diet (HFD) administrated rats, HFD + Salvia officinalis Aqueous Extract (SAGEAE) (150 mg/kg.bw.), HFD + SAGEAE (300 mg/kg.bw.) and HFD + metformin (500 mg/kg.bw.). Body weight, plasma biochemical parameters, oxidative stress, inflammatory indicators, hepatic Phosphoenolpyruvate Carboxykinase 1 (PCK1), Glucokinase (GK), brain Leptin Receptor (LepRb), Glucose Transporter-4 (GLUT4), Sirtuin 1 (SIRT1) and mRNA33-5P gene signalling mRNA levels were all assessed after 8 weeks. A histological examination of the liver was also performed to check for lipid accumulation. RESULTS The administration of HFD resulted in increased body weight, glucose, insulin, leptin, Total Cholesterol (TC), Triglycerides (TG), Thiobarbaturic Acid Reactive Substances (TBARS), Monocyte Chemoattractant Protein-1 (MCP1), Interleukine-6 (IL-6) and tumor necrosis factor-α (TNF- α) as well as hepatic PCK1, brain LepRb and adipose tissue mRNA33-5P gene expression. However, our findings revealed a significant reduction in adiponectin, High-density Lipoproteincholesterol (HDL-C), reduced glutathione (GSH) and Superoxide Dismutase (SOD) levels as well as the expression of hepatic GK and adipose tissue SIRT1 and GLUT4 genes. Also, administration of SAGEAE significantly normalized body weight, glucose, insulin, leptin, adiponectin, TC, TG, HDL-C, TBARs, SOD, IL-6, MCP-1 and TNF-α in plasma and liver tissue of HFD-treated rats. On the other hand, PCK1, GK, LepRb, SIRT1, GLUT4 and mRNA33-5P gene expression was enhanced in obese rats when administrated with SAGEAE. Histological and US studies support the biochemical, PCR and electrophoretic results. CONCLUSION The findings imply that SAGEAE could be used as a new pharmaceutical formula in the treatment of obesity.
Collapse
Affiliation(s)
- Diana A Alsherif
- Department of Radiology and Medical Imaging, Faculty of Applied Health Science Technology, October 6th University, October 6th City, Egypt
| | - Mohammed A Hussein
- Department of Biotechnology, Faculty of Applied Health Science Technology, October 6th University, October 6th City, Egypt
| | - Suzan S Abuelkasem
- Department of Biochemistry, Faculty of Applied Health Science Technology, October 6th University, October 6th City, Egypt
| |
Collapse
|
7
|
Alamir M, Hussein MA, Aboud HM, Khedr MH, Zanaty MI. Optimization of Phloretin-loaded Nanospanlastics for Targeting of FAS/SREBP1c/AMPK/ OB-Rb Signaling Pathway in HFD-induced Obesity. Curr Pharm Biotechnol 2024; 26:92-107. [PMID: 38698746 DOI: 10.2174/0113892010278684240105115516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 05/05/2024]
Abstract
OBJECTIVES Obese patients are at increased risk for CVD, which is the main cause of premature death and has been a major cause of disability and ill health in recent years. PTN, a natural dihydrochalcone flavonoid, has a variety of pharmacological characteristics. This article aimed to prepare PTN-NSLs to evaluate their anti-obesity activity. METHODS Morphology, Particle size, zeta potential, UV-vis, entrapment efficiency, FT-IR spectra, and an in vitro release study of PTN-NSLs were described. PTN-NSLs were also tested for their anti-obesity properties in obese rats. The LD50 of PTN-NSLs was calculated, as was the 1/20 LD50 prepared for the treatment of obese rats. Also, the level of glycemic, oxidative stress and inflammatory biomarkers were estimated in the obese rat's model. RESULTS The synthesized PTN-NSLs were uniform, spherically shaped, and well dispersed with no aggregation noted, with a size range of 114.06 ± 8.35 nm. The measured zeta potential value of PTN-NSLs was -32.50.8 mv. Also, the UV spectra of PTN and PTN-NSLs have strong absorption at 225 and 285 nm. Also, the LD50 of PTN-NSLs was found to be 2750 mg/kg.b.w. Moreover, administrating obese rats with PTN-NSLs resulted in improved glycemic features as well as GSH, SOD, GPx, GR, IL10, TBARs, and IL-6 levels, as well as attenuated FAS, SREBP1c, AMPK, ACO, CPT1, and OB-Rb gene expression. CONCLUSION Administration of PTN-NSLs significantly attenuated the levels of glycemic, oxidative stress, and inflammatory biomarkers. The biochemical and PCR findings are aided by histological investigations. Also, the present findings imply that PTN-NSLs might be a promising pharmacological tool for the treatment of obesity-related diseases.
Collapse
Affiliation(s)
- Mohamed Alamir
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
- Medical Laboratory Department, Faculty of Applied Medical Sciences, October 6 University, Sixth of October City, Egypt
| | - Mohamed A Hussein
- Biotechnology Department, Faculty of Applied Health Sciences, October 6 University, Sixth of October City, Giza, Egypt
| | - Heba M Aboud
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed H Khedr
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed I Zanaty
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
8
|
Hussein MA, Borik RM, Nafie MS, Abo-Salem HM, Boshra SA, Mohamed ZN. Structure Activity Relationship and Molecular Docking of Some Quinazolines Bearing Sulfamerazine Moiety as New 3CLpro, cPLA2, sPLA2 Inhibitors. Molecules 2023; 28:6052. [PMID: 37630304 PMCID: PMC10460087 DOI: 10.3390/molecules28166052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
The current work was conducted to synthesize several novel anti-inflammatory quinazolines having sulfamerazine moieties as new 3CLpro, cPLA2, and sPLA2 inhibitors. The thioureido derivative 3 was formed when compound 2 was treated with sulfamerazine. Also, compound 3 was reacted with NH2-NH2 in ethanol to produce the N-aminoquinazoline derivative. Additionally, derivative 4 was reacted with 4-hydroxy-3-methoxybenzaldehyde, ethyl chloroacetate, and/or diethyl oxalate to produce quinazoline derivatives 5, 6, and 12, respectively. The results of the pharmacological study indicated that the synthesized 4-6 and 12 derivatives showed good 3CLpro, cPLA2, and sPLA2 inhibitory activity. The IC50 values of the target compounds 4-6, and 12 against the SARS-CoV-2 main protease were 2.012, 3.68, 1.18, and 5.47 µM, respectively, whereas those of baicalein and ivermectin were 1.72 and 42.39 µM, respectively. The IC50 values of the target compounds 4-6, and 12 against sPLA2 were 2.84, 2.73, 1.016, and 4.45 µM, respectively, whereas those of baicalein and ivermectin were 0.89 and 109.6 µM, respectively. The IC50 values of the target compounds 4-6, and 12 against cPLA2 were 1.44, 2.08, 0.5, and 2.39 µM, respectively, whereas those of baicalein and ivermectin were 3.88 and 138.0 µM, respectively. Also, incubation of lung cells with LPS plus derivatives 4-6, and 12 caused a significant decrease in levels of sPLA2, cPLA2, IL-8, TNF-α, and NO. The inhibitory activity of the synthesized compounds was more pronounced compared to baicalein and ivermectin. In contrast to ivermectin and baicalein, bioinformatics investigations were carried out to establish the possible binding interactions between the newly synthesized compounds 2-6 and 12 and the active site of 3CLpro. Docking simulations were utilized to identify the binding affinity and binding mode of compounds 2-6 and 12 with the active sites of 3CLpro, sPLA2, and cPLA2 enzymes. Our findings demonstrated that all compounds had outstanding binding affinities, especially with the key amino acids of the target enzymes. These findings imply that compound 6 is a potential lead for the development of more effective SARS-CoV-2 Mpro inhibitors and anti-COVID-19 quinazoline derivative-based drugs. Compound 6 was shown to have more antiviral activity than baicalein and against 3CLpro. Furthermore, the IC50 value of ivermectin against the SARS-CoV-2 main protease was revealed to be 42.39 µM, indicating that it has low effectiveness.
Collapse
Affiliation(s)
- Mohammed Abdalla Hussein
- Biotechnology Department, Faculty of Applied Heath Science Technology, October 6 University, Giza 28125, Egypt;
| | - Rita M. Borik
- Chemistry Department, Faculty of Science (Female Section), Jazan University, Jazan 82621, Saudi Arabia;
| | - Mohamed S. Nafie
- Chemistry Department (Biochemistry Program), Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Heba M. Abo-Salem
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza 28125, Egypt;
| | - Sylvia A. Boshra
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Giza 28125, Egypt
| | - Zahraa N. Mohamed
- Medical Laboratory Department, Faculty of Applied Medical Sciences, October 6 University, Giza 28125, Egypt;
| |
Collapse
|
9
|
Salama S, Kue CS, Mohamad H, Omer F, Ibrahim MY, Abdulla M, Ali H, Mariod A, Jayash SN. Hepatoprotective potential of a novel quinazoline derivative in thioacetamide-induced liver toxicity. Front Pharmacol 2022; 13:943340. [PMID: 36204229 PMCID: PMC9531777 DOI: 10.3389/fphar.2022.943340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: The compound quinazoline Q-Br, 3-(5-bromo-2-hydroxybenzylideneamino)-2-(5-bromo-2 hydroxyphenyl) 2,3-dihydroquinazoline-4(1H)-one (Q-Br) was evaluated for its antioxidant capacity and potential hepatoprotectivity against sub-chronic liver toxicity induced by thioacetamide in rats. Materials and Methods: Rats were assigned into five groups; healthy (normal) and cirrhosis control groups were given 5% Tween 20 orally, the reference control group was given a Silymarin dose of 50 mg/kg, and low-dose Q-Br and high-dose Q-Br groups were given a daily dose of 25 mg/kg and 50 mg/g Q-Br, respectively. Liver status was detected via fluorescence imaging with intravenous injection of indocyanine green (ICG) and a plasma ICG clearance test. Liver malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were also tested. The degree of fibrosis was determined histologically by hematoxylin and eosin and Masson's Trichrome staining. The immunohistochemistry of liver tissue inhibitor of metalloproteinase (TIMP-1), matrix metalloproteinase (MMP-2), and alpha-smooth muscle actin (α-SMA) was performed. Results: Q-Br recorded mild antioxidant capacity, dose-dependent improvement in the liver status, and inhibition of oxidative stress compared to cirrhosis control. Histopathology notified a remarkable reduction in the degree of fibrosis. Immunohistochemistry revealed an obvious low expression of MMP-2 and α-SMA along with a higher expression of TIMP-1 in Q-Br- and Silymarin-treated livers. Conclusion: Q-Br treatment altered the course of toxicity induced by thioacetamide suggesting significant hepatoprotective potential of Q-Br treatment.
Collapse
Affiliation(s)
- Suzy Salama
- Indigenous Knowledge and Heritage Center, Ghibaish College of Science and Technology, Ghibaish, Sudan
| | - Chin Siang Kue
- Faculty of Health and Life Sciences, Management and Science University, Shah Alam, Selangor, Malaysia
| | - Haryanti Mohamad
- Animal Experimental Unit, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Fatima Omer
- Department of Chemistry and Biology, Faculty of Education-Hantoub, University of Gezira, Gezira, Sudan
| | | | | | - Hapipah Ali
- Department of General Biology, College of Science, Cihan University-Erbil, Erbil, Kurdistan, Iraq
| | - Abdalbasit Mariod
- Indigenous Knowledge and Heritage Center, Ghibaish College of Science and Technology, Ghibaish, Sudan
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Soher Nagi Jayash
- Faculty of Science & Arts, University of Jeddah, Alkamil, Kingdom of Saudi Arabia
| |
Collapse
|