1
|
Devailly G, Fève K, Saci S, Sarry J, Valière S, Lluch J, Bouchez O, Ravon L, Billon Y, Gilbert H, Riquet J, Beaumont M, Demars J. Divergent selection for feed efficiency in pigs altered the duodenum transcriptomic response to feed intake and its DNA methylation profiles. Physiol Genomics 2024; 56:397-408. [PMID: 38497119 DOI: 10.1152/physiolgenomics.00123.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/01/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024] Open
Abstract
Feed efficiency is a trait of interest in pigs as it contributes to lowering the ecological and economical costs of pig production. A divergent genetic selection experiment from a Large White pig population was performed for 10 generations, leading to pig lines with relatively low- (LRFI) and high- (HRFI) residual feed intake (RFI). Feeding behavior and metabolic differences have been previously reported between the two lines. We hypothesized that part of these differences could be related to differential sensing and absorption of nutrients in the proximal intestine. We investigated the duodenum transcriptome and DNA methylation profiles comparing overnight fasting with ad libitum feeding in LRFI and HRFI pigs (n = 24). We identified 1,106 differentially expressed genes between the two lines, notably affecting pathways of the transmembrane transport activity and related to mitosis or chromosome separation. The LRFI line showed a greater transcriptomic response to feed intake than the HRFI line. Feed intake affected genes from both anabolic and catabolic pathways in the pig duodenum, such as rRNA production and autophagy. Several nutrient transporter and tight junction genes were differentially expressed between lines and/or by short-term feed intake. We also identified 409 differentially methylated regions in the duodenum mucosa between the two lines, while this epigenetic mark was less affected by feeding. Our findings highlighted that the genetic selection for feed efficiency in pigs changed the transcriptome profiles of the duodenum, and notably its response to feed intake, suggesting key roles for this proximal gut segment in mechanisms underlying feed efficiency.NEW & NOTEWORTHY The duodenum is a key organ for the hunger/satiety loop and nutrient sensing. We investigated how the duodenum transcriptome and DNA methylation profiles are affected by feed intakes in pigs. We observed thousands of changes in gene expression levels between overnight-fasted and fed pigs in high-feed efficiency pig lines, but almost none in the related low-feed efficiency pig line.
Collapse
Affiliation(s)
| | - Katia Fève
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Safia Saci
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Julien Sarry
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Sophie Valière
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Jérôme Lluch
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Olivier Bouchez
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Laure Ravon
- Pig Phenotyping and Innovative Breeding Facility, GenESI, UE1372, INRAE, Surgères, France
| | - Yvon Billon
- Pig Phenotyping and Innovative Breeding Facility, GenESI, UE1372, INRAE, Surgères, France
| | - Hélène Gilbert
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Juliette Riquet
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Julie Demars
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| |
Collapse
|
2
|
Van Ginneken C, Ayuso M, Van Bockstal L, Van Cruchten S. Preweaning performance in intrauterine growth-restricted piglets: Characteristics and interventions. Mol Reprod Dev 2023; 90:697-707. [PMID: 35652465 DOI: 10.1002/mrd.23614] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 11/06/2022]
Abstract
Intrauterine growth restriction (IUGR) is frequently observed in pig production, especially when using highly prolific sows. IUGR piglets are born with low body weight and shape indicative of differences in organ growth. Insufficient uteroplacental nutrient transfer to the fetuses is the leading cause of growth restriction in the pig. Supplementing the sow's gestation diet with arginine and/or glutamine improves placenta growth and functionality and consequently is able to reduce IUGR incidence. IUGR piglets are at higher risk of dying preweaning and face higher morbidity than their normal-weight littermates. A high level of surveillance during farrowing and individual nutrient supplementation can reduce the mortality rates. Still, these do not reverse the long-term consequences of IUGR, which are induced by persistent structural deficits in different organs. Dietary interventions peri-weaning can optimize performance but these are less effective in combating the metabolic changes that occurred in IUGR, which affect reproductive performance later in life. IUGR piglets share many similarities with IUGR infants, such as a poorer outcome of males. Using the IUGR piglet as an animal model to further explore the structural and molecular basis of the long-term consequences of IUGR and the potential sex bias could aid in fully understanding the impact of prenatal undernutrition and finding solutions for both species and sexes.
Collapse
Affiliation(s)
- Chris Van Ginneken
- Comparative Perinatal Development (CoPeD), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Miriam Ayuso
- Comparative Perinatal Development (CoPeD), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Lieselotte Van Bockstal
- Comparative Perinatal Development (CoPeD), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Steven Van Cruchten
- Comparative Perinatal Development (CoPeD), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Gan M, Ma J, Chen L, Zhang S, Niu L, Zhao Y, Li X, Pan H, Zhu L, Shen L. Identification of tRNA-derived small RNAs and their potential roles in porcine skeletal muscle with intrauterine growth restriction. Front Physiol 2022; 13:962278. [PMID: 36388094 PMCID: PMC9662792 DOI: 10.3389/fphys.2022.962278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/10/2022] [Indexed: 07/30/2023] Open
Abstract
Intrauterine growth restriction (IUGR) in humans often manifests as poor growth and delayed intellectual development, whereas in domestic animals it results in increased mortality. As a novel epigenetic regulatory molecule, tRNA-derived small RNAs (tsRNAs) have been reported to be involved in many biological processes. In this study, pigs (35d) were used as a model to characterize tsRNAs by sequencing in normal and IUGR porcine skeletal muscle. A total of 586 tsRNAs were identified, of which 103 were specifically expressed in normal-size pigs and 38 were specifically expressed in IUGR pigs. The tsRNAs formed by splicing before the 5' end anti codon of mature tRNA (tRF-5c) accounted for over 90% of tsRNAs, which were significantly enriched in IUGR pigs than in normal-size pigs. Enriched pathways of differentially expressed tsRNAs target genes mainly included metabolic pathways, Rap1 signaling pathway, endocytosis, mTOR signaling pathway, and AMPK signaling pathway. Regulatory network analysis of target genes revealed that IGF1 was one of the most important molecules of regulatory nodes in IUGR and normal porcine skeletal muscle. In addition, IGF1 was found to be one of the target genes of tRF-Glu-TTC-047, which is a highly expressed tsRNA in IUGR pigs. The findings described herein uncover the role of tsRNAs in IUGR porcine skeletal muscle development, thus providing insights into the prevention and treatment of IUGR in mammals.
Collapse
Affiliation(s)
- Mailin Gan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jianfeng Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lei Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lili Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hongmei Pan
- Key Laboratory of Pig Industry Science of Agriculture Ministry, Chongqing Academy of Animal Science, Chongqing, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Manriquez D, Poudevigne G, Roche E, Waret-Szkuta A. Association between Head-to-Chest Circumference Ratio and Intrauterine Growth-Retardation Related Outcomes during Preweaning and Postweaning. Animals (Basel) 2022; 12:ani12121562. [PMID: 35739898 PMCID: PMC9219466 DOI: 10.3390/ani12121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 01/10/2023] Open
Abstract
The objective of this study is to evaluate the association between the head-to-chest circumference ratio (HCR) and birth weight (BW), colostrum intake, and average daily weight gain (ADG) at preweaning and postweaning periods. Additionally, associations between HCR and PCV-2 serum antibody titers and the PCV-2 seroconversion ratio (SCR) were assessed. Head and chest circumferences were measured at birth, and HCR was calculated from 110 piglets born from 8 pregnant sows randomly selected from maternity pens. Linear mixed models were used to test whether changes in HCR were associated with fluctuations of BW, colostrum intake, and ADG. In addition, HCR least-square means were compared between piglets classified as lower or greater BW, colostrum intake, and ADG. Finally, receiving operating characteristic curve analyses were performed to estimate HCR thresholds for discriminating between lower and greater performance piglets during preweaning and postweaning periods. Increments in HCR were associated with lower BW, colostrum intake, and ADG. An HCR threshold of 0.82 maximized sensibility and specificity for the classification of lower and greater performance piglets regarding BW, colostrum intake, and ADG during the periods of 0 to 7 and 0 to 69 days of life. When piglets were categorized into HCR ≤ 0.82 and HCR > 0.82 groups, piglets with HCR ≤ 0.82 had lower (log10) PCV-2 serum antibody titers at 26 days of life compared with piglets with HCR > 0.82 (3.30 ± 0.05 vs. 3.47 ± 0.05 g/dL). On the other hand, piglets that showed low SCR between 26 and 69 days of life had greater HCRs compared with piglets with high SCRs (0.83 ± 0.008 vs. 0.8 ± 0.008). The use of HCRs allowed us to identify piglets with lower performance and impaired immune response against PCV-2. The HCR indicator could be used as a selection criterion for preventive management for piglets showing delayed performance potentially associated with IUGR.
Collapse
|
5
|
Zhang JF, Xu W, Yang YX, Zhang LL, Wang T. Leucine Alters Blood Parameters and Regulates Hepatic Protein Synthesis via mTOR Activation in Intrauterine Growth Restriction Piglets. J Anim Sci 2022; 100:6562689. [PMID: 35366314 PMCID: PMC9053099 DOI: 10.1093/jas/skac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 11/12/2022] Open
Abstract
Neonatal piglets often suffer low birth weights and poor growth performance accompanied by the disruption of protein metabolism, when intrauterine growth restriction (IUGR) takes place during pregnancy, leading to a higher mortality and bigger economic loss than expected. Leucine has been proposed to function as a nutritional signal regulating protein synthesis in numerous studies. The aim of this study was to determine the effect of dietary leucine supplementation on the blood parameters and hepatic protein metabolism in IUGR piglets. Weaned piglets were assigned to one of four to treatments in a 2 × 2 factorial arrangement: (1) piglets fed a basal diet with normal birth weight; (2) piglets fed a basal diet plus 0.35% L-leucine with normal birth weight; (3) IUGR piglets fed a basal diet with low birth weight; (4) IUGR piglets fed a basal diet plus 0.35% L-leucine with low birth weight. The results showed that IUGR decreased serum aspartate aminotransferase and alkaline phosphatase activities, increased serum cortisol and prostaglandin E2 levels at 35 days of age (P < 0.05), suggesting the occurrence of liver dysfunction and stress response. Leucine supplementation increased serum alkaline phosphatase activity, and decreased serum cortisol levels at 35 days of age (P < 0.05). IUGR decreased the lysozyme activity and complement 3 level in serum (P < 0.05), which were prevented by dietary leucine supplementation. IUGR piglets showed increased hepatic DNA contents while showing reduced RNA/DNA ratio (P < 0.05). Piglets supplied with leucine had decreased RNA/DNA ratio in the liver (P < 0.05). Leucine supplementation stimulated hepatic protein anabolism through up-regulating protein synthesis related genes expression and activating the phosphorylation of mammalian/mechanistic target of rapamycin (mTOR) (P < 0.05). Moreover, IUGR inhibited the mRNA expression of hepatic protein degradation related genes, indicating a compensatory mechanism for the metabolic response. Dietary leucine supplementation attenuated the suppression of the protein catabolism induced by IUGR in liver. These results demonstrate that dietary leucine supplementation could alter the blood parameters, alleviated the disrupted protein metabolism induced by IUGR via enhanced mTOR phosphorylation to promote protein synthesis in weaned piglets.
Collapse
Affiliation(s)
- J F Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - W Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Y X Yang
- Bluestar Adisseo Nanjing Co. Ltd., Nanjing 210000, China
| | - L L Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - T Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Qi M, Liao S, Wang J, Deng Y, Zha A, Shao Y, Cui Z, Song T, Tang Y, Tan B, Yin Y. MyD88 deficiency ameliorates weight loss caused by intestinal oxidative injury in an autophagy-dependent mechanism. J Cachexia Sarcopenia Muscle 2022; 13:677-695. [PMID: 34811946 PMCID: PMC8818611 DOI: 10.1002/jcsm.12858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Gut health plays a vital role in the overall health and disease control of human and animals. Intestinal oxidative stress is a critical player in the induction and progression of cachexia which is conventionally diagnosed and classified by weight loss. Therefore, reduction of intestinal oxidative injury is a common and highly effective strategy for the maintenance of human and animal health. Here we identify intestinal myeloid differentiation primary response gene 88 (MyD88) as a novel target for intestinal oxidative stress using canonical oxidative stress model induced by paraquat (PQ) in vitro and in vivo. METHODS Intestinal oxidative stress was induced by administration of PQ in intestinal epithelial cells (IECs) and mouse model. Cell proliferation, apoptosis, DNA damage, mitochondrial function, oxidative status, and autophagy process were measured in wild-type and MyD88-deficient IECs during PQ exposure. Autophagy inhibitor (3-methyladenine) and activator (rapamycin) were employed to assess the role of autophagy in MyD88-deficient IECs during PQ exposure. MyD88 specific inhibitor, ST2825, was used to verify function of MyD88 during PQ exposure in mouse model. RESULTS MyD88 protein levels and apoptotic rate of IECs are increased in response to PQ exposure (P < 0.001). Intestinal deletion of MyD88 blocks PQ-induced apoptosis (~42% reduction) and DNA damage (~86% reduction), and improves mitochondrial fission (~37% reduction) and function including mitochondrial membrane potential (~23% increment) and respiratory metabolism capacity (~26% increment) (P < 0.01). Notably, there is a marked decrease in reactive oxygen species in MyD88-deficient IECs during PQ exposure (~70% reduction), which are consistent with high activity of antioxidative enzymes (~83% increment) (P < 0.001). Intestinal ablation of MyD88 inhibits mTOR signalling, and further phosphorylates p53 proteins during PQ exposure, which eventually promotes intestinal autophagy (~74% increment) (P < 0.01). Activation of autophagy (rapamycin) promotes IECs growth as compared with 3-methyladenine-treatment during PQ exposure (~173% increment), while inhibition of autophagy (3-methyladenine) exacerbates oxidative stress in MyD88-deficient IECs (P < 0.001). In mouse model, inhibition of MyD88 using specific inhibitor ST2825 followed by PQ treatment effectively ameliorates weight loss (~4% increment), decreased food intake (~92% increment), gastrocnemius and soleus loss (~24% and ~20% increment, respectively), and intestinal oxidative stress in an autophagy dependent manner (P < 0.01). CONCLUSIONS MyD88 modulates intestinal oxidative stress in an autophagy-dependent mechanism, which suggests that reducing MyD88 level may constitute a putative therapeutic target for intestinal oxidative injury-induced weight loss.
Collapse
Affiliation(s)
- Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Simeng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yuankun Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Andong Zha
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yirui Shao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhijuan Cui
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yulong Tang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Tian Y, Yang X, Du J, Zeng W, Wu W, Di J, Huang X, Tian K. Differential Methylation and Transcriptome Integration Analysis Identified Differential Methylation Annotation Genes and Functional Research Related to Hair Follicle Development in Sheep. Front Genet 2021; 12:735827. [PMID: 34659357 PMCID: PMC8515899 DOI: 10.3389/fgene.2021.735827] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Hair follicle growth and development are a complex and long-term physiological process, which is regulated by a variety of physical factors and signal pathways. Increasing the understanding of the epigenetic regulation and function of candidate genes related to hair follicle development will help to better understand the molecular regulatory mechanisms of hair follicle development. In this study, the methylated DNA immunoprecipitation sequencing (MeDIP-seq) was used to obtain the genome-wide methylation map of the hair follicular development of Super Merino sheep in six stages (fetal skin tissue at 65d, 85d, 105d, 135d, 7d, and 30d after birth). Combined with the results of previous RNA-sequencing, 65 genes were screened out that were both differential methylation and differential expression, including EDN1, LAMC2, NR1D1, RORB, MyOZ3, and WNT2 gene. Differential methylation genes were enriched in Wnt, TNF, TGF-beta, and other signaling pathways related to hair follicle development. The bisulfite sequencing PCR results and MeDIP-seq were basically consistent, indicating that the sequencing results were accurate. As a key gene in the Wnt signaling pathway, both differential methylation and expression gene identified by MeDIP-seq and RNA-seq, further exploration of the function of WNT2 gene revealed that the DNA methylation of exon 5 (CpG11 site) promoted the expression of WNT2 gene. The overexpression vector of lentivirus pLEX-MCS-WNT2 was constructed, and WNT2 gene effectively promoted the proliferation of sheep skin fibroblasts. The results showed that WNT2 gene could promote the growth and development of skin and hair follicles. The results of this study will provide a theoretical basis for further research on sheep hair follicle development and gene regulation mechanisms.
Collapse
Affiliation(s)
- Yuezhen Tian
- The Key Laboratory for Genetics Breeding and Reproduction of Xinjiang Cashmere and Wool Sheep, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Xuemei Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jianwen Du
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Weidan Zeng
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Weiwei Wu
- The Key Laboratory for Genetics Breeding and Reproduction of Xinjiang Cashmere and Wool Sheep, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Jiang Di
- The Key Laboratory for Genetics Breeding and Reproduction of Xinjiang Cashmere and Wool Sheep, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Kechuan Tian
- The Key Laboratory for Genetics Breeding and Reproduction of Xinjiang Cashmere and Wool Sheep, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| |
Collapse
|
8
|
Tao S, Xiong Y, Wang Z, Wu Y, Li N, Pi Y, Han D, Zhao J, Wang J. N-Acyl-Homoserine Lactones May Affect the Gut Health of Low-Birth-Weight Piglets by Altering Intestinal Epithelial Cell Barrier Function and Amino Acid Metabolism. J Nutr 2021; 151:1736-1746. [PMID: 33982101 DOI: 10.1093/jn/nxab104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/18/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In piglets, low birth weight (LBW) is associated with intestinal dysfunction, which affects their growth performance and causes economic losses. OBJECTIVES This study was designed to test whether microbial quorum sensing (QS) affects LBW-induced intestinal developmental defects in piglets. METHODS Seven normal-birth-weight (NBW; 1.36 ± 0.01 kg) and 7 LBW (0.89 ± 0.01 kg) piglets were selected. Feces were collected from piglets on 2, 21, and 50 days of age for detection of the QS signaling molecules, N-acyl-homoserine lactones (AHLs), and microbiota analysis. The associations between 2 long-chain AHLs [N-3-oxo-dodecanoyl-l-homoserine lactone (3OC12-HSL) and N-3-oxo-tetradecanoyl-l-homoserine lactone (3OC14-HSL)] and the microbes were tested using Spearman correlation coefficients. The effect of 3OC12-HSL and 3OC14-HSL on intestinal porcine epithelial cell-jejunum 2 (IPEC-J2) cell viability was investigated by cholecystokinin octapeptide assay. Transcriptomic analysis was performed by RNA sequencing on cells treated with 3OC12-HSL. RESULTS The concentrations of 3OC12-HSL and 3OC14-HSL in the feces of LBW piglets were higher than those in NBW piglets at age 50 d by 2.5- and 2.24-fold, respectively (P < 0.05). The microbial α diversity (observed species, abundance-based coverage estimator, and Shannon index) of LBW piglets was 81-91% lower than that of NBW piglets (P < 0.05). The relative abundance of Ruminococcaceae UCG-002/UCG-013 was 43.0% and 30.0% lower, respectively, in feces from LBW compared with NBW piglets (P < 0.05). 3OC12-HSL and Ruminococcaceae UCG-002/UCG-005/UCG-010 abundance were negatively correlated (ρ ≤ -0.58). Treatment with 400 μM 3OC12-HSL markedly reduced IPEC-J2 cell viability by 47.5%. Transcriptomic data showed that 3OC12-HSL mainly changed the "import across plasma membrane" and "arginine and proline metabolism" of IPEC-J2 cells. CONCLUSIONS 3OC12-HSL is a QS signaling molecule with an ability to impair gut health of LBW piglets. This finding adds to our understanding of the mechanisms responsible for gut injury in LBW piglets.
Collapse
Affiliation(s)
- Shiyu Tao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi Xiong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Pi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Differences in Intestinal Barrier Development between Intrauterine Growth Restricted and Normal Birth Weight Piglets. Animals (Basel) 2021; 11:ani11040990. [PMID: 33916133 PMCID: PMC8065605 DOI: 10.3390/ani11040990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Animals with intrauterine growth restriction (IUGR) are defined as neonates born at term but with low birth weight and a characteristic shape of the head. A number of structural and functional modifications in the IUGR intestine affecting its digestive and absorptive function and impairing intestinal barrier function have been reported in the past. Far less is known about the immune system in the gut of IUGR pigs. Therefore, the aim of the present study was to evaluate the structures of the immune system of the gut mucosa in IUGR neonates. We found that the immune deficiency in the gut mucosa that results from restricted intrauterine development occurs at postnatal day (PD) 7, but it disappears thereafter within a week. However, all examined IUGR piglets had an increased number of intraepithelial leukocytes in the gut mucosa on PD 14. We have shown that the immune system of the gut of IUGR piglets is able to quickly compensate for the immunological deficiency postnatally and hardly shows any morphological disabilities in later life. Abstract Intrauterine growth restricted (IUGR) piglets are born at term but have low birth mass and a characteristic shape of the head. Impaired general condition, especially in intestinal function, leads to an increase in the occurrence of diarrhoea and high mortality in the first days of life. So far, the mechanical and immunological gut barrier functions in IUGR are poorly understood. The aim of this study was to microscopically evaluate the early postnatal changes in the gut mucosa occurring in IUGR piglets. Whole-tissue small intestine samples were collected from littermate pairs (IUGR and normal) on postnatal day (PD) 7, 14 and 180 and analysed by light microscopy. We found that in the IUGR piglets, the percentage of intraepithelial leukocytes was reduced in the duodenum on PD 7, but it increased in the proximal and middle jejunum both on PD 7 and PD 14, which suggested the development of an inflammatory process. The number of goblet cells was also reduced on PD 14. The average size of the Peyer’s patches in the distal jejunum and ileum showed significant reduction on PD 7 as compared to normal pigs; however, on PD 14, it returned to normal. On PD 180, we did not find any differences in the measured parameters between the IUGR and the normal pigs. In conclusion, we found that in one-week-old IUGR pig neonates, the gut barrier and the immune system structures display signs of retarded development but recover within the second postnatal week of life.
Collapse
|
10
|
Ding S, Yan W, Ma Y, Fang J. The impact of probiotics on gut health via alternation of immune status of monogastric animals. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:24-30. [PMID: 33997328 PMCID: PMC8110871 DOI: 10.1016/j.aninu.2020.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/25/2020] [Accepted: 11/04/2020] [Indexed: 12/29/2022]
Abstract
The intestinal immune system is affected by various factors during its development, such as maternal antibodies, host genes, intestinal microbial composition and activity, and various stresses (such as weaning stress). Intestinal microbes may have an important impact on the development of the host immune system. Appropriate interventions such as probiotics may have a positive effect on intestinal immunity by regulating the composition and activity of intestinal microbes. Moreover, probiotics participate in the regulation of host health in many ways; for instance, by improving digestion and the absorption of nutrients, immune response, increasing the content of intestinal-beneficial microorganisms, and inhibiting intestinal-pathogenic bacteria, and they participate in regulating intestinal diseases in various ways. Probiotics are widely used as additives in livestock and the poultry industry and bring health benefits to hosts by improving intestinal microbes and growth performance, which provides more choices for promoting strong and efficient productivity.
Collapse
Affiliation(s)
- Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Wenxin Yan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| |
Collapse
|
11
|
Ouni M, Saussenthaler S, Eichelmann F, Jähnert M, Stadion M, Wittenbecher C, Rönn T, Zellner L, Gottmann P, Ling C, Schulze MB, Schürmann A. Epigenetic Changes in Islets of Langerhans Preceding the Onset of Diabetes. Diabetes 2020; 69:2503-2517. [PMID: 32816961 PMCID: PMC7576562 DOI: 10.2337/db20-0204] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/09/2020] [Indexed: 12/19/2022]
Abstract
The identification of individuals with a high risk of developing type 2 diabetes (T2D) is fundamental for prevention. Here, we used a translational approach and prediction criteria to identify changes in DNA methylation visible before the development of T2D. Islets of Langerhans were isolated from genetically identical 10-week-old female New Zealand Obese mice, which differ in their degree of hyperglycemia and in liver fat content. The application of a semiexplorative approach identified 497 differentially expressed and methylated genes (P = 6.42e-09, hypergeometric test) enriched in pathways linked to insulin secretion and extracellular matrix-receptor interaction. The comparison of mouse data with DNA methylation levels of incident T2D cases from the prospective European Prospective Investigation of Cancer (EPIC)-Potsdam cohort, revealed 105 genes with altered DNA methylation at 605 cytosine-phosphate-guanine (CpG) sites, which were associated with future T2D. AKAP13, TENM2, CTDSPL, PTPRN2, and PTPRS showed the strongest predictive potential (area under the receiver operating characteristic curve values 0.62-0.73). Among the new candidates identified in blood cells, 655 CpG sites, located in 99 genes, were differentially methylated in islets of humans with T2D. Using correction for multiple testing detected 236 genes with an altered DNA methylation in blood cells and 201 genes in diabetic islets. Thus, the introduced translational approach identified novel putative biomarkers for early pancreatic islet aberrations preceding T2D.
Collapse
Affiliation(s)
- Meriem Ouni
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Brandenburg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Sophie Saussenthaler
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Brandenburg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Fabian Eichelmann
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Brandenburg, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Brandenburg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Brandenburg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Clemens Wittenbecher
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Brandenburg, Germany
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Tina Rönn
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Lisa Zellner
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Brandenburg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Brandenburg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Charlotte Ling
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Matthias B Schulze
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Brandenburg, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Brandenburg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| |
Collapse
|
12
|
Jiang L, Feng C, Tao S, Li N, Zuo B, Han D, Wang J. Maternal imprinting of the neonatal microbiota colonization in intrauterine growth restricted piglets: a review. J Anim Sci Biotechnol 2019; 10:88. [PMID: 31737268 PMCID: PMC6844051 DOI: 10.1186/s40104-019-0397-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Early colonization of intestinal microbiota during the neonatal stage plays an important role on the development of intestinal immune system and nutrients absorption of the host. Compared to the normal birth weight (NBW) piglets, intrauterine growth restricted (IUGR) piglets have a different intestinal microbiota during their early life, which is related to maternal imprinting on intestinal microbial succession during gestation, at birth and via suckling. Imbalanced allocation of limited nutrients among fetuses during gestation could be one of the main causes for impaired intestinal development and microbiota colonization in neonatal IUGR piglets. In this review, we summarized the potential impact of maternal imprinting on the colonization of the intestinal microbiota in IUGR piglets, including maternal undernutrition, imbalanced allocation of nutrients among fetuses, as well as vertical microbial transmission from mother to offspring during gestation and lactation. At the same time, we give information about the current maternal nutritional strategies (mainly breastfeeding, probiotics and prebiotics) to help colonization of the advantageous intestinal microbiota for IUGR piglets.
Collapse
Affiliation(s)
- Lili Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Cuiping Feng
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Shiyu Tao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Bin Zuo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
13
|
Montesanto A, D'Aquila P, Rossano V, Passarino G, Bellizzi D. Mini Nutritional Assessment Scores Indicate Higher Risk for Prospective Mortality and Contrasting Correlation With Age-Related Epigenetic Biomarkers. Front Endocrinol (Lausanne) 2019; 10:672. [PMID: 31632350 PMCID: PMC6779723 DOI: 10.3389/fendo.2019.00672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 09/16/2019] [Indexed: 02/03/2023] Open
Abstract
The plasticity of the individual epigenetic landscape that goes to countless rearrangements throughout life is closely the reflection of environmental factors such as chemical exposure, socio-economic status and nutrient intakes both early and late in life. The Mini Nutritional Assessment (MNA) is a well-validated tool for assessing malnutrition in old people. It includes 6 (MNA-SF) or 18 (MNA-LF) self-reported questions derived from general, anthropometric, dietary, and self- assessment. We evaluated the association between the nutritional status, as measured by MNA, and methylation biomarkers we previously demonstrated to be associated with chronological and biological age in human. We found that malnutrition is positively correlated with DNA methylation status at the global level, in line with our previous reports. On the contrary, most of the sites located within specific genes, which were previously reported to be correlated with chronological and biological aging, showed to be not affected by malnutrition, or even to have correlations with malnutrition opposite to those previously reported with frailty. These results may suggest that malnutrition is among the first effects of disability and other age- related problems and a generalized non-specific epigenetic remodeling may be the initial response of the organism. By contrast, the fine remodeling of specific genomic sites is scarcely affected by malnutrition and may respond to a more complex interaction of different factors. Therefore, although malnutrition in the elderly is certainly a risk factor for survival, this is partially independent of the aging process of the organism which leads to the methylation remodeling previously described to measure chronological and biological aging.
Collapse
|