1
|
Wu Z, Huang X, Wu C, Zhou Y, Gao M, Luo S, Xiang Q, Wang W, Li R. Asymmetrically PEGylated and amphipathic heptamethine indocyanine dyes potentiate radiotherapy of renal cell carcinoma via mitochondrial targeting. J Nanobiotechnology 2024; 22:756. [PMID: 39695771 DOI: 10.1186/s12951-024-03012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Enhancing the sensitivity of radiotherapy (RT) towards renal cell carcinoma (RCC) remains a challenge because RCC is a radioresistant tumor. In this work, we design and report asymmetrically Polyethylene Glycol (PEG)ylated and amphipathic heptamethine indocyanine dyes for efficient radiosensitization of RCC treatment. They were synthesized by modifying different lengths of PEG chains as hydrophilic moieties on one N-alkyl chain of a mitochondria-targeting heptamethine indocyanine dye (IR-808), and a radiosensitizer 2-nitroimidazole (NM) as a hydrophobic moiety on another N-alkyl chain. The PEG modification significantly improved water solubility, decreased the intermolecular π-π large aggregates, thereby enhanced renal excretion. The asymmetrical and amphipathic modification enhanced the preferential accumulation in renal tumors through self-assembly into small-size nanoparticles in aqueous environment. Radiosensitization was further improved by preferential accumulation in renal tumor cells and their mitochondria as mitochondria play a crucial role in rapid cancer cell growth, metastasis, and RT resistance. Additionally, the modification also increased the abilities of fluorescence emission and photostability, which is meaningful for imaging-guided precise RCC RT. Therefore, our findings may present a theranostic radiosensitizer for renal tumor-targeted imaging and radiosensitization.
Collapse
Affiliation(s)
- Zifei Wu
- Institute of Combined Injury, National Key Laboratory of Trauma and Chemical Poisoning, Army Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xie Huang
- Institute of Combined Injury, National Key Laboratory of Trauma and Chemical Poisoning, Army Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chuan Wu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Yan Zhou
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street No.30, Chongqing, 400038, China
| | - Mingquan Gao
- Institute of Combined Injury, National Key Laboratory of Trauma and Chemical Poisoning, Army Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Shenglin Luo
- Institute of Combined Injury, National Key Laboratory of Trauma and Chemical Poisoning, Army Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiang Xiang
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Gaotanyan Street No.30, Chongqing, 400038, China.
| | - Weidong Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Rong Li
- Institute of Combined Injury, National Key Laboratory of Trauma and Chemical Poisoning, Army Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
2
|
Hung JT, Chiou SP, Tang YH, Huang JR, Lo FY, Yu AL. Bioactivities and Anti-Cancer Activities of NKT-Stimulatory Phenyl-Glycolipid Formulated with a PEGylated Lipid Nanocarrier. Drug Des Devel Ther 2024; 18:5323-5332. [PMID: 39583633 PMCID: PMC11586003 DOI: 10.2147/dddt.s484130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose The glycolipid α-galactosylceramide (α-GalCer), when presented by CD1d, can modulate the immune system through the activation of natural killer T (NKT) cells. Previously, we synthesized over 30 analogs of α-GalCer and identified a compound, C34, which features two phenyl rings on the acyl chain. C34 exhibited the most potent NKT-stimulating activities, characterized by strong Th1-biased cytokines and potent anti-tumor effects in several murine tumor models. Importantly, unlike α-GalCer, C34 did not induce NKT cell anergy. Despite these promising results, the clinical application of C34 is limited by its poor aqueous solubility. PEGylation enhances the solubility of hydrophobic drugs, and numerous PEGylated drugs have received clinical approval. Consequently, we assessed the biological activity of PEGylated C34 in this study. Methods Murine NK1.2 cells were cultured with A20-CD1d cells in the presence of either PEGylated lipid nanocarriers encapsulating C34 (PLN-C34) or C34 dissolved in DMSO to determine IL-2 production via ELISA. C57BL/6 mice were i.v. injected with C34 or PLN-C34 to examine cytokine profiles and immune cell populations using luminex and flow cytometry, respectively. The anticancer effects of C34 and PLN-C34 were evaluated in mice bearing TC-1 lung cancer and B16 melanoma tumors. Additionally, human PBMCs were cultured with C34 or PLN-C34 to measure cytokine production through luminex. Results PLN-C34 demonstrated a comparable capacity to C34 in activating the NKT cell line in vitro and inducing various cytokines in vivo. Furthermore, treatment with either PLN-C34 or C34 significantly prolonged the survival of TC-1- and B16F10-bearing mice to a similar extent. Additionally, PLN-C34 effectively stimulated cytokine responses in human NKT cells, comparable to those induced by C34. Conclusion These findings demonstrate that the newly formulated PLN-C34 retains NKT-stimulatory activity and anti-cancer efficacy of C34, supporting the potential of PLN as a solvent for C34 for further development in cancer therapy.
Collapse
Affiliation(s)
- Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Pin Chiou
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yun-Hsin Tang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch, and Chang Gung University, College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Jing-Rong Huang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Fei-Yun Lo
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Pediatrics, University of California in San Diego, San Diego, California, USA
| |
Collapse
|
3
|
Zheng H, Wu H, Wang D, Wang S, Ji D, Liu X, Gao G, Su X, Zhang Y, Ling Y. Research progress of prodrugs for the treatment of cerebral ischemia. Eur J Med Chem 2024; 272:116457. [PMID: 38704941 DOI: 10.1016/j.ejmech.2024.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
It is well-known that pharmacotherapy plays a pivotal role in the treatment and prevention of cerebral ischemia. Nevertheless, existing drugs, including numerous natural products, encounter various challenges when applied in cerebral ischemia treatment. These challenges comprise poor brain absorption due to low blood-brain barrier (BBB) permeability, limited water solubility, inadequate bioavailability, poor stability, and rapid metabolism. To address these issues, researchers have turned to prodrug strategies, aiming to mitigate or eliminate the adverse properties of parent drug molecules. In vivo metabolism or enzymatic reactions convert prodrugs into active parent drugs, thereby augmenting BBB permeability, improving bioavailability and stability, and reducing toxicity to normal tissues, ultimately aiming to enhance treatment efficacy and safety. This comprehensive review delves into multiple effective prodrug strategies, providing a detailed description of representative prodrugs developed over the past two decades. It underscores the potential of prodrug approaches to improve the therapeutic outcomes of currently available drugs for cerebral ischemia. The publication of this review serves to enrich current research progress on prodrug strategies for the treatment and prevention of cerebral ischemia. Furthermore, it seeks to offer valuable insights for pharmaceutical chemists in this field, offer guidance for the development of drugs for cerebral ischemia, and provide patients with safer and more effective drug treatment options.
Collapse
Affiliation(s)
- Hongwei Zheng
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Hongmei Wu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Dezhi Wang
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Sijia Wang
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Dongliang Ji
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Xiao Liu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Ge Gao
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Xing Su
- Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China.
| | - Yanan Zhang
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China.
| | - Yong Ling
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China.
| |
Collapse
|
4
|
Ding Z, Xu B, Zhang H, Wang Z, Sun L, Tang M, Ding M, Zhang T, Shi S. Norcantharidin-Encapsulated C60-Modified Nanomicelles: A Potential Approach to Mitigate Cytotoxicity in Renal Cells and Simultaneously Enhance Anti-Tumor Activity in Hepatocellular Carcinoma Cells. Molecules 2023; 28:7609. [PMID: 38005331 PMCID: PMC10673410 DOI: 10.3390/molecules28227609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/03/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVE The objective of this study was to examine the preparation process of DSPE-PEG-C60/NCTD micelles and assess the impact of fullerenol (C60)-modified micelles on the nephrotoxicity and antitumor activity of NCTD. METHOD The micelles containing NCTD were prepared using the ultrasonic method and subsequently optimized and characterized. The cytotoxicity of micelles loaded with NCTD was assessed using the CCK-8 method on human hepatoma cell lines HepG2 and BEL-7402, as well as normal cell lines HK-2 and L02. Acridine orange/ethidium bromide (AO/EB) double staining and flow cytometry were employed to assess the impact of NCTD-loaded micelles on the apoptosis of the HK-2 cells and the HepG2 cells. Additionally, JC-1 fluorescence was utilized to quantify the alterations in mitochondrial membrane potential. The generation of reactive oxygen species (ROS) following micelle treatment was determined through 2',7'-dichlorofluorescein diacetate (DCFDA) staining. RESULTS The particle size distribution of the DSPE-PEG-C60/NCTD micelles was determined to be 91.57 nm (PDI = 0.231). The zeta potential of the micelles was found to be -13.8 mV. The encapsulation efficiency was measured to be 91.9%. The in vitro release behavior of the micelles followed the Higuchi equation. Cellular experiments demonstrated a notable decrease in the toxicity of the C60-modified micelles against the HK-2 cells, accompanied by an augmented inhibitory effect on cancer cells. Compared to the free NCTD group, the DSPE-PEG-C60 micelles exhibited a decreased apoptosis rate (12%) for the HK-2 cell line, lower than the apoptosis rate observed in the NCTD group (36%) at an NCTD concentration of 75 μM. The rate of apoptosis in the HepG2 cells exhibited a significant increase (49%), surpassing the apoptosis rate observed in the NCTD group (24%) at a concentration of 150 μM NCTD. The HK-2 cells exhibited a reduction in intracellular ROS and an increase in mitochondrial membrane potential (ΔψM) upon exposure to C60-modified micelles compared to the NCTD group. CONCLUSIONS The DSPE-PEG-C60/NCTD micelles, as prepared in this study, demonstrated the ability to decrease cytotoxicity and ROS levels in normal renal cells (HK-2) in vitro. Additionally, these micelles showed an enhanced antitumor activity against human hepatocellular carcinoma cells (HepG2, BEL-7402).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Senlin Shi
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China; (Z.D.); (B.X.); (H.Z.); (Z.W.); (L.S.); (M.T.); (M.D.); (T.Z.)
| |
Collapse
|
5
|
Hu X, Zhang J, Xiang Q, Huang G, Yuan Q, Wang Y, Shen Z. Study on Sgc8 Aptamer-mediated Nucleic Acid Nanomaterial-doxorubicin Complex for Tumor Targeted Therapy. Eur J Pharm Biopharm 2023; 186:7-17. [PMID: 36858245 DOI: 10.1016/j.ejpb.2023.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 03/03/2023]
Abstract
Chemotherapy is one of the most important treatments for malignant cancers, but most chemotherapeutic drugs are poorly targeted, highly toxic and expensive, resulting in unsatisfactory treatment results for cancer patients. Therefore, intelligent drug delivery platforms are needed to be explored urgently to enhance drug treatment and reduce toxicity on normal cells. Nucleic acid nanomaterials are a class of nanomaterials developed on the basis of the "base complementary pairing principle", which have the advantages of good programmability, high stability, good biocompatibility, and strong targeting. Herein, we present a simple Sgc8 aptamer-modified nucleic acid nanomaterial (Sgc8NM) for the targeted delivery of Doxorubicin (Dox), a widely used chemotherapy drug in clinic. Studies have shown the Sgc8NM-Dox performed a precise treatment effect on target cells and low toxicity on non-target cells, providing a new strategy for the potential application of nanocomposite drugs in targeted cancer delivery.
Collapse
Affiliation(s)
- Xuemei Hu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China; Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325088, P.R. China
| | - Jing Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Qi Xiang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Guoqiao Huang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Quan Yuan
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Yuzhe Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China.
| |
Collapse
|
6
|
López S, Rodríguez-López J, García MT, Rodríguez JF, Pérez-Ortiz JM, Ramos MJ, Gracia I. Self-assembled coumarin- and 5-fluorouracil-PEG micelles as multifunctional drug delivery systems. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Liu S, Xu J, Liu Y, You Y, Xie L, Tong S, Chen Y, Liang K, Zhou S, Li F, Tang Z, Mei N, Lu H, Wang X, Gao X, Chen J. Neutrophil-Biomimetic "Nanobuffer" for Remodeling the Microenvironment in the Infarct Core and Protecting Neurons in the Penumbra via Neutralization of Detrimental Factors to Treat Ischemic Stroke. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27743-27761. [PMID: 35695238 DOI: 10.1021/acsami.2c09020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High level of detrimental factors including reactive oxygen species (ROS) and inflammatory cytokines accumulated in the infarct core and their erosion to salvageable penumbra are key pathological cascades of ischemia-reperfusion injury in stroke. Few neuroprotectants can remodel the hostile microenvironment of the infarct core for the failure to interfere with dead or biofunctionally inactive dying cells. Even ischemia-reperfusion injury is temporarily attenuated in the penumbra by medications; insults of detrimental factors from the core still erode the penumbra continuously along with drug metabolism and clearance. Herein, a strategy named "nanobuffer" is proposed to neutralize detrimental factors and buffer destructive erosion to the penumbra. Inspired by neutrophils' tropism to the infarct core and affinity to inflammatory cytokines, poly(lactic-co-glycolic acid) (PLGA) nanoparticles are coated with neutrophil membrane to target the infarct core and absorb inflammatory cytokines; α-lipoic acid is decorated on the surface and cannabidiol is loaded for ROS scavenging and neuroprotection, respectively, to construct the basic unit of the nanobuffer. Such a nanobuffer exerts a comprehensive effect on the infarct area via detrimental factor neutralization and cannabidiol-induced neuroprotection. Besides, the nanobuffer can possibly be enhanced by dynamic ROP (ring-opening-polymerization)-induced membrane cross-fusion among closely adjacent units in vivo. Systematic evaluations show significant decrease of detrimental factors in the core and the penumbra, reduced infarct volume, and improved neurological recovery compared to the untreated group of stroke rats.
Collapse
Affiliation(s)
- Shanshan Liu
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Jianpei Xu
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Yipu Liu
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Yang You
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Laozhi Xie
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Shiqiang Tong
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Yu Chen
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Kaifan Liang
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Songlei Zhou
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Fengan Li
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Zhuang Tang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China
| | - Ni Mei
- Shanghai Center for Drug Evaluation and Inspection, Lane 781, Cailun Road, Shanghai 201203, China
| | - Huiping Lu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, 2800 Gongwei Road, Shanghai 201399, China
| | - Xiaolin Wang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jun Chen
- School of Pharmacy, Shanghai Pudong Hospital & Department of Pharmaceutics, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
8
|
Tang J, Zhou J. The In Vivo Fate and Strategies of Improving the Targeting Effect of Nanoparticles. Curr Drug Targets 2021; 22:844. [PMID: 34112065 DOI: 10.2174/138945012208210407114925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jihui Tang
- School of Pharmacy, Anhui Medical University 81 Meishan Road, Hefei 230032, China
| | - Jianping Zhou
- Department of Pharmaceutics, China Pharmaceutical University 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|