1
|
Van Norden M, Mangione W, Falls Z, Samudrala R. Strategies for robust, accurate, and generalizable benchmarking of drug discovery platforms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627863. [PMID: 39764006 PMCID: PMC11702551 DOI: 10.1101/2024.12.10.627863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Benchmarking is an important step in the improvement, assessment, and comparison of the performance of drug discovery platforms and technologies. We revised the existing benchmarking protocols in our Computational Analysis of Novel Drug Opportunities (CANDO) multiscale therapeutic discovery platform to improve utility and performance. We optimized multiple parameters used in drug candidate prediction and assessment with these updated benchmarking protocols. CANDO ranked 7.4% of known drugs in the top 10 compounds for their respective diseases/indications based on drug-indication associations/mappings obtained from the Comparative Toxicogenomics Database (CTD) using these optimized parameters. This increased to 12.1% when drug-indication mappings were obtained from the Therapeutic Targets Database. Performance on an indication was weakly correlated (Spearman correlation coefficient >0.3) with indication size (number of drugs associated with an indication) and moderately correlated (correlation coefficient >0.5) with compound chemical similarity. There was also moderate correlation between our new and original benchmarking protocols when assessing performance per indication using each protocol. Benchmarking results were also dependent on the source of the drug-indication mapping used: a higher proportion of indication-associated drugs were recalled in the top 100 compounds when using the Therapeutic Targets Database (TTD), which only includes FDA-approved drug-indication associations (in contrast to the CTD, which includes associations drawn from the literature). We also created compbench, a publicly available head-to-head benchmarking protocol that allows consistent assessment and comparison of different drug discovery platforms. Using this protocol, we compared two pipelines for drug repurposing within CANDO; our primary pipeline outperformed another similarity-based pipeline still in development that clusters signatures based on their associated Gene Ontology terms. Our study sets a precedent for the complete, comprehensive, and comparable benchmarking of drug discovery platforms, resulting in more accurate drug candidate predictions.
Collapse
Affiliation(s)
- Melissa Van Norden
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - William Mangione
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
2
|
Mangione W, Falls Z, Samudrala R. Effective holistic characterization of small molecule effects using heterogeneous biological networks. Front Pharmacol 2023; 14:1113007. [PMID: 37180722 PMCID: PMC10169664 DOI: 10.3389/fphar.2023.1113007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
The two most common reasons for attrition in therapeutic clinical trials are efficacy and safety. We integrated heterogeneous data to create a human interactome network to comprehensively describe drug behavior in biological systems, with the goal of accurate therapeutic candidate generation. The Computational Analysis of Novel Drug Opportunities (CANDO) platform for shotgun multiscale therapeutic discovery, repurposing, and design was enhanced by integrating drug side effects, protein pathways, protein-protein interactions, protein-disease associations, and the Gene Ontology, and complemented with its existing drug/compound, protein, and indication libraries. These integrated networks were reduced to a "multiscale interactomic signature" for each compound that describe its functional behavior as vectors of real values. These signatures are then used for relating compounds to each other with the hypothesis that similar signatures yield similar behavior. Our results indicated that there is significant biological information captured within our networks (particularly via side effects) which enhance the performance of our platform, as evaluated by performing all-against-all leave-one-out drug-indication association benchmarking as well as generating novel drug candidates for colon cancer and migraine disorders corroborated via literature search. Further, drug impacts on pathways derived from computed compound-protein interaction scores served as the features for a random forest machine learning model trained to predict drug-indication associations, with applications to mental disorders and cancer metastasis highlighted. This interactomic pipeline highlights the ability of Computational Analysis of Novel Drug Opportunities to accurately relate drugs in a multitarget and multiscale context, particularly for generating putative drug candidates using the information gleaned from indirect data such as side effect profiles and protein pathway information.
Collapse
Affiliation(s)
| | | | - Ram Samudrala
- Jacobs School of Medicine and Biomedical Sciences, Department of Biomedical Informatics, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
3
|
Kumari R, Sharma SD, Kumar A, Ende Z, Mishina M, Wang Y, Falls Z, Samudrala R, Pohl J, Knight PR, Sambhara S. Antiviral Approaches against Influenza Virus. Clin Microbiol Rev 2023; 36:e0004022. [PMID: 36645300 PMCID: PMC10035319 DOI: 10.1128/cmr.00040-22] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Preventing and controlling influenza virus infection remains a global public health challenge, as it causes seasonal epidemics to unexpected pandemics. These infections are responsible for high morbidity, mortality, and substantial economic impact. Vaccines are the prophylaxis mainstay in the fight against influenza. However, vaccination fails to confer complete protection due to inadequate vaccination coverages, vaccine shortages, and mismatches with circulating strains. Antivirals represent an important prophylactic and therapeutic measure to reduce influenza-associated morbidity and mortality, particularly in high-risk populations. Here, we review current FDA-approved influenza antivirals with their mechanisms of action, and different viral- and host-directed influenza antiviral approaches, including immunomodulatory interventions in clinical development. Furthermore, we also illustrate the potential utility of machine learning in developing next-generation antivirals against influenza.
Collapse
Affiliation(s)
- Rashmi Kumari
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Suresh D. Sharma
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amrita Kumar
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zachary Ende
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education (ORISE), CDC Fellowship Program, Oak Ridge, Tennessee, USA
| | - Margarita Mishina
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yuanyuan Wang
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Association of Public Health Laboratories, Silver Spring, Maryland, USA
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jan Pohl
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul R. Knight
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Suryaprakash Sambhara
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Bruggemann L, Falls Z, Mangione W, Schwartz SA, Battaglia S, Aalinkeel R, Mahajan SD, Samudrala R. Multiscale Analysis and Validation of Effective Drug Combinations Targeting Driver KRAS Mutations in Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:ijms24020997. [PMID: 36674513 PMCID: PMC9867122 DOI: 10.3390/ijms24020997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 01/06/2023] Open
Abstract
Pharmacogenomics is a rapidly growing field with the goal of providing personalized care to every patient. Previously, we developed the Computational Analysis of Novel Drug Opportunities (CANDO) platform for multiscale therapeutic discovery to screen optimal compounds for any indication/disease by performing analytics on their interactions using large protein libraries. We implemented a comprehensive precision medicine drug discovery pipeline within the CANDO platform to determine which drugs are most likely to be effective against mutant phenotypes of non-small cell lung cancer (NSCLC) based on the supposition that drugs with similar interaction profiles (or signatures) will have similar behavior and therefore show synergistic effects. CANDO predicted that osimertinib, an EGFR inhibitor, is most likely to synergize with four KRAS inhibitors.Validation studies with cellular toxicity assays confirmed that osimertinib in combination with ARS-1620, a KRAS G12C inhibitor, and BAY-293, a pan-KRAS inhibitor, showed a synergistic effect on decreasing cellular proliferation by acting on mutant KRAS. Gene expression studies revealed that MAPK expression is strongly correlated with decreased cellular proliferation following treatment with KRAS inhibitor BAY-293, but not treatment with ARS-1620 or osimertinib. These results indicate that our precision medicine pipeline may be used to identify compounds capable of synergizing with inhibitors of KRAS G12C, and to assess their likelihood of becoming drugs by understanding their behavior at the proteomic/interactomic scales.
Collapse
Affiliation(s)
- Liana Bruggemann
- Department of Biomedical Informatics, University at Buffalo, Buffalo, NY 14260, USA
| | - Zackary Falls
- Department of Biomedical Informatics, University at Buffalo, Buffalo, NY 14260, USA
| | - William Mangione
- Department of Biomedical Informatics, University at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | - Supriya D. Mahajan
- Department of Medicine, University at Buffalo, Buffalo, NY 14260, USA
- Correspondence: (S.D.M.); (R.S.)
| | - Ram Samudrala
- Department of Biomedical Informatics, University at Buffalo, Buffalo, NY 14260, USA
- Correspondence: (S.D.M.); (R.S.)
| |
Collapse
|
5
|
Mangione W, Falls Z, Samudrala R. Optimal COVID-19 therapeutic candidate discovery using the CANDO platform. Front Pharmacol 2022; 13:970494. [PMID: 36091793 PMCID: PMC9452636 DOI: 10.3389/fphar.2022.970494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 01/22/2023] Open
Abstract
The worldwide outbreak of SARS-CoV-2 in early 2020 caused numerous deaths and unprecedented measures to control its spread. We employed our Computational Analysis of Novel Drug Opportunities (CANDO) multiscale therapeutic discovery, repurposing, and design platform to identify small molecule inhibitors of the virus to treat its resulting indication, COVID-19. Initially, few experimental studies existed on SARS-CoV-2, so we optimized our drug candidate prediction pipelines using results from two independent high-throughput screens against prevalent human coronaviruses. Ranked lists of candidate drugs were generated using our open source cando.py software based on viral protein inhibition and proteomic interaction similarity. For the former viral protein inhibition pipeline, we computed interaction scores between all compounds in the corresponding candidate library and eighteen SARS-CoV proteins using an interaction scoring protocol with extensive parameter optimization which was then applied to the SARS-CoV-2 proteome for prediction. For the latter similarity based pipeline, we computed interaction scores between all compounds and human protein structures in our libraries then used a consensus scoring approach to identify candidates with highly similar proteomic interaction signatures to multiple known anti-coronavirus actives. We published our ranked candidate lists at the very beginning of the COVID-19 pandemic. Since then, 51 of our 276 predictions have demonstrated anti-SARS-CoV-2 activity in published clinical and experimental studies. These results illustrate the ability of our platform to rapidly respond to emergent pathogens and provide greater evidence that treating compounds in a multitarget context more accurately describes their behavior in biological systems.
Collapse
Affiliation(s)
| | | | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
6
|
Identifying Protein Features and Pathways Responsible for Toxicity Using Machine Learning and Tox21: Implications for Predictive Toxicology. Molecules 2022; 27:molecules27093021. [PMID: 35566372 PMCID: PMC9099959 DOI: 10.3390/molecules27093021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Humans are exposed to numerous compounds daily, some of which have adverse effects on health. Computational approaches for modeling toxicological data in conjunction with machine learning algorithms have gained popularity over the last few years. Machine learning approaches have been used to predict toxicity-related biological activities using chemical structure descriptors. However, toxicity-related proteomic features have not been fully investigated. In this study, we construct a computational pipeline using machine learning models for predicting the most important protein features responsible for the toxicity of compounds taken from the Tox21 dataset that is implemented within the multiscale Computational Analysis of Novel Drug Opportunities (CANDO) therapeutic discovery platform. Tox21 is a highly imbalanced dataset consisting of twelve in vitro assays, seven from the nuclear receptor (NR) signaling pathway and five from the stress response (SR) pathway, for more than 10,000 compounds. For the machine learning model, we employed a random forest with the combination of Synthetic Minority Oversampling Technique (SMOTE) and the Edited Nearest Neighbor (ENN) method (SMOTE+ENN), which is a resampling method to balance the activity class distribution. Within the NR and SR pathways, the activity of the aryl hydrocarbon receptor (NR-AhR) and the mitochondrial membrane potential (SR-MMP) were two of the top-performing twelve toxicity endpoints with AUCROCs of 0.90 and 0.92, respectively. The top extracted features for evaluating compound toxicity were analyzed for enrichment to highlight the implicated biological pathways and proteins. We validated our enrichment results for the activity of the AhR using a thorough literature search. Our case study showed that the selected enriched pathways and proteins from our computational pipeline are not only correlated with AhR toxicity but also form a cascading upstream/downstream arrangement. Our work elucidates significant relationships between protein and compound interactions computed using CANDO and the associated biological pathways to which the proteins belong for twelve toxicity endpoints. This novel study uses machine learning not only to predict and understand toxicity but also elucidates therapeutic mechanisms at a proteomic level for a variety of toxicity endpoints.
Collapse
|
7
|
Mammen MJ, Tu C, Morris MC, Richman S, Mangione W, Falls Z, Qu J, Broderick G, Sethi S, Samudrala R. Proteomic Network Analysis of Bronchoalveolar Lavage Fluid in Ex-Smokers to Discover Implicated Protein Targets and Novel Drug Treatments for Chronic Obstructive Pulmonary Disease. Pharmaceuticals (Basel) 2022; 15:566. [PMID: 35631392 PMCID: PMC9147475 DOI: 10.3390/ph15050566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/23/2022] Open
Abstract
Bronchoalveolar lavage of the epithelial lining fluid (BALF) can sample the profound changes in the airway lumen milieu prevalent in chronic obstructive pulmonary disease (COPD). We compared the BALF proteome of ex-smokers with moderate COPD who are not in exacerbation status to non-smoking healthy control subjects and applied proteome-scale translational bioinformatics approaches to identify potential therapeutic protein targets and drugs that modulate these proteins for the treatment of COPD. Proteomic profiles of BALF were obtained from (1) never-smoker control subjects with normal lung function (n = 10) or (2) individuals with stable moderate (GOLD stage 2, FEV1 50−80% predicted, FEV1/FVC < 0.70) COPD who were ex-smokers for at least 1 year (n = 10). After identifying potential crucial hub proteins, drug−proteome interaction signatures were ranked by the computational analysis of novel drug opportunities (CANDO) platform for multiscale therapeutic discovery to identify potentially repurposable drugs. Subsequently, a literature-based knowledge graph was utilized to rank combinations of drugs that most likely ameliorate inflammatory processes. Proteomic network analysis demonstrated that 233 of the >1800 proteins identified in the BALF were significantly differentially expressed in COPD versus control. Functional annotation of the differentially expressed proteins was used to detail canonical pathways containing the differential expressed proteins. Topological network analysis demonstrated that four putative proteins act as central node proteins in COPD. The drugs with the most similar interaction signatures to approved COPD drugs were extracted with the CANDO platform. The drugs identified using CANDO were subsequently analyzed using a knowledge-based technique to determine an optimal two-drug combination that had the most appropriate effect on the central node proteins. Network analysis of the BALF proteome identified critical targets that have critical roles in modulating COPD pathogenesis, for which we identified several drugs that could be repurposed to treat COPD using a multiscale shotgun drug discovery approach.
Collapse
Affiliation(s)
- Manoj J. Mammen
- Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Biomedical Informatics, Jacobs School of Medicine and Biological Sciences, State University of New York, Buffalo, NY 14214, USA; (W.M.); (Z.F.)
| | - Chengjian Tu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA; (C.T.); (J.Q.)
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203, USA
| | - Matthew C. Morris
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY 14621, USA; (M.C.M.); (S.R.); (G.B.)
| | - Spencer Richman
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY 14621, USA; (M.C.M.); (S.R.); (G.B.)
| | - William Mangione
- Department of Biomedical Informatics, Jacobs School of Medicine and Biological Sciences, State University of New York, Buffalo, NY 14214, USA; (W.M.); (Z.F.)
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biological Sciences, State University of New York, Buffalo, NY 14214, USA; (W.M.); (Z.F.)
| | - Jun Qu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA; (C.T.); (J.Q.)
- New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203, USA
| | - Gordon Broderick
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY 14621, USA; (M.C.M.); (S.R.); (G.B.)
| | - Sanjay Sethi
- WNY VA Healthcare System, Buffalo, NY 14215, USA;
- Department of Medicine, Jacobs School of Medicine and Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biological Sciences, State University of New York, Buffalo, NY 14214, USA; (W.M.); (Z.F.)
| |
Collapse
|
8
|
Schuler J, Falls Z, Mangione W, Hudson ML, Bruggemann L, Samudrala R. Evaluating the performance of drug-repurposing technologies. Drug Discov Today 2022; 27:49-64. [PMID: 34400352 PMCID: PMC10014214 DOI: 10.1016/j.drudis.2021.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/20/2021] [Accepted: 08/08/2021] [Indexed: 01/22/2023]
Abstract
Drug-repurposing technologies are growing in number and maturing. However, comparisons to each other and to reality are hindered because of a lack of consensus with respect to performance evaluation. Such comparability is necessary to determine scientific merit and to ensure that only meaningful predictions from repurposing technologies carry through to further validation and eventual patient use. Here, we review and compare performance evaluation measures for these technologies using version 2 of our shotgun repurposing Computational Analysis of Novel Drug Opportunities (CANDO) platform to illustrate their benefits, drawbacks, and limitations. Understanding and using different performance evaluation metrics ensures robust cross-platform comparability, enabling us to continue to strive toward optimal repurposing by decreasing the time and cost of drug discovery and development.
Collapse
Affiliation(s)
- James Schuler
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - William Mangione
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Matthew L Hudson
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Liana Bruggemann
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
9
|
Overhoff B, Falls Z, Mangione W, Samudrala R. A Deep-Learning Proteomic-Scale Approach for Drug Design. Pharmaceuticals (Basel) 2021; 14:1277. [PMID: 34959678 PMCID: PMC8709297 DOI: 10.3390/ph14121277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Computational approaches have accelerated novel therapeutic discovery in recent decades. The Computational Analysis of Novel Drug Opportunities (CANDO) platform for shotgun multitarget therapeutic discovery, repurposing, and design aims to improve their efficacy and safety by employing a holistic approach that computes interaction signatures between every drug/compound and a large library of non-redundant protein structures corresponding to the human proteome fold space. These signatures are compared and analyzed to determine if a given drug/compound is efficacious and safe for a given indication/disease. In this study, we used a deep learning-based autoencoder to first reduce the dimensionality of CANDO-computed drug-proteome interaction signatures. We then employed a reduced conditional variational autoencoder to generate novel drug-like compounds when given a target encoded "objective" signature. Using this approach, we designed compounds to recreate the interaction signatures for twenty approved and experimental drugs and showed that 16/20 designed compounds were predicted to be significantly (p-value ≤ 0.05) more behaviorally similar relative to all corresponding controls, and 20/20 were predicted to be more behaviorally similar relative to a random control. We further observed that redesigns of objectives developed via rational drug design performed significantly better than those derived from natural sources (p-value ≤ 0.05), suggesting that the model learned an abstraction of rational drug design. We also show that the designed compounds are structurally diverse and synthetically feasible when compared to their respective objective drugs despite consistently high predicted behavioral similarity. Finally, we generated new designs that enhanced thirteen drugs/compounds associated with non-small cell lung cancer and anti-aging properties using their predicted proteomic interaction signatures. his study represents a significant step forward in automating holistic therapeutic design with machine learning, enabling the rapid generation of novel, effective, and safe drug leads for any indication.
Collapse
Affiliation(s)
| | | | | | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (B.O.); (Z.F.); (W.M.)
| |
Collapse
|
10
|
Hudson ML, Samudrala R. Multiscale Virtual Screening Optimization for Shotgun Drug Repurposing Using the CANDO Platform. Molecules 2021; 26:2581. [PMID: 33925237 PMCID: PMC8125683 DOI: 10.3390/molecules26092581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/02/2022] Open
Abstract
Drug repurposing, the practice of utilizing existing drugs for novel clinical indications, has tremendous potential for improving human health outcomes and increasing therapeutic development efficiency. The goal of multi-disease multitarget drug repurposing, also known as shotgun drug repurposing, is to develop platforms that assess the therapeutic potential of each existing drug for every clinical indication. Our Computational Analysis of Novel Drug Opportunities (CANDO) platform for shotgun multitarget repurposing implements several pipelines for the large-scale modeling and simulation of interactions between comprehensive libraries of drugs/compounds and protein structures. In these pipelines, each drug is described by an interaction signature that is compared to all other signatures that are subsequently sorted and ranked based on similarity. Pipelines within the platform are benchmarked based on their ability to recover known drugs for all indications in our library, and predictions are generated based on the hypothesis that (novel) drugs with similar signatures may be repurposed for the same indication(s). The drug-protein interactions used to create the drug-proteome signatures may be determined by any screening or docking method, but the primary approach used thus far has been BANDOCK, our in-house bioanalytical or similarity docking protocol. In this study, we calculated drug-proteome interaction signatures using the publicly available molecular docking method Autodock Vina and created hybrid decision tree pipelines that combined our original bio- and chem-informatic approach with the goal of assessing and benchmarking their drug repurposing capabilities and performance. The hybrid decision tree pipeline outperformed the two docking-based pipelines from which it was synthesized, yielding an average indication accuracy of 13.3% at the top10 cutoff (the most stringent), relative to 10.9% and 7.1% for its constituent pipelines, and a random control accuracy of 2.2%. We demonstrate that docking-based virtual screening pipelines have unique performance characteristics and that the CANDO shotgun repurposing paradigm is not dependent on a specific docking method. Our results also provide further evidence that multiple CANDO pipelines can be synthesized to enhance drug repurposing predictive capability relative to their constituent pipelines. Overall, this study indicates that pipelines consisting of varied docking-based signature generation methods can capture unique and useful signals for accurate comparison of drug-proteome interaction signatures, leading to improvements in the benchmarking and predictive performance of the CANDO shotgun drug repurposing platform.
Collapse
Affiliation(s)
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
| |
Collapse
|
11
|
Mangione W, Falls Z, Chopra G, Samudrala R. cando.py: Open Source Software for Predictive Bioanalytics of Large Scale Drug-Protein-Disease Data. J Chem Inf Model 2020; 60:4131-4136. [PMID: 32515949 PMCID: PMC8098009 DOI: 10.1021/acs.jcim.0c00110] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Traditional drug discovery methods focus on optimizing the efficacy of a drug against a single biological target of interest for a specific disease. However, evidence supports the multitarget theory, i.e., drugs work by exerting their therapeutic effects via interaction with multiple biological targets, which have multiple phenotypic effects. Analytics of drug-protein interactions on a large proteomic scale provides insight into disease systems while also allowing for prediction of putative therapeutics against specific indications. We present a Python package for analysis of drug-proteome and drug-disease relationships implementing the Computational Analysis of Novel Drug Opportunities (CANDO) platform. The CANDO package allows for rapid drug similarity assessment, most notably via an in-house interaction scoring protocol where billions of drug-protein interactions are rapidly scored and the similarity of drug-proteome interaction signatures is calculated. The package also implements a variety of benchmarking protocols for shotgun drug discovery and repurposing, i.e., to determine how every known drug is related to every other in the context of the indications/diseases for which they are approved. Drug predictions are generated through consensus scoring of the most similar compounds to drugs known to treat a particular indication. Support for comparing and ranking novel chemical entities, as well as machine learning modules for both benchmarking and putative drug candidate prediction is also available. The CANDO Python package is available on GitHub at https://github.com/ram-compbio/CANDO, through the Conda Python package installer, and at http://compbio.org/software/.
Collapse
Affiliation(s)
- William Mangione
- Department of Biomedical Informatics, University at Buffalo, Buffalo, New York 14120, United States
| | - Zackary Falls
- Department of Biomedical Informatics, University at Buffalo, Buffalo, New York 14120, United States
| | - Gaurav Chopra
- Department of Chemistry, Purdue Institute for Drug Discovery, Integrated Data Science Institute, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ram Samudrala
- Department of Biomedical Informatics, University at Buffalo, Buffalo, New York 14120, United States
| |
Collapse
|
12
|
Fine J, Konc J, Samudrala R, Chopra G. CANDOCK: Chemical Atomic Network-Based Hierarchical Flexible Docking Algorithm Using Generalized Statistical Potentials. J Chem Inf Model 2020; 60:1509-1527. [PMID: 32069042 PMCID: PMC12034428 DOI: 10.1021/acs.jcim.9b00686] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Small-molecule docking has proven to be invaluable for drug design and discovery. However, existing docking methods have several limitations such as improper treatment of the interactions of essential components in the chemical environment of the binding pocket (e.g., cofactors, metal ions, etc.), incomplete sampling of chemically relevant ligand conformational space, and the inability to consistently correlate docking scores of the best binding pose with experimental binding affinities. We present CANDOCK, a novel docking algorithm, that utilizes a hierarchical approach to reconstruct ligands from an atomic grid using graph theory and generalized statistical potential functions to sample biologically relevant ligand conformations. Our algorithm accounts for protein flexibility, solvent, metal ions, and cofactor interactions in the binding pocket that are traditionally ignored by current methods. We evaluate the algorithm on the PDBbind, Astex, and PINC proteins to show its ability to reproduce the binding mode of the ligands that is independent of the initial ligand conformation in these benchmarks. Finally, we identify the best selector and ranker potential functions such that the statistical score of the best selected docked pose correlates with the experimental binding affinities of the ligands for any given protein target. Our results indicate that CANDOCK is a generalized flexible docking method that addresses several limitations of current docking methods by considering all interactions in the chemical environment of a binding pocket for correlating the best-docked pose with biological activity. CANDOCK along with all structures and scripts used for benchmarking is available at https://github.com/chopralab/candock_benchmark.
Collapse
Affiliation(s)
- Jonathan Fine
- Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN, USA 47906
| | - Janez Konc
- National Institute of Chemistry, Hajdrihova 19, SI−1000, Ljubljana, Slovenia
| | - Ram Samudrala
- Department of Biomedical Informatics, SUNY, Buffalo, NY, USA 14260
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, 720 Clinic Drive, West Lafayette, IN, USA 47906
- Purdue Institute for Drug Discovery
- Purdue Center for Cancer Research
- Purdue Institute for Inflammation, Immunology and Infectious Disease
- Purdue Institute for Integrative Neuroscience
- Integrative Data Science Initiative
| |
Collapse
|
13
|
Schuler J, Samudrala R. Fingerprinting CANDO: Increased Accuracy with Structure- and Ligand-Based Shotgun Drug Repurposing. ACS OMEGA 2019; 4:17393-17403. [PMID: 31656912 PMCID: PMC6812124 DOI: 10.1021/acsomega.9b02160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/30/2019] [Indexed: 05/08/2023]
Abstract
We have upgraded our Computational Analysis of Novel Drug Opportunities (CANDO) platform for shotgun drug repurposing by including ligand-based, data fusion, and decision tree pipelines. The goal of shotgun drug repurposing is to screen and rank every existing human use drug or compound for every disease/indication. The first version of CANDO implemented a structure-based pipeline that modeled interactions between compounds and proteins on a large scale, generating compound-proteome interaction signatures used to infer the similarity of drug behavior; the new pipelines accomplish this by incorporating molecular fingerprints and the Tanimoto coefficient. We obtain improved benchmarking performance with the new pipelines across all three evaluation metrics used: average indication accuracy, pairwise accuracy, and coverage. The best performing pipeline achieves an average indication accuracy of 19.0% at the top10 cutoff, compared to 11.7% for v1, and 2.2% for a random control. Our results demonstrate that the CANDO drug recovery accuracy is substantially improved by integrating multiple pipelines, thereby enhancing our ability to generate putative therapeutic repurposing candidates, and increasing drug discovery efficiency.
Collapse
Affiliation(s)
- James Schuler
- Department of Biomedical
Informatics, Jacobs School of Medicine and
Biomedical Sciences at the University at Buffalo, Buffalo, New York 14203, United States
| | - Ram Samudrala
- Department of Biomedical
Informatics, Jacobs School of Medicine and
Biomedical Sciences at the University at Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
14
|
Fine J, Lackner R, Samudrala R, Chopra G. Computational chemoproteomics to understand the role of selected psychoactives in treating mental health indications. Sci Rep 2019; 9:13155. [PMID: 31511563 PMCID: PMC6739337 DOI: 10.1038/s41598-019-49515-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
We have developed the Computational Analysis of Novel Drug Opportunities (CANDO) platform to infer homology of drug behaviour at a proteomic level by constructing and analysing structural compound-proteome interaction signatures of 3,733 compounds with 48,278 proteins in a shotgun manner. We applied the CANDO platform to predict putative therapeutic properties of 428 psychoactive compounds that belong to the phenylethylamine, tryptamine, and cannabinoid chemical classes for treating mental health indications. Our findings indicate that these 428 psychoactives are among the top-ranked predictions for a significant fraction of mental health indications, demonstrating a significant preference for treating such indications over non-mental health indications, relative to randomized controls. Also, we analysed the use of specific tryptamines for the treatment of sleeping disorders, bupropion for substance abuse disorders, and cannabinoids for epilepsy. Our innovative use of the CANDO platform may guide the identification and development of novel therapies for mental health indications and provide an understanding of their causal basis on a detailed mechanistic level. These predictions can be used to provide new leads for preclinical drug development for mental health and other neurological disorders.
Collapse
Affiliation(s)
- Jonathan Fine
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Rachel Lackner
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, SUNY, Buffalo, NY, USA.
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
- Purdue Institute for Drug Discovery, Purdue Institute for Integrative Neuroscience, Purdue Institute for Integrative Neuroscience, Purdue Institute for Immunology, Inflammation and Infectious Disease, Integrative Data Science Initiative, Purdue Center for Cancer Research, West Lafayette, IN, USA.
| |
Collapse
|
15
|
Falls Z, Mangione W, Schuler J, Samudrala R. Exploration of interaction scoring criteria in the CANDO platform. BMC Res Notes 2019; 12:318. [PMID: 31174591 PMCID: PMC6555930 DOI: 10.1186/s13104-019-4356-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/31/2019] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Ascertain the optimal interaction scoring criteria for the Computational Analysis of Novel Drug Opportunities (CANDO) platform for shotgun drug repurposing to improve benchmarking performance, thereby enabling more accurate prediction of novel therapeutic drug-indication pairs. RESULTS We have investigated and enhanced the interaction scoring criteria in the bioinformatic docking protocol in the newest version of our platform (v1.5), with the best performing interaction scoring criterion yielding increased benchmarking accuracies from 11.7% in v1 to 12.8% in v1.5 at the top10 cutoff (the most stringent one) and correspondingly from 24.9 to 31.2% at the top100 cutoff.
Collapse
Affiliation(s)
- Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 77 Goodell St., Suite 540, Buffalo, NY, 14203, USA
| | - William Mangione
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 77 Goodell St., Suite 540, Buffalo, NY, 14203, USA
| | - James Schuler
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 77 Goodell St., Suite 540, Buffalo, NY, 14203, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 77 Goodell St., Suite 540, Buffalo, NY, 14203, USA.
| |
Collapse
|
16
|
Mangione W, Samudrala R. Identifying Protein Features Responsible for Improved Drug Repurposing Accuracies Using the CANDO Platform: Implications for Drug Design. Molecules 2019; 24:molecules24010167. [PMID: 30621144 PMCID: PMC6337359 DOI: 10.3390/molecules24010167] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/21/2018] [Accepted: 12/29/2018] [Indexed: 01/17/2023] Open
Abstract
Drug repurposing is a valuable tool for combating the slowing rates of novel therapeutic discovery. The Computational Analysis of Novel Drug Opportunities (CANDO) platform performs shotgun repurposing of 2030 indications/diseases using 3733 drugs/compounds to predict interactions with 46,784 proteins and relating them via proteomic interaction signatures. The accuracy is calculated by comparing interaction similarities of drugs approved for the same indications. We performed a unique subset analysis by breaking down the full protein library into smaller subsets and then recombining the best performing subsets into larger supersets. Up to 14% improvement in accuracy is seen upon benchmarking the supersets, representing a 100⁻1000-fold reduction in the number of proteins considered relative to the full library. Further analysis revealed that libraries comprised of proteins with more equitably diverse ligand interactions are important for describing compound behavior. Using one of these libraries to generate putative drug candidates against malaria, tuberculosis, and large cell carcinoma results in more drugs that could be validated in the biomedical literature compared to using those suggested by the full protein library. Our work elucidates the role of particular protein subsets and corresponding ligand interactions that play a role in drug repurposing, with implications for drug design and machine learning approaches to improve the CANDO platform.
Collapse
Affiliation(s)
- William Mangione
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| |
Collapse
|
17
|
Chopra G, Samudrala R. Exploring Polypharmacology in Drug Discovery and Repurposing Using the CANDO Platform. Curr Pharm Des 2017; 22:3109-23. [PMID: 27013226 DOI: 10.2174/1381612822666160325121943] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/01/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND Traditional drug discovery approaches focus on a limited set of target molecules for treatment against specific indications/diseases. However, drug absorption, dispersion, metabolism, and excretion (ADME) involve interactions with multiple protein systems. Drugs approved for particular indication(s) may be repurposed as novel therapeutics for others. The severely declining rate of discovery and increasing costs of new drugs illustrate the limitations of the traditional reductionist paradigm in drug discovery. METHODS We developed the Computational Analysis of Novel Drug Opportunities (CANDO) platform based on a hypothesis that drugs function by interacting with multiple protein targets to create a molecular interaction signature that can be exploited for therapeutic repurposing and discovery. We compiled a library of compounds that are human ingestible with minimal side effects, followed by an 'all-compounds' vs 'all-proteins' fragment-based multitarget docking with dynamics screen to construct compound-proteome interaction matrices that were then analyzed to determine similarity of drug behavior. The proteomic signature similarity of drugs is then ranked to make putative drug predictions for all indications in a shotgun manner. RESULTS We have previously applied this platform with success in both retrospective benchmarking and prospective validation, and to understand the effect of druggable protein classes on repurposing accuracy. Here we use the CANDO platform to analyze and determine the contribution of multitargeting (polypharmacology) to drug repurposing benchmarking accuracy. Taken together with the previous work, our results indicate that a large number of protein structures with diverse fold space and a specific polypharmacological interactome is necessary for accurate drug predictions using our proteomic and evolutionary drug discovery and repurposing platform. CONCLUSION These results have implications for future drug development and repurposing in the context of polypharmacology.
Collapse
Affiliation(s)
- Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| | - Ram Samudrala
- Department of Biomedical Informatics, SUNY, Buffalo, NY, USA.
| |
Collapse
|
18
|
Hernandez-Perez M, Chopra G, Fine J, Conteh AM, Anderson RM, Linnemann AK, Benjamin C, Nelson JB, Benninger KS, Nadler JL, Maloney DJ, Tersey SA, Mirmira RG. Inhibition of 12/15-Lipoxygenase Protects Against β-Cell Oxidative Stress and Glycemic Deterioration in Mouse Models of Type 1 Diabetes. Diabetes 2017; 66:2875-2887. [PMID: 28842399 PMCID: PMC5652601 DOI: 10.2337/db17-0215] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022]
Abstract
Islet β-cell dysfunction and aggressive macrophage activity are early features in the pathogenesis of type 1 diabetes (T1D). 12/15-Lipoxygenase (12/15-LOX) is induced in β-cells and macrophages during T1D and produces proinflammatory lipids and lipid peroxides that exacerbate β-cell dysfunction and macrophage activity. Inhibition of 12/15-LOX provides a potential therapeutic approach to prevent glycemic deterioration in T1D. Two inhibitors recently identified by our groups through screening efforts, ML127 and ML351, have been shown to selectively target 12/15-LOX with high potency. Only ML351 exhibited no apparent toxicity across a range of concentrations in mouse islets, and molecular modeling has suggested reduced promiscuity of ML351 compared with ML127. In mouse islets, incubation with ML351 improved glucose-stimulated insulin secretion in the presence of proinflammatory cytokines and triggered gene expression pathways responsive to oxidative stress and cell death. Consistent with a role for 12/15-LOX in promoting oxidative stress, its chemical inhibition reduced production of reactive oxygen species in both mouse and human islets in vitro. In a streptozotocin-induced model of T1D in mice, ML351 prevented the development of diabetes, with coincident enhancement of nuclear Nrf2 in islet cells, reduced β-cell oxidative stress, and preservation of β-cell mass. In the nonobese diabetic mouse model of T1D, administration of ML351 during the prediabetic phase prevented dysglycemia, reduced β-cell oxidative stress, and increased the proportion of anti-inflammatory macrophages in insulitis. The data provide the first evidence to date that small molecules that target 12/15-LOX can prevent progression of β-cell dysfunction and glycemic deterioration in models of T1D.
Collapse
Affiliation(s)
- Marimar Hernandez-Perez
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Gaurav Chopra
- Department of Chemistry, Purdue Institute for Drug Discovery; Purdue Center for Cancer Research; Purdue Institute for Inflammation, Immunology and Infectious Disease; and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN
| | - Jonathan Fine
- Department of Chemistry, Purdue Institute for Drug Discovery; Purdue Center for Cancer Research; Purdue Institute for Inflammation, Immunology and Infectious Disease; and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN
| | - Abass M. Conteh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Ryan M. Anderson
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Amelia K. Linnemann
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Chanelle Benjamin
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Jennifer B. Nelson
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Kara S. Benninger
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Jerry L. Nadler
- Department of Medicine, Eastern Virginia Medical School, Norfolk, VA
| | - David J. Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD
| | - Sarah A. Tersey
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Raghavendra G. Mirmira
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
19
|
Duran-Frigola M, Siragusa L, Ruppin E, Barril X, Cruciani G, Aloy P. Detecting similar binding pockets to enable systems polypharmacology. PLoS Comput Biol 2017; 13:e1005522. [PMID: 28662117 PMCID: PMC5490940 DOI: 10.1371/journal.pcbi.1005522] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/15/2017] [Indexed: 01/19/2023] Open
Abstract
In the era of systems biology, multi-target pharmacological strategies hold promise for tackling disease-related networks. In this regard, drug promiscuity may be leveraged to interfere with multiple receptors: the so-called polypharmacology of drugs can be anticipated by analyzing the similarity of binding sites across the proteome. Here, we perform a pairwise comparison of 90,000 putative binding pockets detected in 3,700 proteins, and find that 23,000 pairs of proteins have at least one similar cavity that could, in principle, accommodate similar ligands. By inspecting these pairs, we demonstrate how the detection of similar binding sites expands the space of opportunities for the rational design of drug polypharmacology. Finally, we illustrate how to leverage these opportunities in protein-protein interaction networks related to several therapeutic classes and tumor types, and in a genome-scale metabolic model of leukemia. Traditionally, the fact that most drugs are promiscuous binders has been a major concern in pharmacology, due to the occurrence of undesired off-target clinical events. In the recent years, however, the realization that many diseases are the result of complex biological processes has encouraged rethinking of drug promiscuity as a promising feature, since it is sometimes necessary to interfere with multiple receptors in order to overcome the robustness of disease-related networks. One way to identify groups of proteins that could be targeted simultaneously is to look for similar binding sites. We have massively done so for all human proteins with a known high-resolution three-dimensional structure, unveiling a vast space of ‘polypharmacology’ opportunities. Of these, we know, a great majority is not of therapeutic interest. To pinpoint promising multi-target combinations, we advocate for the use of computational tools that are able to rapidly simulate the effect of drug-target interactions on biological networks.
Collapse
Affiliation(s)
- Miquel Duran-Frigola
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | | | - Eytan Ruppin
- Department of Computer Science & Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
- School of Computer Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Xavier Barril
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Gabriele Cruciani
- Molecular Discovery Limited, London, United Kingdom
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Patrick Aloy
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- * E-mail:
| |
Collapse
|
20
|
Combating Ebola with Repurposed Therapeutics Using the CANDO Platform. Molecules 2016; 21:molecules21121537. [PMID: 27898018 PMCID: PMC5958544 DOI: 10.3390/molecules21121537] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/23/2016] [Accepted: 10/28/2016] [Indexed: 12/20/2022] Open
Abstract
Ebola virus disease (EVD) is extremely virulent with an estimated mortality rate of up to 90%. However, the state-of-the-art treatment for EVD is limited to quarantine and supportive care. The 2014 Ebola epidemic in West Africa, the largest in history, is believed to have caused more than 11,000 fatalities. The countries worst affected are also among the poorest in the world. Given the complexities, time, and resources required for a novel drug development, finding efficient drug discovery pathways is going to be crucial in the fight against future outbreaks. We have developed a Computational Analysis of Novel Drug Opportunities (CANDO) platform based on the hypothesis that drugs function by interacting with multiple protein targets to create a molecular interaction signature that can be exploited for rapid therapeutic repurposing and discovery. We used the CANDO platform to identify and rank FDA-approved drug candidates that bind and inhibit all proteins encoded by the genomes of five different Ebola virus strains. Top ranking drug candidates for EVD treatment generated by CANDO were compared to in vitro screening studies against Ebola virus-like particles (VLPs) by Kouznetsova et al. and genetically engineered Ebola virus and cell viability studies by Johansen et al. to identify drug overlaps between the in virtuale and in vitro studies as putative treatments for future EVD outbreaks. Our results indicate that integrating computational docking predictions on a proteomic scale with results from in vitro screening studies may be used to select and prioritize compounds for further in vivo and clinical testing. This approach will significantly reduce the lead time, risk, cost, and resources required to determine efficacious therapies against future EVD outbreaks.
Collapse
|
21
|
Craig JK, Risler JK, Loesch KA, Dong W, Baker D, Barrett LK, Subramanian S, Samudrala R, Van Voorhis WC. Mycobacterium Cytidylate Kinase Appears to Be an Undruggable Target. JOURNAL OF BIOMOLECULAR SCREENING 2016; 21:695-700. [PMID: 27146385 PMCID: PMC8565994 DOI: 10.1177/1087057116646702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/05/2016] [Indexed: 11/17/2022]
Abstract
New and improved drugs against tuberculosis are urgently needed as multi-drug-resistant forms of the disease become more prevalent. Mycobacterium tuberculosis cytidylate kinase is an attractive target for screening due to its essentiality and different substrate specificity to the human orthologue. However, we selected the Mycobacterium smegmatis cytidylate kinase for screening because of the availability of high-resolution X-ray crystallographic data defining its structure and the high likelihood of active site structural similarity to the M. tuberculosis orthologue. We report the development and implementation of a high-throughput luciferase-based activity assay and screening of 19,920 compounds derived from small-molecule libraries and an in silico screen predicting likely inhibitors of the cytidylate kinase enzyme. Hit validation included a counterscreen for luciferase inhibitors that would result in false positives in the initial screen. Results of this counterscreen ruled out all of the putative cytidylate kinase inhibitors identified in the initial screening, leaving no compounds as candidates for drug development. Although a negative result, this study indicates that this important drug target may in fact be undruggable and serve as a warning for future investigations.
Collapse
Affiliation(s)
- Justin K Craig
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, WA, USA
| | - Jenni K Risler
- Fred Hutchinson Cancer Research Center (Fred Hutch), Genomics Shared Resource, High-Throughput Screening Facility, Seattle, WA, USA
| | - Kimberly A Loesch
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
| | - Wen Dong
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
| | - Dwight Baker
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
| | - Lynn K Barrett
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, WA, USA
| | | | - Ram Samudrala
- Department of Biomedical Informatics, University of Buffalo, State University of New York, Buffalo, NY, USA
| | - Wesley C Van Voorhis
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, WA, USA Departments of Global Health and Microbiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
22
|
Abstract
Enzymes are one of the most important groups of drug targets, and identifying possible ligand-enzyme interactions is of major importance in many drug discovery processes. Novel computational methods have been developed that can apply the information from the increasing number of resolved and available ligand-enzyme complexes to model new unknown interactions and therefore contribute to answer open questions in the field of drug discovery like the identification of unknown protein functions, off-target binding, ligand 3D homology modeling and induced-fit simulations.
Collapse
|