2
|
Moore BK, Dlodlo RA, Dongo JP, Verkuijl S, Sekadde MP, Sandy C, Maloney SA. Evidence to Action: Translating Innovations in Management of Child and Adolescent TB into Routine Practice in High-Burden Countries. Pathogens 2022; 11:pathogens11040383. [PMID: 35456058 PMCID: PMC9032544 DOI: 10.3390/pathogens11040383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Child and adolescent tuberculosis (TB) has been long neglected by TB programs but there have been substantive strides in prioritizing TB among these populations in the past two decades. Yet, gaps remain in translating evidence and policy to action at the primary care level, ensuring access to novel tools and approaches to diagnosis, treatment, and prevention for children and adolescents at risk of TB disease. This article describes the progress that has been made and the gaps that remain in addressing TB among children and adolescents while also highlighting pragmatic approaches and the role of multisectoral partnerships in facilitating integration of innovations into routine program practice.
Collapse
Affiliation(s)
- Brittany K. Moore
- Division of Global HIV and TB, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30329, USA;
- Correspondence:
| | - Riitta A. Dlodlo
- Department of Tuberculosis, The International Union Against TB and Lung Disease, Zimbabwe Office, Bulawayo 029, Zimbabwe;
| | - John Paul Dongo
- Department of Tuberculosis, The International Union Against TB and Lung Disease, Uganda Office, Kampala P.O. Box 16094, Uganda;
| | - Sabine Verkuijl
- Global Tuberculosis Programme, World Health Organization, 1202 Geneva, Switzerland;
| | | | - Charles Sandy
- National TB Control Programme, Harare 242, Zimbabwe;
| | - Susan A. Maloney
- Division of Global HIV and TB, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30329, USA;
| |
Collapse
|
3
|
Abstract
Childhood tuberculosis (TB) has been underreported and underrepresented in TB statistics across the globe. Contributing factors include health system barriers, diagnostic barriers, and community barriers leading to an underdetected epidemic of childhood tuberculosis. Despite considerable progress in childhood TB management, there is a concerning gap in policy and practice in high-burden countries leading to missed opportunities for active case detection, early diagnosis and treatment of TB exposure, and infection and disease in children regardless of human immunodeficiency virus status. Bridging this gap requires multisectoral coordination and political commitment along with an eye to research and innovation with potential to scale.
Collapse
Affiliation(s)
- Sadia Shakoor
- Department of Pathology, Section of Microbiology, Aga Khan University, Supariwala Building, PO Box 3500, Karachi, Pakistan
| | - Fatima Mir
- Department of Pediatrics and Child Health, The Aga Khan University, Faculty Office Building, PO Box 3500, Stadium Road, Karachi 74800, Pakistan.
| |
Collapse
|
4
|
1 H-Benzo[ d]Imidazole Derivatives Affect MmpL3 in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019; 63:AAC.00441-19. [PMID: 31332069 DOI: 10.1128/aac.00441-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022] Open
Abstract
1H-benzo[d]imidazole derivatives exhibit antitubercular activity in vitro at a nanomolar range of concentrations and are not toxic to human cells, but their mode of action remains unknown. Here, we showed that these compounds are active against intracellular Mycobacterium tuberculosis To identify their target, we selected drug-resistant M. tuberculosis mutants and then used whole-genome sequencing to unravel mutations in the essential mmpL3 gene, which encodes the integral membrane protein that catalyzes the export of trehalose monomycolate, a precursor of the mycobacterial outer membrane component trehalose dimycolate (TDM), as well as mycolic acids bound to arabinogalactan. The drug-resistant phenotype was also observed in the parental strain overexpressing the mmpL3 alleles carrying the mutations identified in the resistors. However, no cross-resistance was observed between 1H-benzo[d]imidazole derivatives and SQ109, another MmpL3 inhibitor, or other first-line antitubercular drugs. Metabolic labeling and quantitative thin-layer chromatography (TLC) analysis of radiolabeled lipids from M. tuberculosis cultures treated with the benzoimidazoles indicated an inhibition of trehalose dimycolate (TDM) synthesis, as well as reduced levels of mycolylated arabinogalactan, in agreement with the inhibition of MmpL3 activity. Overall, this study emphasizes the pronounced activity of 1H-benzo[d]imidazole derivatives in interfering with mycolic acid metabolism and their potential for therapeutic application in the fight against tuberculosis.
Collapse
|
5
|
Qin C, Wei B, Ma Z. Endobronchial ultrasound: Echoing in the field of pediatrics. Endosc Ultrasound 2018; 7:371-375. [PMID: 30289110 PMCID: PMC6289017 DOI: 10.4103/eus.eus_40_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023] Open
Abstract
Endobronchial ultrasound (EBUS) is a useful technique for the diagnosis and staging of the lung and mediastinal lesions, which is crucial for selecting treatment protocol. Under EBUS guidance, transbronchial needle aspiration (TBNA) is widely applied for obtaining specimens for histological, cytological, and molecular evaluation. Recently, the EBUS scope designed for adults has been used in large pediatric candidates. The presence of lung masses and mediastinal lymphadenopathy in the pediatric population presents a diagnostic challenge; however, EBUS is a promising tool for pediatricians to address these challenging issues. In some centers, the adult EBUS echobronchoscope is applied in transesophageal procedures for pediatric patients. EBUS-guided TBNA can also be used to perform minimally invasive interventional therapy, such as fiducial marker placement for assisting precision radiation, brachytherapy, and radiofrequency ablation therapy. With the development of EBUS equipment designed specifically for children, pediatric EBUS will play an increasingly important role.
Collapse
Affiliation(s)
- Can Qin
- Department of Pediatrics, General Hospital of Shenyang Military Area Command, Shenyang 110016, China
| | - Bing Wei
- Department of Pediatrics, General Hospital of Shenyang Military Area Command, Shenyang 110016, China
| | - Zhuang Ma
- Department of Respiratory, General Hospital of Shenyang Military Area Command, Shenyang 110016, China
| |
Collapse
|
6
|
Halicki PCB, Hädrich G, Boschero R, Ferreira LA, von Groll A, da Silva PEA, Dora CL, Ramos DF. Alternative Pharmaceutical Formulation for Oral Administration of Rifampicin. Assay Drug Dev Technol 2018; 16:456-461. [PMID: 30325673 DOI: 10.1089/adt.2018.874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tuberculosis (TB) is considered an emergency global public health, mainly due to the TB-HIV co-infection, bacillus dormancy stage, and emergence of resistant strains. In addition, the therapeutic toxicity and its pharmacokinetic interactions with other drugs may influence treatment non-compliance, low serum concentration of drugs, and, consequently, treatment failure. Strategies using nanotechnology represent a new tool for the therapy, since they are effective delivery systems due to the possibility of solubilization of hydrophobic compounds, enable the production of formulations for oral use, and, in addition, increase bioavailability of drugs. This study aimed to develop a nanoemulsion (NE) containing rifampicin (RIF-NE) and evaluate its in vitro antimycobacterial activity using Resazurin Microtiter Assay against three Mycobacterium tuberculosis strains: two susceptible and a multidrug-resistant. Using the hot solvent diffusion method associated with phase inversion technique was possible to develop a liquid formulation containing 500 μg/mL rifampicin (RIF), which is a hydrophobic compound, of average size 25 nm. The results showed that the minimum inhibitory concentration of the encapsulated RIF was equal to the free form of RIF, indicating that the process of production of NEs did not affect the activity of the compound. Thus, RIF-NE could be a promising alternative for oral administration of RIF, being considered a child-friendly pharmaceutical formulation. Its application could avoid the administration of unknown and/or non-ideal concentrations, being functional in the regimes of prevention and treatment of TB and, in addition, in the fight against drug resistance.
Collapse
Affiliation(s)
| | - Gabriela Hädrich
- Laboratório de Nanotecnologia, Centro de Microscopia Eletrônica da Zona Sul, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
| | - Raphael Boschero
- Laboratório de Nanotecnologia, Centro de Microscopia Eletrônica da Zona Sul, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
| | - Laís Andrade Ferreira
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
| | - Andrea von Groll
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
| | - Pedro Eduardo Almeida da Silva
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
| | - Cristiana Lima Dora
- Laboratório de Nanotecnologia, Centro de Microscopia Eletrônica da Zona Sul, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
| | - Daniela Fernandes Ramos
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
| |
Collapse
|
7
|
Liu J, Bruhn DF, Lee RB, Zheng Z, Janusic T, Scherbakov D, Scherman MS, Boshoff HI, Das S, Rakesh, Waidyarachchi SL, Brewer TA, Gracia B, Yang L, Bollinger J, Robertson GT, Meibohm B, Lenaerts AJ, Ainsa J, Böttger EC, Lee RE. Structure-Activity Relationships of Spectinamide Antituberculosis Agents: A Dissection of Ribosomal Inhibition and Native Efflux Avoidance Contributions. ACS Infect Dis 2017; 3:72-88. [PMID: 28081607 DOI: 10.1021/acsinfecdis.6b00158] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spectinamides are a novel class of antitubercular agents with the potential to treat drug-resistant tuberculosis infections. Their antitubercular activity is derived from both ribosomal affinity and their ability to overcome intrinsic efflux mediated by the Mycobacterium tuberculosis Rv1258c efflux pump. This study explores the structure-activity relationships through analysis of 50 targeted spectinamides. Compounds are evaluated for ribosomal translational inhibition, MIC activity in Rv1258c efflux pump deficient and wild type tuberculosis strains, and efficacy in an acute model of tuberculosis infection. The results of this study show a narrow structure-activity relationship, consistent with a tight ribosome-binding pocket and strict structural requirements to overcome native efflux. Rationalization of ribosomal inhibition data using molecular dynamics simulations showed stable complex formation for halogenated spectinamides consistent with the long post antibiotic effects observed. The lead spectinamides identified in this study demonstrated potent MIC activity against MDR and XDR tuberculosis and had desirable antitubercular class specific features including low protein binding, low microsomal metabolism, no cytotoxicity, and significant reductions in bacterial burdens in the lungs of mice infected with M. tuberculosis. The structure-activity relationships detailed here emphasize the need to examine efflux-mediated resistance in the design of antituberculosis drugs and demonstrate that it is possible to overcome intrinsic efflux with synthetic modification. The ability to understand the structure requirements for this class has produced a variety of new substituted spectinamides, which may provide useful alternative candidates and promote the further development of this class.
Collapse
Affiliation(s)
- Jiuyu Liu
- Department
of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - David F. Bruhn
- Department
of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - Robin B. Lee
- Department
of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - Zhong Zheng
- Department
of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - Tanja Janusic
- Institut
für Medizinische Mikrobiologie, Nationales Zentrum für
Mykobakterien, Universität Zürich, Rämistrasse 71, Gloriastrasse
30/32, CH-8006 Zürich, Switzerland
| | - Dimitri Scherbakov
- Institut
für Medizinische Mikrobiologie, Nationales Zentrum für
Mykobakterien, Universität Zürich, Rämistrasse 71, Gloriastrasse
30/32, CH-8006 Zürich, Switzerland
| | - Michael S. Scherman
- Mycobacterial
Research Laboratories, Department of Microbiology, Colorado State University, 1682 Campus
Delivery, Fort Collins, Colorado 80523, United States
| | - Helena I. Boshoff
- Tuberculosis
Research Section, Laboratory of Clinical Infectious Diseases, National
Institute for Allergy and Infectious Disease, National Institutes of Health, 33 North Drive, Bethesda, Maryland 20814, United States
| | - Sourav Das
- Department
of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - Rakesh
- Department
of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - Samanthi L. Waidyarachchi
- Department
of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - Tiffany A. Brewer
- Department
of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
- Department
of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Begoña Gracia
- Departamento
de Microbiologı́a, Medicina Preventiva y Salud Pública,
and BIFI, Universidad de Zaragoza and CIBER Enfermedades Respiratorias (CIBERES), 50009 Zaragoza, Spain
| | - Lei Yang
- Department
of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - John Bollinger
- Department
of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - Gregory T. Robertson
- Mycobacterial
Research Laboratories, Department of Microbiology, Colorado State University, 1682 Campus
Delivery, Fort Collins, Colorado 80523, United States
| | - Bernd Meibohm
- Department
of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Anne J. Lenaerts
- Mycobacterial
Research Laboratories, Department of Microbiology, Colorado State University, 1682 Campus
Delivery, Fort Collins, Colorado 80523, United States
| | - Jose Ainsa
- Departamento
de Microbiologı́a, Medicina Preventiva y Salud Pública,
and BIFI, Universidad de Zaragoza and CIBER Enfermedades Respiratorias (CIBERES), 50009 Zaragoza, Spain
| | - Erik C. Böttger
- Institut
für Medizinische Mikrobiologie, Nationales Zentrum für
Mykobakterien, Universität Zürich, Rämistrasse 71, Gloriastrasse
30/32, CH-8006 Zürich, Switzerland
| | - Richard E. Lee
- Department
of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| |
Collapse
|
9
|
Hoagland DT, Liu J, Lee RB, Lee RE. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv Drug Deliv Rev 2016; 102:55-72. [PMID: 27151308 PMCID: PMC4903924 DOI: 10.1016/j.addr.2016.04.026] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 02/06/2023]
Abstract
Inadequate dosing and incomplete treatment regimens, coupled with the ability of the tuberculosis bacilli to cause latent infections that are tolerant of currently used drugs, have fueled the rise of multidrug-resistant tuberculosis (MDR-TB). Treatment of MDR-TB infections is a major clinical challenge that has few viable or effective solutions; therefore patients face a poor prognosis and years of treatment. This review focuses on emerging drug classes that have the potential for treating MDR-TB and highlights their particular strengths as leads including their mode of action, in vivo efficacy, and key medicinal chemistry properties. Examples include the newly approved drugs bedaquiline and delaminid, and other agents in clinical and late preclinical development pipeline for the treatment of MDR-TB. Herein, we discuss the challenges to developing drugs to treat tuberculosis and how the field has adapted to these difficulties, with an emphasis on drug discovery approaches that might produce more effective agents and treatment regimens.
Collapse
Affiliation(s)
- Daniel T Hoagland
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Pharmaceutical Sciences Graduate Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robin B Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|