1
|
Ren M, Wang Z, Song J, Wang Y, Cao T, Qin X, Luo DQ, Zhang J. Identification of isoquinoline alkaloids from Corydalis mucronifera and their acetylcholinesterase inhibitory effects. Fitoterapia 2024; 179:106220. [PMID: 39326799 DOI: 10.1016/j.fitote.2024.106220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Four new spirobenzylisoquinoline mucroniferanines N - Q (1-4) and a rare chlorinated isoquinoline mucroniferanine R (5) were isolated from Corydalis mucronifera Maxim. Their structures were elucidated based on extensive spectroscopic data analysis of HRESIMS, 1D and 2D NMR, and their absolute configurations were confirmed by ECD data. The isolated compounds were evaluated for acetylcholinesterase (AChE) inhibitory activities. Mucroniferanine R showed significant activities with IC50 values of 0.78 μM compared to galanthamine (1.34 μM). The AChE inhibitory activity was further supported by the molecular docking analysis that exhibited the accommodation of mucroniferanine R in the active site of human AChE.
Collapse
Affiliation(s)
- Meng Ren
- School of Life Science, Hebei University, Baoding 071002, China
| | - Zixuan Wang
- School of Life Science, Hebei University, Baoding 071002, China
| | - Jie Song
- School of Life Science, Hebei University, Baoding 071002, China
| | - Yurun Wang
- School of Life Science, Hebei University, Baoding 071002, China
| | - Taoshuai Cao
- School of Life Science, Hebei University, Baoding 071002, China
| | - Xiangdong Qin
- Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding 071002, China
| | - Du-Qiang Luo
- School of Life Science, Hebei University, Baoding 071002, China.
| | - Jun Zhang
- School of Life Science, Hebei University, Baoding 071002, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Lin YS, Sun Z, Shen LS, Gong RH, Chen JW, Xu Y, Yu H, Chen S, Chen GQ. Arnicolide D induces endoplasmic reticulum stress-mediated oncosis via ATF4 and CHOP in hepatocellular carcinoma cells. Cell Death Discov 2024; 10:134. [PMID: 38472168 DOI: 10.1038/s41420-024-01911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
Endoplasmic reticulum (ER) stress can trigger various cell death mechanisms beyond apoptosis, providing promise in cancer treatment. Oncosis, characterized by cellular swelling and increased membrane permeability, represents a non-apoptotic form of cell death. In our study, we discovered that Arnicolide D (AD), a natural sesquiterpene lactone compound, induces ER stress-mediated oncosis in hepatocellular carcinoma (HCC) cells, and this process is reactive oxygen species (ROS)-dependent. Furthermore, we identified the activation of the PERK-eIF2α-ATF4-CHOP pathway during ER stress as a pivotal factor in AD-induced oncosis. Notably, the protein synthesis inhibitor cycloheximide (CHX) was found to effectively reverse AD-induced oncosis, suggesting ATF4 and CHOP may hold crucial roles in the induction of oncosis by AD. These proteins play a vital part in promoting protein synthesis during ER stress, ultimately leading to cell death. Subsequent studies, in where we individually or simultaneously knocked down ATF4 and CHOP in HCC cells, provided further confirmation of their indispensable roles in AD-induced oncosis. Moreover, additional animal experiments not only substantiated AD's ability to inhibit HCC tumor growth but also solidified the essential role of ER stress-mediated and ROS-dependent oncosis in AD's therapeutic potential. In summary, our research findings strongly indicate that AD holds promise as a therapeutic agent for HCC by its ability to induce oncosis.
Collapse
Affiliation(s)
- Yu-Shan Lin
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhiwei Sun
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Li-Sha Shen
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China
| | - Rui-Hong Gong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong, China
| | - Jia-Wen Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China
| | - Yanfeng Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Sibao Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong, China.
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China.
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong, China.
| | - Guo-Qing Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong, China.
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong, China.
| |
Collapse
|
3
|
Liu Z, Lyu X, Chen J, Zhang B, Xie S, Yuan Y, Sun L, Yuan S, Yu H, Ding J, Yang M. Arnicolide C Suppresses Tumor Progression by Targeting 14-3-3θ in Breast Cancer. Pharmaceuticals (Basel) 2024; 17:224. [PMID: 38399439 PMCID: PMC10892132 DOI: 10.3390/ph17020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Background: Arnicolide C, which is isolated from Centipeda minima, has excellent antitumor effects. However, the potential impacts and related mechanisms of action of arnicolide C in breast cancer remain unknown. Methods: The viability of breast cancer cells was measured using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and colony formation assays. For analysis of apoptosis and the cell cycle, flow cytometry was used. A molecular docking approach was used to explore the possible targets of arnicolide C. Western blot analysis was used to detect changes in the expression of 14-3-3θ and proteins in related pathways after arnicolide C treatment in breast cancer cells. The anti-breast cancer effect of arnicolide C in vivo was evaluated by establishing cell-derived xenograft (CDX) and patient-derived xenograft (PDX) models. Results: Arnicolide C inhibited proliferation, increased apoptosis, and induced G1 arrest. In particular, molecular docking analysis indicated that arnicolide C binds to 14-3-3θ. Arnicolide C reduced 14-3-3θ expression and inhibited its downstream signaling pathways linked to cell proliferation. Similar results were obtained in the CDX and PDX models. Conclusion: Arnicolide C can have an anti-breast cancer effect both in vitro and in vivo and can induce cell cycle arrest and increase apoptosis in vitro. The molecular mechanism may be related to the effect of arnicolide C on the expression level of 14-3-3θ. However, the specific mechanism through which arnicolide C affects 14-3-3θ protein expression still needs to be determined.
Collapse
Affiliation(s)
- Zhengrui Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaodan Lyu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Jiaxu Chen
- College of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Benteng Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Siman Xie
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Yuan
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Jian Ding
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mei Yang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Wen W, Jin K, Che Y, Du LY, Wang LN. Arnicolide D Inhibits Oxidative Stress-induced Breast Cancer Cell Growth and Invasion through Apoptosis, Ferroptosis, and Parthanatos. Anticancer Agents Med Chem 2024; 24:836-844. [PMID: 36503456 DOI: 10.2174/1871520623666221208102021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Breast cancer is the most common malignant tumor in women, and its pathogenesis is very complicated. More and more studies have found that Traditional Chinese Medicine plays an important role in tumor prevention. OBJECTIVE To investigate the mechanism of arnicolide D isolated from Centipeda minima in breast cancer. METHODS Cell Counting Kit-8 (CCK-8), western blot, RT-qPCR, ELISA, flow cytometry, and Transwell were used to detect the effect of arnicolide D on the biological function of breast cancer cells. RESULTS Arnicolide D promoted reactive oxygen species (ROS) production and induced a decrease in mitochondrial membrane potential in breast cancer cells, thereby inhibiting cell viability and increasing lactate dehydrogenase (LDH) release. Arnicolide D activated the classical apoptosis pathway to induce cell apoptosis; it significantly promoted PARP-1 expression, enhanced the nuclear translocation of apoptosis-inducing factor (AIF), and reduced the expression of AIF in mitochondria, indicating that it can induce the occurrence of parthanatos in a ROS dependent manner. In addition, arnicolide D down-regulated glutathione peroxidase 4 (GPX4) expression and increased the accumulation of Fe2+ and malondialdehyde (MDA), thereby activating ferroptosis. Apoptosis inhibitor, ferroptosis inhibitor, PARP inhibitor, PARP-1 siRNA, AIF siRNA and GPX4 overexpression vector significantly attenuated the inhibitory effect of arnicolide D on cell viability and reduced LDH release, which indicates that arnicolide D inhibits breast cancer cell growth by inducing apoptosis, parthanatos and ferroptosis. Arnicolide D also reduced breast cancer cell invasion and inhibited the expression of matrix metallopeptidase (MMP)-2 and MMP-9. CONCLUSION Arnicolide D can activate a variety of cell death modes by inducing oxidative stress, thereby inhibiting the growth and invasion of breast cancer cells, indicating that arnicolide D has a good anti-tumor effect.
Collapse
Affiliation(s)
- Wei Wen
- General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Ke Jin
- Emergency Department, The second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Ying Che
- Ultrasonic Diagnostics Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Lin-Yao Du
- Ultrasonic Diagnostics Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Li-Na Wang
- Ultrasonic Diagnostics Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| |
Collapse
|
5
|
Liu J, Zheng W, He Y, Zhang W, Luo Z, Liu X, Jiang X, Meng F, Wu L. A Review of the Research Applications of Centipeda minima. Molecules 2023; 29:108. [PMID: 38202691 PMCID: PMC10779596 DOI: 10.3390/molecules29010108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Centipeda minima is a traditional Chinese medicine with wide applications and diverse pharmacological effects. Scholars have conducted extensive studies on its relevant clinical applications, especially its remarkable efficacy in cancer treatment. This paper thoroughly investigates the chemical composition and identification, pharmacological effects, and toxicity, along with the safety of Centipeda minima, so as to lay the foundation for corresponding clinical applications and product development. Furthermore, as global scholars have conducted extensive research on such clinical applications and made significant progress, the future development and utilization of Centipeda minima's active ingredients to create novel drugs are of great clinical significance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Liyan Wu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519000, China; (J.L.); (W.Z.); (Y.H.); (W.Z.); (Z.L.); (X.L.); (X.J.); (F.M.)
| |
Collapse
|
6
|
Meng M, Tan J, Chen H, Shi Z, Kwan HY, Su T. Brevilin A exerts anti-colorectal cancer effects and potently inhibits STAT3 signaling invitro. Heliyon 2023; 9:e18488. [PMID: 37593607 PMCID: PMC10432182 DOI: 10.1016/j.heliyon.2023.e18488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer-related morbidity worldwide, with an estimated of 1.85 million new cases and 850,000 deaths every year. Nevertheless, the current treatment regimens for CRC have many disadvantages, including toxicities and off-targeted side effects. STAT3 (signal transducer and activator of transcription 3) has been considered as a promising molecular target for CRC therapy. Brevilin A, a sesquiterpene lactone compound rich in Centipedae Herba has potent anticancer effects in nasopharyngeal, prostate and breast cancer cells by inhibiting the STAT3 signaling. However, the anti-CRC effect of brevilin A and the underlying mechanism of action have not been fully elucidated. In this study, we aimed to investigate the involvement of STAT3 signaling in the anti-CRC action of brevilin A. Here, HCT-116 and CT26 cell models were used to investigate the anti-CRC effects of brevilin A in vitro. HCT-116 cells overespressing with STAT3 were used to evaluate the involvement of STAT3 signaling in the anti-CRC effect of brevilin A. Screening of 49 phosphorylated tyrosine kinases in the HCT-116 cells after brevilin A treatment was performed by using the human phospho-receptor tyrosine kinase (phospho-RTK) array. Results showed that brevilin A inhibited cell proliferation and cell viability, induced apoptosis, reduced cell migration and invasion, inhibited angiogenesis, lowered the protein expression levels of phospho-Src (Tyr416), phospho-JAK2 (Y1007/1008) and phospho-STAT3 (Tyr705), and inhibited STAT3 activation and nuclear localization. Brevilin A also significantly reduced the protein expression levels of STAT3 target genes, such as MMP-2, VEGF and Bcl-xL. More importantly, over-activation of STAT3 diminished brevilin A's effects on cell viability. All these results suggest that brevilin A exerts potent anti-CRC effects, at least in part, by inhibiting STAT3 signaling. Our findings provide a strong pharmacological basis for the future exploration and development of brevilin A as a novel STAT3-targeting phytotherapeutic agent for CRC treatment.
Collapse
Affiliation(s)
- Mingjing Meng
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jincheng Tan
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui Chen
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhiqiang Shi
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hiu-Yee Kwan
- Centre for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, China
| | - Tao Su
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, China
| |
Collapse
|
7
|
Wang G, Liu H, Zhang Q, Mou X, Zhao Y, Fan H, Xu H, Chen D, Qiu F, Zhao F. Two sesquiterpene lactones, arnicolide B and arnicolide C, isolated from Centipeda minima, exert anti-inflammatory effects in LPS stimulated RAW 264.7 macrophages via inactivation of the MAPK pathway. Nat Prod Res 2023; 37:2969-2972. [PMID: 36323306 DOI: 10.1080/14786419.2022.2140659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Arnicolide B and arnicolide C are two sesquiterpene lactones isolated and identified from Centipeda minima, but the anti-inflammatory effects and mechanisms of these two compounds have not been reported. In this study, LPS was used to establish RAW 264.7 macrophages inflammatory response model. Griess, ELISA, Western blot were used to investigate the anti-inflammatory effects in vitro and the molecular mechanisms of these two active compounds. The results showed that arnicolide B and arnicolide C could not only inhibit the production of inflammatory mediators NO, PGE2, TNF-α and IL-6, but also down-regulate the high expression of inflammatory proteins iNOS and COX-2. Furthermore, arnicolide B and arnicolide C inhibited the phosphorylation of ERK, JNK, p38 proteins in the MAPK signaling pathway, but had no effect on the degradation of IκB-α protein and the activation of the NF-κB pathway. As conclusion, these two compounds exert anti-inflammatory effects by inactivation of the MAPK pathway.
Collapse
Affiliation(s)
- Ge Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong, P. R. China
| | - Hongfang Liu
- Pharmacy Department, Yantaishan Hospital, Yantai, Shandong, P. R. China
| | - Qingran Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong, P. R. China
| | - Xiaofeng Mou
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong, P. R. China
| | - Yan Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong, P. R. China
| | - Huaying Fan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong, P. R. China
| | - Hui Xu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong, P. R. China
| | - Daquan Chen
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong, P. R. China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Feng Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong, P. R. China
| |
Collapse
|
8
|
Gao C, Pan H, Ma F, Zhang Z, Zhao Z, Song J, Li W, Fan X. Centipeda minima active components and mechanisms in lung cancer. BMC Complement Med Ther 2023; 23:89. [PMID: 36959600 PMCID: PMC10035269 DOI: 10.1186/s12906-023-03915-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) has been extensively used for neoplasm treatment and has provided many promising therapeutic candidates. We previously found that Centipeda minima (C. minima), a Chinese medicinal herb, showed anti-cancer effects in lung cancer. However, the active components and underlying mechanisms remain unclear. In this study, we used network pharmacology to evaluate C. minima active compounds and molecular mechanisms in lung cancer. METHODS We screened the TCMSP database for bioactive compounds and their corresponding potential targets. Lung cancer-associated targets were collected from Genecards, OMIM, and Drugbank databases. We then established a drug-ingredients-gene symbols-disease (D-I-G-D) network and a protein-protein interaction (PPI) network using Cytoscape software, and we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses using R software. To verify the network pharmacology results, we then performed survival analysis, molecular docking analysis, as well as in vitro and in vivo experiments. RESULTS We identified a total of 21 C. minima bioactive compounds and 179 corresponding targets. We screened 804 targets related to lung cancer, 60 of which overlapped with C. minima. The top three candidate ingredients identified by D-I-G-D network analysis were quercetin, nobiletin, and beta-sitosterol. PPI network and core target analyses suggested that TP53, AKT1, and MYC are potential therapeutic targets. Moreover, molecular docking analysis confirmed that quercetin, nobiletin, and beta-sitosterol, combined well with TP53, AKT1, and MYC respectively. In vitro experiments verified that quercetin induced non-small cell lung cancer (NSCLC) cell death in a dose-dependent manner. GO and KEGG analyses found 1771 enriched GO terms and 144 enriched KEGG pathways, including a variety of cancer related pathways, the IL-17 signaling pathway, the platinum drug resistance pathway, and apoptosis pathways. Our in vivo experimental results confirmed that a C. minima ethanol extract (ECM) enhanced cisplatin (CDDP) induced cell apoptosis in NSCLC xenografts. CONCLUSIONS This study revealed the key C. minima active ingredients and molecular mechanisms in the treatment of lung cancer, providing a molecular basis for further C. minima therapeutic investigation.
Collapse
Affiliation(s)
- Cuiyun Gao
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fengjun Ma
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ze Zhang
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Zedan Zhao
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Jialing Song
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Wei Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Xiangzhen Fan
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
9
|
Su F, Yang G, Hu D, Ruan C, Wang J, Zhang Y, Zhu Q. Chemical Composition, Antibacterial and Antioxidant Activities of Essential Oil from Centipeda minima. Molecules 2023; 28:molecules28020824. [PMID: 36677882 PMCID: PMC9861044 DOI: 10.3390/molecules28020824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
This study elucidated the chemical composition of essential oil from Centipeda minima (EOCM) and its antibacterial and antioxidant activities with two chemical monomers thymol and carvacrol. The main chemical composition of EOCM, analyzed by GC-MS, were trans-chrysanthenyl acetate, thymol, aromadendrene and β-caryophyllene. In the screening of antibacterial activity against S. aureus, two monomers with antibacterial activity were obtained: thymol and carvacrol. The MIC of EOCM, thymol and carvacrol were 0.625 mg/mL, 0.156 mg/mL and 0.156 mg/mL, respectively. The experimental results were shown that three drugs could inhibit the growth of S. aureus and inhibit the formation of biofilm by changing the permeability of cell membrane and interfering with the metabolic activities in bacteria. The scavenging effects of the three drugs on DPPH radical and hydroxyl radical showed that the antioxidant effect of the three drugs was EOCM > carvacrol > thymol.
Collapse
Affiliation(s)
- Fan Su
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Gan Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Datong Hu
- Shandong Academy of Pharmaceutical Sciences, Jinan 250098, China
| | - Chen Ruan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jing Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yingying Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (Y.Z.); (Q.Z.)
| | - Qingjun Zhu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (Y.Z.); (Q.Z.)
| |
Collapse
|
10
|
Lee HJ, Na KH, Uddin MS, Park JB. Assessment of the Impacts of Centipeda minima (L.) on Cell Viability, and Osteogenic Differentiation of Mesenchymal Stem Cell Spheroids. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:43. [PMID: 36676667 PMCID: PMC9863519 DOI: 10.3390/medicina59010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Background and Objectives: Centipeda minima (L.) is a well-known and traditional pharmaceutical that has been utilized to treat different conditions controlling rhinitis, soothe pain, and decrease swelling. We assessed the impacts of Centipeda minima (L.) extricates (CMTs) on the osteogenic differentiation of cell spheroids made of human-bone-marrow-derived mesenchymal stem cells. Materials and Methods: Mesenchymal stem cells (MSCs) in spheroid 3D culture were generated and propagated in the presence of CMTs ranging from 0 to 1 μg/mL. Cell morphology was measured on Days 1, 3, 5, and 7. The quantitative cellular viability was evaluated on Days 1, 3, 5, and 7. Alkaline phosphatase activity assays were designed to measure the osteogenic differentiation of mesenchymal stem cell spheroids on Day 7. Alizarin Red S staining was performed to investigate the mineralization of cell spheroids on Days 7 and 14. Real-time polymerase chain reactions were used to measure the expression levels of RUNX2 and COL1A1 on Day 14. Western blot techniques were performed to identify the protein expression of Runt-related transcription factor 2 and type I collagen. Results: The control group’s mesenchymal stem cells displayed a spheroid shape. There was no noticeable change in morphology with the addition of CMTs at final concentrations of 0.001, 0.01, 0.1, and 1 μg/mL compared with the untreated (control) group. The application of CMTs did not induce a significant change in cell viability. The relative alkaline phosphatase activity values in the 0.001, 0.01, 0.1, and 1 μg/mL CMT groups were 114.4% ± 8.2%, 130.6% ± 25.3%, 87.8% ± 3.4%, and 92.1% ± 6.8%, respectively, considering a control of 100% (100.0% ± 17.9%). On Day 14, calcium deposits were clearly observed in each group. The relative values of Alizarin Red S staining in the 0.001, 0.01, 0.1, and 1 μg/mL CMT groups were 100.1% ± 8.9%, 105.9% ± 0.0%, 109.7% ± 19.1%, and 87.0% ± 40.9%, respectively, considering a control of 100% (100.0% ± 28.7%). The addition of CMT significantly increased RUNX2 expression in the 0.01 μg/mL group and COL1A1 in the 0.001 and 0.01 μg/mL groups. Normalization of protein expression showed that the addition of CMTs significantly increased type I collagen expression in the 0.001, 0.01, and 1 μg/mL groups. Conclusions: In conclusion, CMTs influence the osteogenic differentiation of bone-marrow-derived mesenchymal stem cells and the use of CMTs may positively influence the osteogenic differentiation of cell spheroids.
Collapse
Affiliation(s)
- Hyun-Jin Lee
- Department of Periodontics, College of Medicine, the Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kyung-Hwan Na
- Department of Medicine, Graduate School, the Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Md. Salah Uddin
- Ethnobotanical Database of Bangladesh, Tejgaon, Dhaka 1208, Bangladesh
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, the Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Medicine, Graduate School, the Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
11
|
Liu YQ, Zhou GB. Promising anticancer activities and mechanisms of action of active compounds from the medicinal herb Centipeda minima (L.) A. Braun & Asch. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154397. [PMID: 36084403 DOI: 10.1016/j.phymed.2022.154397] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Centipeda minima (L.) A. Braun & Asch (C. minima) has been used as a traditional Chinese herbal medicine to treat multiple diseases, including sinusitis, rhinitis, headache, and allergy. To date, the anticancer properties of C. minima have drawn considerable attention owing to the anticancer potential of C. minima extracts, the identification of active components, and the elucidation of underlying molecular mechanisms. However, the anticancer properties and significance of active components in C. minima have rarely been summarized. PURPOSE This review presents a comprehensive summary of the anticancer properties exhibited by active components of C. minima. METHODS An extensive search for published articles on the anticancer activities and active components of C. minima was performed using Web of Science, PubMed, Science Direct, and Google Scholar. RESULTS C. minima extracts exhibited both anticancer and chemosensitizing effects. Phytochemical studies have identified the active anticancer components of C. minima extracts. Sesquiterpene lactones, such as 6-O-angeloylplenolin (6-OAP, or brevilin A) and arnicolide D, have similar structures and anticancer mechanisms. As the most abundant sesquiterpene lactone in C. minima, 6-OAP exhibits anticancer activities mainly by targeting Skp1-Cullin1-F-box protein (SCF) E3 ubiquitin ligase and signal transducers and activators of transcription 3 (STAT3). Clinical trials have assessed the potential of 6-OAP in patients with vertex balding and alopecia areata, given its effect on JAK-STATs signaling. Chlorogenic acid, a representative organic acid in C. minima, reportedly possesses anticancer potential and inhibits tumor growth by affecting tumor microenvironment and has been approved for phase II clinical trials in patients with glioma in China. CONCLUSION In the present review, we highlight intriguing anticancer properties mediated by active compounds isolated from C. minima extracts, particularly sesquiterpene lactones, which might provide clues for developing novel anticancer drugs. Relevant clinical trials on chlorogenic acid and 6-OAP can promote anticancer clinical applications. Therefore, it is worth comprehensively elucidating underlying anticancer mechanisms and conducting clinical trials on C. minima and its active components.
Collapse
Affiliation(s)
- Yong-Qiang Liu
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China.
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
12
|
Hop NQ, Son NT. A comprehensive review on phytochemistry and pharmacology of genus Kopsia: monoterpene alkaloids - major secondary metabolites. RSC Adv 2022; 12:19171-19208. [PMID: 35865593 PMCID: PMC9253876 DOI: 10.1039/d2ra01791a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
Kopsia belongs to the family Apocynaceae, which was originally classified as a genus in 1823. Kopsia consists of medicinal plants that can be traditionally used to treat rheumatoid arthritis, pharyngitis, tonsillitis, and dropsy. More than one hundred and twenty-five publications have been documented relating to the phytochemical and pharmacological results, but a systematic review is not available. The goal of this study is to compile almost all of the secondary metabolites from the plants of genus Kopsia, as well as the coverage of their pharmacological research. The document findings were conducted via reliable sources, including Web of Science, Sci-Finder, Science Direct, PubMed, Google Scholar, and publishers, while four words "Kopsia", "monoterpene alkaloids", "Phytochemistry" and "Pharmacology" are key factors to search for references. Most Kopsia secondary metabolites were collected. A total of four hundred and seventy-two, including four hundred and sixty-six monoterpene alkaloids, five triterpenoids, and one sterol, were summarized, along with their resource. Kopsia monoterpene alkaloids presented in various skeletons, but aspidofractinines, eburnamines, and chanofruticosinates are the three major backbones. Mersinines and pauciflorines are new chemical classes of monoterpene alkaloids. With the rich content of monoterpene alkaloids, Kopsia constituents were also the main objects in pharmacological studies since the plant extracts and isolated compounds were proposed for anti-microbial, anti-inflammatory, anti-allergic, anti-diabetic, anti-manic, anti-nociceptive, acetylcholinesterase (AChE) inhibitory, cardiovascular, and vasorelaxant activities, especially cytotoxicity.
Collapse
Affiliation(s)
- Nguyen Quang Hop
- Faculty of Chemistry, Hanoi Pedagogical University 2 (HPU2) Nguyen Van Linh, Xuanhoa Phucyen Vinhphuc Vietnam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Caugiay Hanoi Vietnam
- Graduate University of Science and Technology, VAST Vietnam
| |
Collapse
|
13
|
Tan J, Qiao Z, Meng M, Zhang F, Kwan HY, Zhong K, Yang C, Wang Y, Zhang M, Liu Z, Su T. Centipeda minima: An update on its phytochemistry, pharmacology and safety. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115027. [PMID: 35091011 DOI: 10.1016/j.jep.2022.115027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Centipeda minima (CM), the dried whole plant of Centipeda minima (L.) A. Braun and Aschers, has been used as a traditional Chinese medicinal herb for thousands of years for the treatments of rhinitis, sinusitis, cough and asthmatic diseases. This review aimed to evaluate the therapeutic potential of CM by summarizing its phytochemistry, pharmacology, clinical application and safety. METHODS This review summarizes the published studies on CM in the Chinese Pharmacopoeia and literature databases including PubMed, Web of Science, Baidu Scholar, Wiley and China Knowledge Resource Integrated Database (CNKI), as well as the research articles on the phytochemistry, pharmacology, clinical application and safety of CM. RESULTS A total of 191 compounds have been isolated and identified from CM, including terpenes, flavonoids, sterols, phenols, organic acids and volatile oils. In addition, the pharmacological effects of CM, such as anti-cancer, anti-inflammatory and anti-bacterial activities, have also been evaluated by both in vitro and in vivo studies. The signaling pathways and mechanisms of action underlying the anti-cancer effects of CM have been revealed. Clinical applications of CM mainly include rhinitis and sinusitis, gynecological inflammation, cough, as well as asthma. CONCLUSION CM is a medicinal herb that possesses many therapeutic effects. Cutting-edge technology and system biology could provide us a more comprehensive understanding of the therapeutic effects, constituting components and toxicity of CM, which are the prerequisites for its translation into therapeutics for various disease treatments.
Collapse
Affiliation(s)
- Jincheng Tan
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Zhiping Qiao
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Mingjing Meng
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Fan Zhang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Hiu Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Keying Zhong
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Chunfang Yang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Yechun Wang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Mi Zhang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Tao Su
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| |
Collapse
|
14
|
Thuy Linh NT, Manh Ha N, Son NT. Genus Tupistra: A Comprehensive Review of Phytochemistry and Pharmacological Activity. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221074851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the current paper, secondary metabolites separated from Tupistra plants have been reviewed. Approximately 200 phytochemicals, classified in various chemical classes of bioactive compounds, have been compiled, along with their sources and references. The most striking feature is that the most frequently isolated compounds have been spirostanol sapogenins, and spirostanol and furostanol saponins, most of which are new in nature. The application of both Tupistra plant extracts and isolated compounds in biological assays is also one of the crucial aims in pharmacological discoveries. Tupistra constituents have demonstrated valuable properties in the field of pharmacology, such as antioxidative, antimicrobial, antidiabetic, and antihepatic activities, but their cytotoxic and anti-inflammatory actions can be considered as the more remarkable. In vivo cancer-related activities of the tested Tupistra samples were mostly based on apoptosis. Further phytochemical investigations, together with extensive assessments of the biological profiles and mechanism of action studies of the components of Tupistra species are to be expected.
Collapse
Affiliation(s)
- Nguyen Thi Thuy Linh
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nguyen Manh Ha
- Faculty of Chemical Technology, Hanoi University of Industry, Hanoi, Vietnam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| |
Collapse
|
15
|
Linh NTT, Son NT. Biologically Active Constituents from Plants of the Genus Desmos. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 116:211-261. [PMID: 34698948 DOI: 10.1007/978-3-030-80560-9_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The combination of traditional knowledge of medicinal plants with scientific rationale has yielded positive results in recent years. Bioactive compounds isolated from herbaceous plants have long been used as drugs that benefit human health, as well as providing useful compounds for drug development lead compound optimization. This chapter aims to provide a systematic overview of the structural types of Desmos secondary metabolites, along with their biological potential. Various chromatographic and spectroscopic methods have been utilized for isolating, purifying, and elucidating the structures of compounds from Desmos species. From 1982 to the present time, more than 200 metabolites have been isolated from members of this genus. Desmos spp. constituents include terpenoids, phytosterols, polyoxygenated cyclohexanes and cyclohexenes, oxepinones, fatty acids, with flavonoids, alkaloids, and miscellaneous phenols being the predominant compounds. The essential oils of Desmos species have also been investigated. Both crude plant extracts and isolated compounds from this genus have been evaluated for their biological activities. Desmos constituents have been found to exhibit cytotoxic, antimicrobial, antioxidative, anti-inflammatory, and aromatase and NFAT transcriptive inhibition effects.
Collapse
Affiliation(s)
- Nguyen Thi Thuy Linh
- Department of Chemistry, Institute of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Ninh The Son
- Department of Applied Biochemistry, Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam.
| |
Collapse
|
16
|
Fan XZ, Chen YF, Zhang SB, He DH, Wei SF, Wang Q, Pan HF, Liu YQ. Centipeda minima extract sensitizes lung cancer cells to DNA-crosslinking agents via targeting Fanconi anemia pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153689. [PMID: 34446320 DOI: 10.1016/j.phymed.2021.153689] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/19/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Intrinsic and acquired chemoresistance remains a critical challenge in lung cancer chemotherapy. Fanconi anemia (FA) pathway plays an important role in antagonizing the cytotoxic effects of chemotherapeutics by repairing DNA damage. We recently demonstrated that the traditional Chinese medicinal herb, Centipeda minima (C. minima), possessed anti-inflammatory and antioxidant properties. However, the potential anticancer application of C. minima and the underlying mechanisms remain unclear. PURPOSE We aimed to investigate the combined anticancer effects of the ethanol extract of C. minima (ECM) and DNA-crosslinking agents on non-small cell lung cancer (NSCLC) and elucidate the underlying mechanisms. METHODS Cell viability and flow cytometry assay were performed to determine the synergistic cytotoxicity of ECM and DNA-crosslinking agents, cisplatin (CDDP) or mitomycin C (MMC), in NSCLC cells. Western blotting and immunofluorescence were conducted to examine the effects of ECM on protein expression in DNA damage repair pathway. Comet assay was applied to evaluate DNA damage levels. Subcutaneous xenografts of NSCLC were established to evaluate the combined anticancer effects of ECM and CDDP. RESULTS Combined treatments with ECM and DNA-crosslinking agents exhibited synergistic cytotoxic effects against A549 and H1299 cells. FANCD2 was highly expressed in NSCLC that correlates with poor prognosis of NSCLC patients, based on the online database analysis. ECM significantly inhibited DNA damage-induced monoubiquitination and nuclear foci formation of FANCD2, thereby sensitizing NSCLC to CDDP- or MMC-induced DNA damage and apoptosis, as evidenced by increased expression of γ-H2AX, increased cleavage of caspases-3 and PARP, and enhanced Annexin V-FITC/PI staining. Further, ECM can also decrease the protein level of FANCD2 that contributes to the chemosensitizing effects. Moreover, ECM significantly attenuated CDDP-mediated S-phase arrest by antagonizing the activation of ATR/Chk1 pathway in NSCLC cells. Animal experiments further demonstrated that ECM and CDDP combination treatment synergistically inhibited tumor growth by decreasing FANCD2 protein level in tumor tissues. CONCLUSION Our results demonstrated that ECM can inhibit DNA-crosslinking agents-induced activation of FA pathway by attenuating both the expression and monoubiquitination of FANCD2. ECM and CDDP combination therapy exhibited synergistic anticancer effects both in vitro and in vivo, indicating that ECM and its active components might serve as novel anticancer drugs in the combination chemotherapy.
Collapse
Affiliation(s)
- Xiang-Zhen Fan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yu-Fei Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Shi-Bing Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Dan-Hua He
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Su-Fen Wei
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hua-Feng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Yong-Qiang Liu
- Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
17
|
Hair Growth Stimulation Effect of Centipeda minima Extract: Identification of Active Compounds and Anagen-Activating Signaling Pathways. Biomolecules 2021; 11:biom11070976. [PMID: 34356600 PMCID: PMC8301965 DOI: 10.3390/biom11070976] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 01/02/2023] Open
Abstract
Centipeda minima (L.) A. Braun & Asch is a well-studied plant in Chinese medicine that is used for the treatment of several diseases. A recent study has revealed the effects of extract of Cetipeda minima (CMX) standardized by brevilin A in inducing hair growth. However, the mechanism of action of CMX in human hair follicle dermal papilla cells (HFDPCs) has not yet been identified. We aimed to investigate the molecular basis underlying the effect of CMX on hair growth in HFDPCs. CMX induced the proliferation of HFDPCs, and the transcript-level expression of Wnt family member 5a (Wnt5a), frizzled receptor (FZDR), and vascular endothelial growth factor (VEGF) was upregulated. These results correlated with an increase in the expression of growth-related factors, such as VEGF and IGF-1. Immunoblotting and immunocytochemistry further revealed that the phosphorylation of ERK and JNK was enhanced by CMX in HFDPCs, and β-catenin accumulated significantly in a dose-dependent manner. Therefore, CMX substantially induced the expression of Wnt signaling-related proteins, such as GSK phosphorylation and β-catenin. This study supports the hypothesis that CMX promotes hair growth and secretion of growth factors via the Wnt/β-catenin, ERK, and JNK signaling pathways. In addition, computational predictions of drug-likeness, together with ADME property predictions, revealed the satisfactory bioavailability score of CMX compounds, exhibiting high gastrointestinal absorption. We suggest that CMX could be used as a promising treatment for hair regeneration and minimization of hair loss.
Collapse
|