1
|
Nicze M, Borówka M, Dec A, Niemiec A, Bułdak Ł, Okopień B. The Current and Promising Oral Delivery Methods for Protein- and Peptide-Based Drugs. Int J Mol Sci 2024; 25:815. [PMID: 38255888 PMCID: PMC10815890 DOI: 10.3390/ijms25020815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Drugs based on peptides and proteins (PPs) have been widely used in medicine, beginning with insulin therapy in patients with diabetes mellitus over a century ago. Although the oral route of drug administration is the preferred one by the vast majority of patients and improves compliance, medications of this kind due to their specific chemical structure are typically delivered parenterally, which ensures optimal bioavailability. In order to overcome issues connected with oral absorption of PPs such as their instability depending on digestive enzymes and pH changes in the gastrointestinal (GI) system on the one hand, but also their limited permeability across physiological barriers (mucus and epithelium) on the other hand, scientists have been strenuously searching for novel delivery methods enabling peptide and protein drugs (PPDs) to be administered enterally. These include utilization of different nanoparticles, transport channels, substances enhancing permeation, chemical modifications, hydrogels, microneedles, microemulsion, proteolytic enzyme inhibitors, and cell-penetrating peptides, all of which are extensively discussed in this review. Furthermore, this article highlights oral PP therapeutics both previously used in therapy and currently available on the medical market.
Collapse
Affiliation(s)
- Michał Nicze
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland (B.O.)
| | | | | | | | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland (B.O.)
| | | |
Collapse
|
2
|
Ruan S, Guo X, Ren Y, Cao G, Xing H, Zhang X. Nanomedicines based on trace elements for intervention of diabetes mellitus. Biomed Pharmacother 2023; 168:115684. [PMID: 37820567 DOI: 10.1016/j.biopha.2023.115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
Epidemiology shows that the incidence of diabetes mellitus (DM) is increasing year by year globally. Proper interventions are highly aspired for diabetics to improve the quality of life and prevent development of chronic complications. Trace elements, also known as microelements, are chemical substances that are present in our body in minute amounts. They are necessitated by the body for growth, development and functional metabolism. For the past few years, trace element nanoparticles have aroused considerable interest as a burgeoning form of nanomedicines in antidiabetic applications. These microelement-based nanomedicines can regulate glucose metabolism in several ways, showing great potential for diabetes management. Starting from the pathophysiology of diabetes, the state-of-the-art of diabetes treatment, the physiological roles of trace elements, various emerging trace element nanoparticles specific for diabetes were comprehensively reviewed in this work. Our findings disclose that trace element nanoparticles can fight against diabetes by lowering blood glucose, promoting insulin secretion, alleviating glucose intolerance, improving insulin sensitivity, ameliorating lipid profile, anti-inflammation and anti-oxidant stress, and other mechanisms. In conclusion, trace element nanoparticles can be applied as nanomedicines or dietary modifiers for effective intervention for diabetes.
Collapse
Affiliation(s)
- Shuxian Ruan
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaolei Guo
- Office of Academic Research, Binzhou Polytechnic, Binzhou, China
| | - Yuehong Ren
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Guangshang Cao
- Department of Pharmaceutics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Huijie Xing
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, China.
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Wu Y, Tang Z, Ma S, Du L. The promising application of hydrogel microneedles in medical application. J Pharm Pharmacol 2023:rgad058. [PMID: 37330272 DOI: 10.1093/jpp/rgad058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVES Hydrogel microneedles are emerging, and promising microneedles mainly composed of swelling polymers. This review is intended to summarize the preparation materials, formation mechanisms, applications and existing problems of hydrogel microneedles. METHODS We collected the literature on the materials, preparation and application of hydrogel microneedles in recent years, and summarized their mechanism and application in drugs delivery. KEY FINDINGS Hydrogel microneedles have higher safety and capabilities of controlled drug release, and have been mainly used in tumour and diabetes treatment, as well as clinical monitoring. In recent years, hydrogel microneedles have shown great potential in drug delivery, and have played the role of whitening, anti-inflammatory and promoting healing. CONCLUSIONS As an emerging drug delivery idea, hydrogel microneedles for drug delivery has gradually become a research hotspot. This review will provide a systematic vision for the favourable development of hydrogel microneedles and their promising application in medicine, especially drug delivery.
Collapse
Affiliation(s)
- Yanping Wu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ziyan Tang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shan Ma
- School of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lina Du
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
4
|
Iyer G, Dyawanapelly S, Jain R, Dandekar P. An overview of oral insulin delivery strategies (OIDS). Int J Biol Macromol 2022; 208:565-585. [PMID: 35346680 DOI: 10.1016/j.ijbiomac.2022.03.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Despite tremendous efforts, the world continues its fight against the common chronic disease-diabetes. Diabetes is caused by elevated glucose levels in the blood, which can lead to several complications like glaucoma, cataract, kidney failure, diabetic ketoacidosis, heart attack, and stroke. According to recent statistics, China, India, and the US rank at the top three positions with regards to the number of patients affected by diabetes. Ever since its discovery, insulin is one of the major therapeutic molecules that is used to control the disease in the diabetic population, worldwide. The most common route of insulin administration has been the subcutaneous route. However, the limitations associated with this route have motivated global efforts to explore alternative strategies to deliver insulin, including pulmonary, transdermal, nasal, rectal, buccal, and oral routes. Oral insulin delivery is the most convenient and patient-centered route. However, the oral route is also associated with numerous drawbacks that present significant challenges to the scientific fraternity. The human physiological system acts as a formidable barrier to insulin, limiting its bioavailability. The present review covers the major barriers against oral insulin delivery and explains formulation strategies that have been adopted to overcome these barriers. The review focuses on oral insulin delivery strategies (OIDS) for increasing the bioavailability of oral insulin, including nanoparticles, microparticles, nano-in-microparticles, hydrogels, tablets, capsules, intestinal patches, and use of ionic liquids. It also highlights some of the notable recent advancements and clinical trials in oral insulin delivery. This formulation based OIDS may significantly improve patient compliance in the treatment of diabetes.
Collapse
Affiliation(s)
- Gayatri Iyer
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, NP Marg, Matunga, Mumbai 400019, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, NP Marg, Matunga, Mumbai 400019, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, NP Marg, Matunga, Mumbai 400019, India.
| |
Collapse
|
5
|
Mishra V, Nayak P, Sharma M, Albutti A, Alwashmi ASS, Aljasir MA, Alsowayeh N, Tambuwala MM. Emerging Treatment Strategies for Diabetes Mellitus and Associated Complications: An Update. Pharmaceutics 2021; 13:1568. [PMID: 34683861 PMCID: PMC8538773 DOI: 10.3390/pharmaceutics13101568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence of diabetes mellitus (DM) is increasing rapidly at an accelerating rate worldwide. The status of diabetes has changed over the last three generations; whereas before it was deemed a minor disease of older people but currently it is now one of the leading causes of morbidity and mortality among middle-aged and young people. High blood glucose-mediated functional loss, insulin sensitivity, and insulin deficiency lead to chronic disorders such as Type 1 and Type 2 DM. Traditional treatments of DM, such as insulin sensitization and insulin secretion cause undesirable side effects, leading to patient incompliance and lack of treatment. Nanotechnology in diabetes studies has encouraged the development of new modalities for measuring glucose and supplying insulin that hold the potential to improve the quality of life of diabetics. Other therapies, such as β-cells regeneration and gene therapy, in addition to insulin and oral hypoglycemic drugs, are currently used to control diabetes. The present review highlights the nanocarrier-based drug delivery systems and emerging treatment strategies of DM.
Collapse
Affiliation(s)
- Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Pallavi Nayak
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana 142021, Punjab, India
| | - Mayank Sharma
- SVKM’s NMIMS School of Pharmacy & Technology Management, Shirpur 425405, Maharashtra, India;
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Noorah Alsowayeh
- Biology Department, College of Education, Majmaah University, Majmaah 11932, Saudi Arabia;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK;
| |
Collapse
|
6
|
Benyettou F, Kaddour N, Prakasam T, Das G, Sharma SK, Thomas SA, Bekhti-Sari F, Whelan J, Alkhalifah MA, Khair M, Traboulsi H, Pasricha R, Jagannathan R, Mokhtari-Soulimane N, Gándara F, Trabolsi A. In vivo oral insulin delivery via covalent organic frameworks. Chem Sci 2021; 12:6037-6047. [PMID: 33995999 PMCID: PMC8098678 DOI: 10.1039/d0sc05328g] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
With diabetes being the 7th leading cause of death worldwide, overcoming issues limiting the oral administration of insulin is of global significance. The development of imine-linked-covalent organic framework (nCOF) nanoparticles for oral insulin delivery to overcome these delivery barriers is herein reported. A gastro-resistant nCOF was prepared from layered nanosheets with insulin loaded between the nanosheet layers. The insulin-loaded nCOF exhibited insulin protection in digestive fluids in vitro as well as glucose-responsive release, and this hyperglycemia-induced release was confirmed in vivo in diabetic rats without noticeable toxic effects. This is strong evidence that nCOF-based oral insulin delivery systems could replace traditional subcutaneous injections easing insulin therapy.
Collapse
Affiliation(s)
- Farah Benyettou
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Nawel Kaddour
- Laboratory of Physiology Physiopathology and Biochemistry of Nutrition, Department of Biology, University of Tlemcen Algeria
| | | | - Gobinda Das
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Sudhir Kumar Sharma
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Sneha Ann Thomas
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Fadia Bekhti-Sari
- Laboratory of Physiology Physiopathology and Biochemistry of Nutrition, Department of Biology, University of Tlemcen Algeria
| | - Jamie Whelan
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Mohammed A Alkhalifah
- Department of Chemistry, College of Science, King Faisal University P.O. Box 400, Al-Ahsa 31982 Saudi Arabia
- School of Chemistry, University of Bristol Cantocks Close Bristol BS8 1TS UK
| | - Mostafa Khair
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Hassan Traboulsi
- Department of Chemistry, College of Science, King Faisal University P.O. Box 400, Al-Ahsa 31982 Saudi Arabia
| | - Renu Pasricha
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Ramesh Jagannathan
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Nassima Mokhtari-Soulimane
- Laboratory of Physiology Physiopathology and Biochemistry of Nutrition, Department of Biology, University of Tlemcen Algeria
| | | | - Ali Trabolsi
- New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| |
Collapse
|
7
|
Calixto GMF, Victorelli FD, Franz-Montan M, Baltazar F, Chorilli M. Innovative Mucoadhesive Precursor of Liquid Crystalline System Loading Anti-Gellatinolytic Peptide for Topical Treatment of Oral Cancer. J Biomed Nanotechnol 2021; 17:253-262. [PMID: 33785096 DOI: 10.1166/jbn.2021.3025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Current researches report an actual benefit of a treatment for oral cancer via inhibition of proteolytic matrix metallopro-teinases (MPP) with a peptide drug, called CTT1. However, peptides present poor oral bioavailability. Topical administration on oral mucosa avoids its passage through the gastrointestinal tract and the first-pass liver metabolism, but the barrier function of the oral mucosa can impair the permeation and retention of CTT1. The objective of this study is to incorporate CTT1 into a mucoadhesive precursor of liquid crystalline system (PLCS) as an interesting strategy for the topical treatment of oral cancer. PLCS consisting of oleic acid, ethoxylated 20 and propoxylated cetyl alcohol 5, polyethyleneimine (P)-associated chitosan (C) dispersion and CTT1 (FPC-CTT1) was developed and characterized by polarized light microscopy (PLM) and small-angle X-ray scattering (SAXS). In vitro permeation and retention across esophageal mucosa, In vitro cytotoxicity towards tongue squamous cell carcinoma cells, and in vivo evaluation of vascular changes using the chick embryo chorioallantoic membrane (CAM) model were performed. PLM and SAXS showed that FPC-CTT1acted as PLCS, because it formed a lamellar liquid crystalline system after the addition of artificial saliva. FPC-CTT1increased approximately 2-fold the flux of permeation and 3-fold the retention of CTT1 on the porcine esophageal mucosa. CTT1 does not affect cell viability. CAM tests showed that FPC preserved the blood vessels and it can be a safe formulation. These findings encourage the use of the FPC-CTT1 for topical treatment of oral cancer.
Collapse
Affiliation(s)
| | - Francesca Damiani Victorelli
- UNESP, São Paulo State University, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, 14800-903, Brazil
| | - Michelle Franz-Montan
- UNICAMP, University of Campinas, Piracicaba Dental School Department of Biosciences, Piracicaba, SP, 13414-903, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, 4710-057, Portugal
| | - Marlus Chorilli
- UNESP, São Paulo State University, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, 14800-903, Brazil
| |
Collapse
|
8
|
Martínez-López AL, González-Navarro CJ, Aranaz P, Vizmanos JL, Irache JM. In vivo testing of mucus-permeating nanoparticles for oral insulin delivery using Caenorhabditis elegans as a model under hyperglycemic conditions. Acta Pharm Sin B 2021; 11:989-1002. [PMID: 33996411 PMCID: PMC8105877 DOI: 10.1016/j.apsb.2021.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 10/31/2022] Open
Abstract
The aim was to evaluate the potential of mucus-permeating nanoparticles for the oral administration of insulin. These nanocarriers, based on the coating of zein nanoparticles with a polymer conjugate containing PEG, displayed a size of 260 nm with a negative surface charge and an insulin payload of 77 μg/mg. In intestinal pig mucus, the diffusivity of these nanoparticles (PPA-NPs) was found to be 20-fold higher than bare nanoparticles (NPs). These results were in line with the biodistribution study in rats, in which NPs remained trapped in the mucus, whereas PPA-NPs were able to cross this layer and reach the epithelium surface. The therapeutic efficacy was evaluated in Caenorhabditis elegans grown under high glucose conditions. In this model, worms treated with insulin-loaded in PPA-NPs displayed a longer lifespan than those treated with insulin free or nanoencapsulated in NPs. This finding was associated with a significant reduction in the formation of reactive oxygen species (ROS) as well as an important decrease in the glucose and fat content in worms. These effects would be related with the mucus-permeating ability of PPA-NPs that would facilitate the passage through the intestinal peritrophic-like dense layer of worms (similar to mucus) and, thus, the absorption of insulin.
Collapse
Key Words
- 1H NMR, 1H nuclear magnetic resonance
- Biodistribution
- Caenorhabditis elegans
- DAPI, 4ʹ,6-diamidino-2-phenylindole
- Deff, effective diffusion coefficient
- EDC, N-(3-di-methylaminopropyl)-Nʹ-ethylcarbodiimide
- Epithelium
- FT-IR, Fourier transform infrared spectroscopy
- FUdR, 5-fluoro-2′-deoxyuridine
- GIT, gastrointestinal tract
- H2DCF-DA, 2,7′-dichlorodihydro fluorescein diacetate
- HPLC, high-performance liquid chromatography
- I, insulin
- IIS, insulin/IGF-1 signaling
- Insulin
- Lifespan
- MSD, mean square displacement
- Mucus-permeating
- NGM, nematode growth medium
- NPs, nanoparticles
- Nanoparticles
- ORL, orlistat
- Oral delivery
- PBST, phosphate-buffered saline with triton
- PDI, polydispersity index
- PEG, poly(ethylene glycol)
- PPA, PEG-poly(anhydride) conjugate
- PPA-NPs, PEG-poly(anhydride)-coated zein nanoparticles
- ROS
- ROS, reactive oxygen species
- SEM, scanning electron microscopy
- SOD, superoxide dismutase
- THF, tetrahydrofuran
- Zein
Collapse
|
9
|
Chen X, Yu H, Wang L, Wang N, Zhang Q, Zhou W, Uddin MA. Preparation of phenylboronic acid‐based hydrogel microneedle patches for glucose‐dependent insulin delivery. J Appl Polym Sci 2020. [DOI: 10.1002/app.49772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiang Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Nan Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Qian Zhang
- The First Affiliated Hospital, College of Medicine Zhejiang University Hangzhou China
| | - Weibin Zhou
- The First Affiliated Hospital, College of Medicine Zhejiang University Hangzhou China
| | - Md Alim Uddin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| |
Collapse
|