1
|
Baudou FG, Rodriguez JP, Fusco L, de Roodt AR, De Marzi MC, Leiva L. South American snake venoms with abundant neurotoxic components. Composition and toxicological properties. A literature review. Acta Trop 2021; 224:106119. [PMID: 34481791 DOI: 10.1016/j.actatropica.2021.106119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/18/2023]
Abstract
In South America there are three snake genera with predominantly neurotoxic venoms: Crotalus, Micrurus and Hydrophis, which include nine species/subspecies, 97 species and a single marine species, respectively. Although accidents with neurotoxic venoms are less frequent than those with anticoagulant, cytotoxic or necrotic venoms (e.g. from Bothrops), they are of major public health importance. Venoms from genus Crotalus have been extensively studied, while data on the venoms from the other two genera are very limited, especially for Hydrophis. The venoms of North and South American Crotalus species show biochemical and physiopathological differences. The former species cause bothrops-like envenomation symptoms, while the latter mainly have neurotoxic and myotoxic effects, leading to respiratory paralysis and, occasionally, renal failure by myoglobinuria and death, often with no local lesions. Micrurus and Hydrophis also cause neurotoxic envenomations. Many studies have isolated, identified and characterized new enzymes and toxins, thus expanding the knowledge of snake venom composition. The present review summarizes the currently available information on neurotoxic venoms from South American snakes, with a focus on protein composition and toxicological properties. It also includes some comments concerning potential medical applications of elapid and crotalic toxins.
Collapse
Affiliation(s)
- Federico G Baudou
- Universidad Nacional de Luján (UNLu), Depto. de Ciencias Básicas, Luján, Buenos Aires, Argentina; Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES), UNLu-CONICET, Luján, Buenos Aires, Argentina.
| | - Juan P Rodriguez
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes, Argentina
| | - Luciano Fusco
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA (UNNE, CONICET), FaCENA, (UNNE), Corrientes, Argentina
| | - Adolfo R de Roodt
- Área Investigación y Desarrollo-Venenos, Instituto Nacional de Producción de Biológicos, Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Ministerio de Salud de la Nación, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Argentina; Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Mauricio C De Marzi
- Universidad Nacional de Luján (UNLu), Depto. de Ciencias Básicas, Luján, Buenos Aires, Argentina; Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES), UNLu-CONICET, Luján, Buenos Aires, Argentina
| | - Laura Leiva
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA (UNNE, CONICET), FaCENA, (UNNE), Corrientes, Argentina
| |
Collapse
|
2
|
Fast venomic analysis of Crotalus durissus terrificus from northeastern Argentina. Toxicon X 2020; 7:100047. [PMID: 32613194 PMCID: PMC7322346 DOI: 10.1016/j.toxcx.2020.100047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 11/24/2022] Open
Abstract
The complete knowledge of the toxins that make up venoms is the base for the treatment of snake accidents victims and the selection of specimens for the preparation of venom pools for antivenom production. In this work, we used a fast and direct venomics approach to identify the toxin families in the C.d. terrificus venom, a Southern American Neotropical rattlesnake. The RP-HPLC separation profile of pooled venom from adult specimens followed by mass spectrometry analysis revealed that C.d. terrificus' venom proteome is composed of 12 protein families, which are unevenly distributed in the venom, e.g., there are few major proteins in the venom's composition phospholipase A2, serine proteinase, crotamine and L-amino acid oxidase. At the same time, the proteome analysis revealed a small set of proteins with low quantity (less than 1.5%), both enzymes (metaloprotease, phospholipase B and 5'-nucleotidase) and proteins (Bradykinin potentiating and C-type natriuretic peptides, C-type lectin convulxin and nerve growth factor). To sum up, this research is the first venomic report of C.d.terrificus venom from Argentina. This proved to be crotamine positive venom that has a lower metalloprotease content than C.d. terrificus venoms from other regions. This information could be used in the discovery of future pharmacological agents or targets in antivenom therapy.
Collapse
|
3
|
Muratov EN, Bajorath J, Sheridan RP, Tetko IV, Filimonov D, Poroikov V, Oprea TI, Baskin II, Varnek A, Roitberg A, Isayev O, Curtarolo S, Fourches D, Cohen Y, Aspuru-Guzik A, Winkler DA, Agrafiotis D, Cherkasov A, Tropsha A. QSAR without borders. Chem Soc Rev 2020; 49:3525-3564. [PMID: 32356548 PMCID: PMC8008490 DOI: 10.1039/d0cs00098a] [Citation(s) in RCA: 370] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prediction of chemical bioactivity and physical properties has been one of the most important applications of statistical and more recently, machine learning and artificial intelligence methods in chemical sciences. This field of research, broadly known as quantitative structure-activity relationships (QSAR) modeling, has developed many important algorithms and has found a broad range of applications in physical organic and medicinal chemistry in the past 55+ years. This Perspective summarizes recent technological advances in QSAR modeling but it also highlights the applicability of algorithms, modeling methods, and validation practices developed in QSAR to a wide range of research areas outside of traditional QSAR boundaries including synthesis planning, nanotechnology, materials science, biomaterials, and clinical informatics. As modern research methods generate rapidly increasing amounts of data, the knowledge of robust data-driven modelling methods professed within the QSAR field can become essential for scientists working both within and outside of chemical research. We hope that this contribution highlighting the generalizable components of QSAR modeling will serve to address this challenge.
Collapse
Affiliation(s)
- Eugene N Muratov
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Zuliani JP, Soares AM. Toxins of Animal Venoms and Inhibitors. Curr Top Med Chem 2019; 19:1950-1951. [DOI: 10.2174/156802661922191024125315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Juliana Pavan Zuliani
- Lab. Imunologia Celular Aplicada à Saúde FIOCRUZ-RO Fundação Oswaldo Cruz, FIOCRUZ Unidade Rondônia, Porto Velho-RO, Brazil
| | - Andreimar Martins Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde FIOCRUZ-RO CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia Porto Velho-RO, Brazil
| |
Collapse
|