1
|
El-Gharably AA, Nassar AA, El-Ganzory NM, Saad-Allah KM, El-Barbary AA. Sulfoxidation of pyrimidine thioate derivatives and study their biological activities. Sci Rep 2025; 15:1024. [PMID: 39762326 PMCID: PMC11704135 DOI: 10.1038/s41598-024-83050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
In a quest to innovate biologically active molecules, the benzoylation of 4,6-dimethylpyrimidine-2-thiol hydrochloride (1) with benzoyl chloride derivatives was employed to produce a series of pyrimidine benzothioate derivatives (2-5). Subsequent sulfoxidation of these derivatives (2-5) using hydrogen peroxide and glacial acetic acid yielded a diverse array of pyrimidine sulfonyl methanone derivatives (6-9). In parallel, the sulfoxidation of pyrimidine sulfonothioates (10-12) yielded sulfonyl sulfonyl pyrimidines (13-15), originating from the condensation of compound 1 with sulfonyl chloride derivatives. The newly synthesized compounds underwent characterization via FT-IR, NMR, mass spectrometry, and elemental analyses. Biological screenings unveiled interesting properties: compounds 1 and 6 exhibited significant antimicrobial potency against S. epidermidis and S. haemolyticus, whereas compound 11 showed distinct insensitivity. Excitingly, compounds 12 and 6 showcased robust antioxidant activity by efficiently scavenging DPPH• radical, underscoring their potential in oxidative stress mitigation. Notably, compounds 10 and 12 displayed promising anti-tumor effects, with compound 12 demonstrating superior efficacy against the MCF-7 breast cancer cell line compared to compound 10. The study revealed a spectrum of biological activities across the synthesized derivatives, with modifications often resulting in diminished bioactivity compared to the parent compound 1. These findings shed light on the intricate relationship between chemical modifications and biological properties, offering valuable insights for future drug discovery endeavors.
Collapse
Affiliation(s)
- Atif A El-Gharably
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - A A Nassar
- Chemistry Department, Faculty of Science, Menoufia University, Shibin El-Kom, 32511, Egypt
| | - N M El-Ganzory
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Khalil M Saad-Allah
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - A A El-Barbary
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
2
|
Kunjiappan S, Panneerselvam T, Pavadai P, Balakrishnan V, Pandian SRK, Palanisamy P, Sankaranarayanan M, Kabilan SJ, Sundaram GA, Tseng WL, Kumar ASK. Fabrication of folic acid-conjugated pyrimidine-2(5H)-thione-encapsulated curdlan gum-PEGamine nanoparticles for folate receptor targeting breast cancer cells. Int J Biol Macromol 2024; 277:134406. [PMID: 39097067 DOI: 10.1016/j.ijbiomac.2024.134406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
In this study 5-((2-((3-methoxy benzylidene)-amino)-phenyl)-diazenyl)-4,6-diphenyl pyrimidine-2(5H)-thione was synthesized. The pharmacological applications of pyrimidine analogs are restricted due to their poor pharmacokinetic properties. As a solution, a microbial exopolysaccharide (curdlan gum) was used to synthesize folic acid-conjugated pyrimidine-2(5H)-thione-encapsulated curdlan gum-PEGamine nanoparticles (FA-Py-CG-PEGamine NPs). The results of physicochemical properties revealed that the fabricated FA-Py-CG-PEGamine NPs were between 100 and 400 nm in size with a majorly spherical shaped, crystalline nature, and the encapsulation efficiency and loading capacity were 79.04 ± 0.79 %, and 8.12 ± 0.39 % respectively. The drug release rate was significantly higher at pH 5.4 (80.14 ± 0.79 %) compared to pH 7.2. The cytotoxic potential of FA-Py-CG-PEGamine NPs against MCF-7 cells potentially reduced the number of cells after 24 h with 42.27 μg × mL-1 as IC50 value. The higher intracellular accumulation of pyrimidine-2(5H)-thione in MCF-7 cells leads to apoptosis, observed by AO/EBr staining and flow cytometry analysis. The highest pyrimidine-2(5H)-thione internalization in MCF-7 cells may be due to folate conjugated on the surface of curdlan gum nanoparticles. Further, internalized pyrimidine-2(5H)-thione increases the intracellular ROS level, leading to apoptosis and inducing the decalin in mitochondrial membrane potential. These outcomes demonstrated that the FA-Py-CG-PEGamine NPs were specificity-targeting folate receptors on the plasma membranes of MCF-7 Cells.
Collapse
Affiliation(s)
- Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamilnadu, India.
| | - Theivendren Panneerselvam
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Elayampalayam, Namakkal 637205, Tamilnadu, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Vanavil Balakrishnan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamilnadu, India
| | - Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamilnadu, India
| | - Ponnusamy Palanisamy
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani-333031, Rajasthan, India
| | | | - Ganeshraja Ayyakannu Sundaram
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Chennai 600 077, Tamilnadu, India
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung city 80424, Taiwan; School of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung city 80708, Taiwan
| | | |
Collapse
|
3
|
Chauhan M, Prajapati C, Mirza S, Barot R, Yadav R, Barmade M, Kakadiya D, Vijayvargia R, Haobam B, Baidya AT, Kumar R, Yadav MR, Murumkar P. Design, synthesis, biological evaluation and molecular dynamics of some novel 3-phenylpyrazolo[1,5- a]pyrimidine-2,7(1 H,4 H)-dione based compounds as anti-tubercular agents. J Biomol Struct Dyn 2024; 42:9031-9049. [PMID: 37655680 DOI: 10.1080/07391102.2023.2249109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/12/2023] [Indexed: 09/02/2023]
Abstract
Decaprenylphosphoryl-β-d-ribose-2'-epimerase (DprE1) is a druggable target which is being exploited for the development of new anti-TB agents. In the present work, we report developing a pharmacophore model and performing virtual screening of Asinex database using the developed pharmacophore model to get eight hits as potential DprE1 inhibitors. The hits were used as leads to design new 3-phenylpyrazolo[1,5-a]pyrimidine-2,7(1H,4H)-dione based potential anti-TB agents. On the basis of the identified lead molecules, a total of 18 compounds were synthesized and evaluated for their anti-TB activity by using MABA. ADMET predictions for all the compounds revealed that these compounds have drug-like and lead-like properties. One of the final compounds was found to exhibit potent anti-TB activity against Mycobacterium bovis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Monica Chauhan
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Chintu Prajapati
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Sadaf Mirza
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Rahul Barot
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Rasana Yadav
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Mahesh Barmade
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Dhruvi Kakadiya
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Ravi Vijayvargia
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Bijaya Haobam
- Dr. Vikrama Sarabhai Institute of Cell & Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Anurag Tk Baidya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U), Varanasi, U.P., India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U), Varanasi, U.P., India
| | - M R Yadav
- Centre of Research for Development, Parul University, Vadodara, Gujarat, India
| | - Prashant Murumkar
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
4
|
Dubey R, Makhija R, Sharma A, Sahu A, Asati V. Unveiling the promise of pyrimidine-modified CDK inhibitors in cancer treatment. Bioorg Chem 2024; 149:107508. [PMID: 38850781 DOI: 10.1016/j.bioorg.2024.107508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/21/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Cyclin-dependent kinases (CDKs) constitute a vital family of protein-serine kinases, pivotal in regulating various cellular processes such as the cell cycle, metabolism, proteolysis, and neural functions. Dysregulation or overexpression of CDK kinases is directly linked to the development of cancer. However, the currently approved CDK inhibitors by the US FDA, such as palbociclib, ribociclib, Trilaciclib, Abemaciclib, etc., although effective, exhibit limited specificity and often lead to undesirable adverse effects. First and second-generation CDK inhibitors have not gained significant clinical interaction due to their high toxicity and lack of specificity. To address these challenges, a combined approach is being employed in the quest for newer CDK inhibitors aimed at mitigating toxicity and side effects associated with CDKIs. The discovery of therapeutic agents selectively targeting tumorous cells, such as CDK inhibitors, has demonstrated promise in treating various cancers, including breast cancer. Extensive literature reviews have facilitated the development of novel CDK inhibitors by combining medicinally preferred pyrimidine derivatives with other heterocyclic rings. Pyrimidine derivatives substituted with pyrazole, imidazole, benzamide, benzene sulfonamide, indole carbohydrazide, and other privileged heterocyclic rings have shown encouraging efficacy in inhibiting cyclin-dependent kinase activity. This review provides comprehensive data, including structure-activity relationship (SAR), anticancer activity, and kinetics studies of potent compounds. Additionally, molecular docking studies with compounds under clinical trial and patents filed on pyrimidine based CDK inhibitors in cancer treatment are included. This review serves as a valuable resource for further development of CDK kinase inhibitors for cancer treatment, offering insights into their efficacy, specificity, and potential clinical applications.
Collapse
Affiliation(s)
- Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Rahul Makhija
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Adarsh Sahu
- Amity Institute of Pharmacy, Amity University Jaipur (Rajasthan), India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India.
| |
Collapse
|
5
|
Xu Z, Wang L, Hu H. Current scenario of fused pyrimidines with in vivo anticancer therapeutic potential. Arch Pharm (Weinheim) 2024; 357:e2400202. [PMID: 38752780 DOI: 10.1002/ardp.202400202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 08/06/2024]
Abstract
Cancer, characterized by uncontrolled cell growth and metastasis, is responsible for nearly one in six deaths and represents a severe threat to public health worldwide. Chemotherapy can substantially improve the quality of life and survival of patients with cancer, but anticancer chemotherapeutics are associated with a range of adverse effects. Moreover, almost all currently available anticancer chemotherapeutics could develop drug resistance over a period of time of application in cancer patients and ultimately lead to cancer relapse and death in 90% of patients, creating an urgent need to develop new anticancer agents. Fused pyrimidines trait the inextricable part of DNA and RNA and are vital in numerous biological processes. Fused pyrimidines can act on various biological cancer targets and have the potential to address drug resistance. In addition, more than 20 fused pyrimidines have already been approved for clinical treatment of different cancers and occupy a prominent place in the current therapeutic arsenal, revealing that fused pyrimidines are privileged scaffolds for the development of novel anticancer chemotherapeutics. The purpose of this review is to summarize the current scenario of fused pyrimidines with in vivo anticancer therapeutic potential along with their acute toxicity, metabolic profiles as well as pharmacokinetic properties, toxicity and mechanisms of action developed from 2020 to the present to facilitate further rational exploitation of more effective candidates.
Collapse
Affiliation(s)
- Zhi Xu
- Huanghuai University Industry Innovation & Research and Development Institute, Huanghuai University, Zhumadian, Henan, People's Republic of China
| | - Li Wang
- Zhumadian Agriculture International Cooperation and Exchange Center, Zhumadian, Henan, People's Republic of China
| | - Hongyan Hu
- Zhumadian Aquatic Technology Promotion Station, Zhumadian, Henan, People's Republic of China
| |
Collapse
|
6
|
Kohal R, Bhavana, Kumari P, Sharma AK, Gupta GD, Verma SK. Fyn, Blk, and Lyn kinase inhibitors: A mini-review on medicinal attributes, research progress, and future insights. Bioorg Med Chem Lett 2024; 102:129674. [PMID: 38408513 DOI: 10.1016/j.bmcl.2024.129674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Fyn, Blk, and Lyn are part of a group of proteins called Src family kinases. They are crucial in controlling cell communication and their response to the growth, changes, and immune system. Blocking these proteins with inhibitors can be a way to treat diseases where these proteins are too active. The primary mode of action of these inhibitors is to inhibit the phosphorylation of Fyn, Blk, and Lyn receptors, which in turn affects how signals pass within the cells. This review shows the structural and functional aspects of Fyn, Blk, and Lyn kinases, highlighting the significance of their dysregulation in diseases such as cancer and autoimmune disorders. The discussion encompasses the design strategies, SAR analysis, and chemical characteristics of effective inhibitors, shedding light on their specificity and potency. Furthermore, it explores the progress of clinical trials of these inhibitors, emphasizing their potential therapeutic applications.
Collapse
Affiliation(s)
- Rupali Kohal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Bhavana
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Preety Kumari
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Arun Kumar Sharma
- Department of Pharmacology, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, Punjab, India.
| |
Collapse
|
7
|
Mehany MM, Hammam OA, Selim AA, Sayed GH, Anwer KE. Novel pyridine bearing pentose moiety-based anticancer agents: design, synthesis, radioiodination and bioassessments. Sci Rep 2024; 14:2738. [PMID: 38302640 PMCID: PMC10834463 DOI: 10.1038/s41598-024-53228-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Pyridine compounds are one of the most important heterocyclic derivatives showing wide ranges in biological and pharmacological activities. Green chemistry eliminates or reduces the generation of hazardous compounds. It prevents pollution at a molecular level. The microwave technique used in heterocyclic compound synthesis is also an important branch of green chemistry techniques. In this study, we report designing and synthesizing a new pyridine-bearing pentose moiety via a one-pot multicomponent reaction using D-glucose and also investigate its behavior and reactivity toward some simple and heterocyclic amino derivatives. The chemical structures of the synthesized compounds were characterized and tested for their cytotoxic activities. Some of the test compounds exhibited slight to high cytotoxic activities against Caco2 (colon cancer) cells, HepG2 (hepatocellular carcinoma) cells and MCF-7 (human breast cancer) cells by MTT assay. The results showed clearly that compound 4 and compound 8 displayed strongest to moderate cytotoxic activity against the HepG2, Caco2 and MCF-7 respectively and compound 1 showed good activity against MCF-7 in comparison to the standard anticancer drug doxorubicin. These data were by cytopathological examination. An in-vivo radioactive tracing study of compound 4 proved its targeting ability to sarcoma cells in a tumor-bearing mice model. Our findings suggest that the synthesized compounds may be promising candidates as novel anticancer agents.
Collapse
Affiliation(s)
- Marwa M Mehany
- Laboratory Department, Chemistry Unit, Police Hospital, Agouza, Cairo, Egypt
| | - Olfat A Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Adli A Selim
- Labeled Compounds Department, Hot Laboratories Centre, Egyptian Atomic Energy Authority (EAEA), Cairo, 13759, Egypt.
| | - Galal H Sayed
- Heterocyclic Synthesis Lab., Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Kurls E Anwer
- Heterocyclic Synthesis Lab., Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
8
|
Ahmed K, Choudhary MI, Saleem RSZ. Heterocyclic pyrimidine derivatives as promising antibacterial agents. Eur J Med Chem 2023; 259:115701. [PMID: 37591149 DOI: 10.1016/j.ejmech.2023.115701] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/18/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023]
Abstract
Antibiotic resistance is a growing public health concern. The quest to understand the underlying mechanisms of drug resistance needs to be accompanied by an expanded arsenal of drugs. This calls for the development of new compounds with anti-bacterial properties. The ease of functionalization of the pyrimidine core, to produce structurally distinct compound libraries, has made pyrimidine a privileged structure for identifying anti-bacterial hits. The activity of pyrimidine derivatives can be attributed to the various subunits linked with the main core, especially at C-2 or C-4 or C-6. Particularly, presence of NH2 attached to C-2 of the pyrimidine nucleus has been shown to enhance the anti-bacterial activity against pathogenic Gram-positive and Gram-negative bacteria. The diversity of synthetic routes used for the synthesis of such compounds, the reported biological activities, and a growing need to develop novel anti-bacterial agents warrant a review that presents recent reports on the synthesis and anti-bacterial activities of pyrimidine-containing compounds.
Collapse
Affiliation(s)
- Kainat Ahmed
- Department of Chemistry and Chemical Engineering, SBASSE, Lahore University of Management Sciences, Sector-U, DHA, Lahore, 54792, Pakistan
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, SBASSE, Lahore University of Management Sciences, Sector-U, DHA, Lahore, 54792, Pakistan.
| |
Collapse
|
9
|
Rawal R, Gupta PK, Kumar B, Bhatia R. Design, Synthesis, and Biological Evaluation of Novel Dihydropyrimidinone Derivatives as Potential Anticancer Agents and Tubulin Polymerization Inhibitors. Assay Drug Dev Technol 2023; 21:17-28. [PMID: 36594970 DOI: 10.1089/adt.2022.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The severity and prevalence of cancer in modern time are a huge global health burden. Continuous efforts are being made toward the development of newer therapeutic candidates to treat and manage this ailment. The dihydropyrimidinone scaffold is one of the key nuclei that have been highly explored and investigated against cancer. It has the potential to combat the consequences of cancer by interacting with several biological targets. Tubulin polymerization inhibition is one such strategy to prevent the progression of cancer. In the presented work, we have synthesized a series of sixteen dihydropyrimidinone derivatives by following a rational drug design. The synthesized compounds have been characterized by 1H NMR and 13C NMR and were further evaluated for cytotoxic activity against breast cancer cell lines (MCF-7 and MDA-MB-231), lung cancer cell lines (A549), and colon cancer cell lines (HCT-116). Compounds 5D and 5P were found most potent and revealed a better cytotoxic activity compared with the standard drug colchicine. Furthermore, the tubulin polymerization inhibition assay revealed that compound 5D showed better inhibition than colchicines, whereas compound 5P revealed an almost equal inhibition to that of colchicine. Furthermore, to investigate the possible mode of action and binding patterns, compounds 5P and 5D were subjected to molecular docking against tubulin (Protein Data Bank ID: ISA0). The results showed that compounds revealed significant interactions and were well occupied inside the cavity of tubulin. The compounds 5D and 5P may serve as new leads in drug development against cancer.
Collapse
Affiliation(s)
- Ramkaran Rawal
- Natural Product Chemistry Group, Chemical Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Praveen K Gupta
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.,Department of Pharmaceutical Sciences, HNB Garhwal University, Srinagar, Garhwal, Uttarakhand, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
10
|
Lan W, Tang X, Yu J, Fei Q, Wu W, Li P, Luo H. Design, Synthesis, and Bioactivities of Novel Trifluoromethyl Pyrimidine Derivatives Bearing an Amide Moiety. Front Chem 2022; 10:952679. [PMID: 35910720 PMCID: PMC9334529 DOI: 10.3389/fchem.2022.952679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Twenty-three novel trifluoromethyl pyrimidine derivatives containing an amide moiety were designed and synthesized through four-step reactions and evaluated for their antifungal, insecticidal, and anticancer properties. Bioassay results indicated that some of the title compounds exhibited good in vitro antifungal activities against Botryosphaeria dothidea (B. dothidea), Phompsis sp., Botrytis cinereal (B. cinerea), Colletotrichum gloeosporioides (C. gloeosporioides), Pyricutaria oryzae (P. oryzae), and Sclerotinia sclerotiorum (S. sclerotiorum) at 50 μg/ml. Meanwhile, the synthesized compounds showed moderate insecticidal activities against Mythimna separata (M. separata) and Spdoptera frugiperda (S. frugiperda) at 500 μg/ml, which were lower than those of chlorantraniliprole. In addition, the synthesized compounds indicated certain anticancer activities against PC3, K562, Hela, and A549 at 5 μg/ml, which were lower than those of doxorubicin. Notably, this work is the first report on the antifungal, insecticidal, and anticancer activities of trifluoromethyl pyrimidine derivatives bearing an amide moiety.
Collapse
Affiliation(s)
- Wenjun Lan
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Xuemei Tang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Qiang Fei
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Wenneng Wu
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
- *Correspondence: Wenneng Wu, ; Pei Li, ; Heng Luo,
| | - Pei Li
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine, Kaili University, Kaili, China
- *Correspondence: Wenneng Wu, ; Pei Li, ; Heng Luo,
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- *Correspondence: Wenneng Wu, ; Pei Li, ; Heng Luo,
| |
Collapse
|
11
|
Duan Y, Zhu HL. Privileged Scaffold for Drug Design and Activity Improvement - Part IV. Curr Top Med Chem 2022; 22:268. [PMID: 35291933 DOI: 10.2174/156802662204220210163610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yongtao Duan
- Henan Provincial Key Laboratory of Children\'s Genetics and Metabolic Diseases
Children\'s Hospital Affiliated with Zhengzhou University
Henan Children’s Hospital
Zhengzhou Children’s Hospital
Zhengzhou University
Zhengzhou 450018
China
| | - Hai-liang Zhu
- Henan Provincial Key Laboratory of Children\'s Genetics and Metabolic Diseases
Children\'s Hospital Affiliated with Zhengzhou University
Henan Children’s Hospital
Zhengzhou Children’s Hospital
Zhengzhou University
Zhengzhou 450018
China
| |
Collapse
|