1
|
Moadab A, Khorramdelazad H, Javar MTA, Nejad MSM, Mirzaie S, Hatami S, Mahdavi N, Ghaffari S, Yazdian FA. Unmasking a Paradox: Roles of the PD-1/PD-L1 Axis in Alzheimer's Disease-Associated Neuroinflammation. J Neuroimmune Pharmacol 2025; 20:46. [PMID: 40285967 DOI: 10.1007/s11481-025-10206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Alzheimer's disease (AD) represents the most prevalent form of dementia, characterized by progressive cognitive impairment and chronic neuroinflammation. Immune checkpoint inhibitors (ICIs), including anti-programmed cell death (PD)-1 and anti-PD-L1, signify a revolutionary advancement in cancer treatment by preventing T-cell exhaustion; however, their therapeutic application in AD presents a conundrum. Hypothesis: Recent preclinical studies indicate that PD-1 inhibition in AD mouse models induces an interferon-gamma (IFN-γ)-mediated response, leading to increased recruitment of monocyte-derived macrophages into the brain, enhanced clearance of amyloid-beta (Aβ) plaques, and improved cognitive performance. Nonetheless, this therapeutic effect is counterbalanced by the potential for exacerbated neuroinflammation, as PD-1/PD-L1 blockade may potentiate pro-inflammatory T helper (Th)1 and Th17 responses. In this review, we critically discuss the pertinent pro-inflammatory and neuroprotective facets of T cell biology in the pathogenesis of AD, emphasizing the potential for modulation of the PD-1/PD-L1 axis to influence both Aβ clearance and the dynamics of neuroinflammatory processes. In summary, we determine that ICIs are promising tools for reducing AD pathology and improving cognition. However, it is essential to refine treatment protocols and carefully select patients to optimize neuroprotective effects while adequately considering inflammatory risks.
Collapse
Affiliation(s)
- Ali Moadab
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohammad Taha Akbari Javar
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Saber Mohammadian Nejad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Shahrzad Mirzaie
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sina Hatami
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Nima Mahdavi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Saeed Ghaffari
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Askari Yazdian
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
2
|
Sharma A, Mehra V, Kumar V, Jain A, Prakash H. Tailoring MAPK Pathways: New Therapeutic Avenues for Treating Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04919-0. [PMID: 40257689 DOI: 10.1007/s12035-025-04919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 04/03/2025] [Indexed: 04/22/2025]
Abstract
Alzheimer's disease (AD) is irreversible, progressive, and refractory in nature and is managed very poorly clinically due to very limited treatment outcomes. Unfortunately, most of the multiple clinical trials involving AD patients were unsuccessful in improving the disease prognosis. At the cellular level, many signaling pathways have been proposed to be involved in the sterile/refractory behavior of degenerating neurons in AD. Due to the involvement of p38MAPK in the pathogenesis of Alzheimer's disease, numerous investigations have attempted to determine the beneficial effects of MAPK targeting on memory, inflammatory programming of the brain, and synaptic plasticity. In view of this, various clinical trials involving several MAPK inhibitors (with good safety profiles and few side effects) have yielded positive results in AD patients, suggesting that MAPK targeting may be effective for reducing the pathogenesis of AD, but due to selectivity, dosing, and patient stratification, this aspect still needs further development. In view of their selectivity and off-target effects, only a few MAPK inhibitors have been employed in clinical trials against AD, indicating the scope of their development in this area. Therefore, this study focused on MAPK-based interventions as an upcoming and innovative approach for alleviating AD, with a special emphasis on clinical studies.
Collapse
Affiliation(s)
- Apoorv Sharma
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Sector 125, Gautam Buddha Nagar, Uttar Pradesh, 201303, India
| | - Vandana Mehra
- Amity Centre for Translational Research, Amity University, NOIDA, Sector 125, Gautam Buddha Nagar, Uttar Pradesh, 201303, India
| | - Vijay Kumar
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Sector 125, Gautam Buddha Nagar, Uttar Pradesh, 201303, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Punjab, 151401, India
| | - Hridayesh Prakash
- Amity Centre for Translational Research, Amity University, NOIDA, Sector 125, Gautam Buddha Nagar, Uttar Pradesh, 201303, India.
| |
Collapse
|
3
|
Zhang B, Xu B, Zhang R, Gong B, Guo J. Dysregulated interleukin networks drive immune heterogeneity in Alzheimer's disease: an immunogenomic approach to subgroup classification and predictive modeling. BMC Neurol 2025; 25:154. [PMID: 40211218 PMCID: PMC11984269 DOI: 10.1186/s12883-025-04155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/24/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Alzheimer's Disease (AD) is marked by intricate immunological alterations, including the dysregulation of interleukin signaling. This study investigates the differential expression and potential roles of interleukins and their receptors in AD patients. METHODS We analyzed the GSE48350 dataset to assess the single-sample Gene Set Enrichment Analysis (ssGSEA) scores for interleukins and their receptors between normal and AD groups. Differentially expressed interleukin-related genes (DIGs) were identified. Enrichment analysis was conducted to understand functional implications. LASSO and logistic regression were used to identify key interleukin genes, which were employed to construct a predictive nomogram. This model was validated using the GSE132903 dataset. Unsupervised clustering and immune cell infiltration analyses were performed to examine AD patient heterogeneity. RESULTS The ssGSEA scores indicated significantly elevated interleukin and receptor levels in AD patients. A total of 23 DIGs were discovered, and the enrichment analysis emphasized their participation in immune signaling pathways. The nomogram based on key interleukin genes demonstrated strong predictive capability, with an AUC of 0.882 in the training set and 0.837 in the validation set. Unsupervised clustering revealed two AD subgroups with distinct immune profiles and pathway activities. Subgroup C2 exhibited higher immune cell infiltration and pathway activity than subgroup C1. CONCLUSION Interleukins and their receptors are significantly upregulated in AD patients, with distinct immune profiles identified in AD subgroups. The predictive nomogram effectively stratifies AD patients based on interleukin gene expression. These findings provide insights into AD's immunological landscape and suggest potential biomarkers for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Bin Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, China
| | - Binglei Xu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, China
| | - Ruoxian Zhang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Baoying Gong
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, China
| | - Jianwen Guo
- The Second Affiliated Hospital of Guangzhou, Guangdong Provincial Hospital of Traditional Chinese Medicine, University of Chinese Medicine, N. 111 Dade Road, Yuexiu District, Guangzhou City, 510030, Guangdong Province, China.
| |
Collapse
|
4
|
Spicer J, Malaspina D, Blank SV, Goosens KA. Follicle-stimulating hormone: More than a marker for menopause: FSH as a frontier for women's mental health. Psychiatry Res 2025; 345:116239. [PMID: 39892305 DOI: 10.1016/j.psychres.2024.116239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 02/03/2025]
Abstract
The average current life expectancy entails that women will spend over one-third of their lives in menopause. Follicle-stimulating hormone (FSH) levels in women begin to increase roughly six years before the final menstrual period, reaching a menopausal plateau that is nearly 14 times the level of FSH observed in men, a profound sex-specific difference. A promising new body of work examines whether these age-associated increases in FSH contribute to multiple menopause-related conditions, including psychiatric morbidities. This paper highlights research advances showing the potential role of FSH and its underlying mechanisms in mental health conditions for women in menopause and makes the call for more research.
Collapse
Affiliation(s)
- Julie Spicer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Dolores Malaspina
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stephanie V Blank
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ki A Goosens
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
5
|
Cantone AF, Burgaletto C, Di Benedetto G, Gaudio G, Giallongo C, Caltabiano R, Broggi G, Bellanca CM, Cantarella G, Bernardini R. Rebalancing Immune Interactions within the Brain-Spleen Axis Mitigates Neuroinflammation in an Aging Mouse Model of Alzheimer's Disease. J Neuroimmune Pharmacol 2025; 20:15. [PMID: 39918606 PMCID: PMC11805801 DOI: 10.1007/s11481-025-10177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide, characterized by accumulation of amyloid-β protein and hyperphosphorylated tau protein in the brain. Neuroinflammation, resulting from chronic activation of brain-resident innate immune cells as well as enhanced peripheral leukocyte access across the blood-brain barrier, crucially affects AD progression. In this context, TNFSF10, a cytokine substantially expressed in the AD brain, has been shown to modulate both the innate and the adaptive branches of the immune response in AD-related neuroinflammation. In this study, we explored whether a TNFSF10-neutralizing treatment could represent a tool to re-balance the overall overshooting inflammatory response in a mouse model of AD. Specifically, 3xTg-AD mice were treated sub-chronically with an anti-TNFSF10 monoclonal antibody for three months, and were then sacrificed at 15 months. TNFSF10 neutralization reduced the expression of the inflammatory marker CD86, inversely related to levels of the anti-inflammatory marker CD206 in the brain of 3xTg-AD mice, suggesting a switch of microglia towards a neuroprotective phenotype. Similar results were observed in the splenic macrophage population. Moreover, flow cytometry revealed a significant decrease of CD4+CD25+FOXP3+ T regulatory cells as well as reduced number of CD11b+LY6Chigh proinflammatory monocytes in both the brain and the spleen of 3xTg-AD mice treated with anti-TNFSF10 monoclonal antibody. Finally, the treatment resulted in lower count of splenic CD4+ and CD8+ T cells expressing PD1. The data suggest that TNFSF10 system-targeted treatment effectively restrain overshooting central and peripheral inflammation by rebalancing the overall immune response, mitigating the progression of AD pathology.
Collapse
Affiliation(s)
- Anna Flavia Cantone
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
- Clinical Toxicology Unit, University Hospital of Catania, Catania, Italy.
| | - Gabriella Gaudio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Hematology, University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, Catania, Italy
| |
Collapse
|
6
|
Zhang G, Peng Q, Guo X, Pan L, Xiong M, Zhang X, Dai L, Zhang Z, Xiao T, He J, Liu M, Ke W, Zhang Z. Microglia-derived Galectin-9 drives amyloid-β pathology in Alzheimer's disease. Aging Cell 2025; 24:e14396. [PMID: 39485716 PMCID: PMC11822670 DOI: 10.1111/acel.14396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024] Open
Abstract
The accumulation of amyloid-β (Aβ) and overactivation of microglia contribute to the pathogenesis of Alzheimer's disease (AD), but the interaction between microglial activation and Aβ deposition in AD remains elusive. Here we revealed that Aβ activates microglia and promotes the release of Galectin-9 (Gal-9), a member of the β-galactoside-binding family of lectins. The levels of Gal-9 in the cerebrospinal fluid and brain tissues of AD patients are higher than those in control subjects. Gal-9 interacts with Aβ and promotes its aggregation, generating Gal-9-Aβ fibrils with enhanced seeding activity and neurotoxicity. The expression of Gal-9 increases with age in the brains of APP/PS1 transgenic mice. Knockout of Gal-9 in APP/PS1 mice substantially reduced Aβ sedimentation, neuroinflammation, and cognitive impairment. Moreover, depletion of Gal-9 inhibited the seeding activity of brain homogenates from APP/PS1 mice. These findings reveal a mechanism by which microglia-derived Gal-9 accelerates Aβ aggregation and seeding in AD. Thus, strategies aimed at inhibiting Gal-9 may hold promise as a disease-modifying therapy to alleviate AD pathology.
Collapse
Affiliation(s)
- Guoxin Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qinyu Peng
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiaodi Guo
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lina Pan
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Min Xiong
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xingyu Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lijun Dai
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhaohui Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Tingting Xiao
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Juanfeng He
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Miao Liu
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Wei Ke
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhentao Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
- TaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| |
Collapse
|
7
|
Nasme F, Behera J, Tyagi P, Debnath N, Falcone JC, Tyagi N. The potential link between the development of Alzheimer's disease and osteoporosis. Biogerontology 2025; 26:43. [PMID: 39832071 DOI: 10.1007/s10522-024-10181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025]
Abstract
Alzheimer's disease (AD) and osteoporosis (OP) pose distinct but interconnected health challenges, both significantly impacting the aging population. AD, a neurodegenerative disorder characterized by memory impairment and cognitive decline, is primarily associated with the accumulation of abnormally folded amyloid beta (Aβ) peptides and neurofibrillary tangles in the brain. OP, a skeletal disorder marked by low bone mineral density, involves dysregulation of bone remodeling and is associated with an increased risk of fractures. Recent studies have revealed an intriguing link between AD and OP, highlighting shared pathological features indicative of common regulatory pathophysiological pathways. In this article, we elucidate the signaling mechanisms that regulate the pathology of AD and OP and offer insights into the intricate network of factors contributing to these conditions. We also examine the role of bone-derived factors in the progression of AD, underscoring the plausibility of bidirectional communication between the brain and the skeletal system. The presence of amyloid plaques in the brain of individuals with AD is akin to the accumulation of brain Aβ in vascular dementia, pointing towards the need for further investigation of shared molecular mechanisms. Moreover, we discuss the role of bone-derived microRNAs that may regulate the pathological progression of AD, providing a novel perspective on the role of skeletal factors in neurodegenerative diseases. The insights presented here should help researchers engaged in exploring innovative therapeutic approaches targeting both neurodegenerative and skeletal disorders in aging populations.
Collapse
Affiliation(s)
- Fariha Nasme
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Jyotirmaya Behera
- Division of Immunology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Prisha Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Rahya-Suchani (Bagla) Samba, Jammu, Jammu & Kashmir, 181143, India
| | - Jeff C Falcone
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Neetu Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
8
|
Shah S, Jain H. Microglia-Associated Neuroinflammation in Alzheimer’s Disease and Its Therapeutic Potential. NEUROGLIA 2024; 5:452-466. [DOI: 10.3390/neuroglia5040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Background: Neuroinflammation has long been implicated in the progression of amyloid beta (Aβ) accumulation and the decline of cognitive function in Alzheimer’s disease (AD). The phenotype balance between A1 (toxic) and A2 (safe) microglial phenotypes to toxic illness in AD has become a hot research topic at present. Currently, many transcription factors, downstream signaling pathways, and molecular mechanisms that regulate the polarization of microglia are being explored. Furthermore, microglia may also exert a complex role in AD through the transformation of Aβ plaques or debris clearance, reflected in Aβ phagocytosis. One of the mediators of neuroinflammation in AD is the activated microglia. Therefore, the regulation of microglial function may be the key to successfully treating AD. Methods: This paper is a review article. PubMed, Embase, Scopus, and research meeting abstracts were searched up to 2024 for studies of microglia and neuroinflammation in Alzheimer’s Disease. Systematic information retrieval was performed, and appropriate studies were isolated based on important information available in the studies. The information from each of the articles was understood and extracted to form a database. Results: The similar neuropathological results between several animals and AD cases show the possibility of implementing microglia-related changes as an earlier diagnostic marker for AD in humans. The gene sets identified in various transcriptomic studies further foster this avenue of research by offering potential targets for therapeutic development. Substantial evidence, both in vitro and in vivo, has suggested that the loss of the normal A2 phenotype and the activation of toxic A1 microglia contribute to neurodegeneration in AD. Conclusions: Promoting or restoring the polarization of microglia towards the A2 phenotype may thus represent an effective therapeutic strategy for ameliorating neuroinflammation and progressive neurocognitive impairments. Multiple studies suggest that microglia-associated neuroinflammation at a special stage could also be protective, and, therefore, intervention should be delicate so that a beneficial response is retained.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Hritvik Jain
- Department of Internal Medicine, All India Institute of Medical Sciencies, Jodhpur 342005, India
| |
Collapse
|
9
|
Wiseman R, Bigos KL, Arnsten AFT, Slusher BS. Inhibition of brain glutamate carboxypeptidase II (GCPII) to enhance cognitive function. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 102:27-63. [PMID: 39929583 DOI: 10.1016/bs.apha.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Cognitive deficits are a class of symptoms present in a broad range of disorders that go largely unaddressed by current medications. Disruptions in executive function and memory can be detrimental to patient quality of life, so there is a large unmet medical need for novel therapies to improve cognitive performance. Recent research has highlighted the importance of the type II metabotropic glutamate receptor 3 (mGluR3) in patterns of persistent neuronal firing in the dorsolateral prefrontal cortex of primates, a region critical for higher order cognitive processes. The selective, endogenous agonist of the mGlu3 receptor is N-acetylaspartyl glutamate (NAAG). NAAG is hydrolyzed by the enzyme glutamate carboxypeptidase II (GCPII) which is highly upregulated in neuroinflammatory conditions. Inhibition, GCPII has been investigated as a promising therapeutic avenue in a range of preclinical models and the relationship between NAAG and cognitive function has been studied in multiple clinical populations. The following chapter summarizes the body of preclinical and clinical work supporting the inhibition of GCPII to improve cognitive deficits and the drug discovery approaches that have been utilized to improve pharmacokinetics and brain penetration for future clinical translation of GCPII inhibitor.
Collapse
Affiliation(s)
- Robyn Wiseman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States; Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Kristin L Bigos
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Amy F T Arnsten
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, New Haven, CT, United States
| | - Barbara S Slusher
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States; Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
10
|
Hao F, Zeng M, Cao B, Liang X, Ye K, Jiao X, Feng W, Zheng X. Neobavaisoflavone Ameliorates Memory Deficits and Brain Damage in Aβ 25-35-Induced Mice by Regulating SIRT1. CNS Neurosci Ther 2024; 30:e70068. [PMID: 39392360 PMCID: PMC11469773 DOI: 10.1111/cns.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/29/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a common chronic neurodegenerative disease in older people, and there is no specific treatment that can stop or reverse its progression. Neobavaisoflavone (NBIF) is a flavonoid that has been shown to have neuroprotective effects, but its role in AD has not been revealed. The present study investigated the role and mechanism of NBIF on Aβ25-35-induced brain injury. METHODS In this experiment, the AD mouse model was established by injection of Aβ25-35 peptides (200 μM, icv), and Donepezil (Don, 10 mg/kg/days), NBIF-L (15 mg/kg/days), and NBIF-H (30 mg/kg/days) were administered orally for 4 weeks. Learning memory, hippocampal pathological changes, pathological markers, apoptosis, oxidative stress, inflammation, immune cells were measured in mice. Network pharmacology combined with the GEO database led to the identification of SIRT1, a key target for NBIF intervention in AD, and levels of SIRT1, p-STAT3 and FOXO1 were measured. In addition, the antagonistic activity of SIRT1 transfection silencing against NBIF in Aβ25-35-induced in N9 cells and N2a-APP69 cells was investigated to assess whether the effects caused by NBIF were mediated by SIRT1. RESULTS The results showed that NBIF ameliorated learning memory and hippocampal neuronal damage, reduced pathological markers, apoptosis, oxidative stress and neuroinflammation, and modulated immune cells. SIRT1 is a key target for NBIF intervention in AD, and NBIF upregulates SIRT1 and reduces the expression levels of p-STAT3 and FOXO1. Furthermore, silencing SIRT1 effectively reduced the protective effect of NBIF on Aβ25-35-induced N9 cells and N2a-APP69 cells, which indicated that the protective effect of NBIF on AD is related to SIRT1. CONCLUSIONS NBIF ameliorated Aβ25-35-induced brain injury by inhibiting apoptosis, oxidative stress, and neuroinflammation, which may be mediated through SIRT1 signaling. These findings provide a rationale for NBIF in the treatment of AD and help facilitate the development of clinical therapeutic agents for AD.
Collapse
Affiliation(s)
- Fengxiao Hao
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
- The Engineering and Technology Center for Chinese Medicine Development of Henan ProvinceZhengzhouChina
- Co‐construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.RZhengzhouChina
| | - Mengnan Zeng
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
- The Engineering and Technology Center for Chinese Medicine Development of Henan ProvinceZhengzhouChina
- Co‐construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.RZhengzhouChina
| | - Bing Cao
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
- The Engineering and Technology Center for Chinese Medicine Development of Henan ProvinceZhengzhouChina
- Co‐construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.RZhengzhouChina
| | - Xiwen Liang
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Kaili Ye
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
- The Engineering and Technology Center for Chinese Medicine Development of Henan ProvinceZhengzhouChina
- Co‐construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.RZhengzhouChina
| | - Xinmian Jiao
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
- The Engineering and Technology Center for Chinese Medicine Development of Henan ProvinceZhengzhouChina
- Co‐construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.RZhengzhouChina
| | - Weisheng Feng
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
- The Engineering and Technology Center for Chinese Medicine Development of Henan ProvinceZhengzhouChina
- Co‐construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.RZhengzhouChina
| | - Xiaoke Zheng
- College of PharmacyHenan University of Chinese MedicineZhengzhouChina
- The Engineering and Technology Center for Chinese Medicine Development of Henan ProvinceZhengzhouChina
- Co‐construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.RZhengzhouChina
| |
Collapse
|
11
|
Retinasamy T, Lee ALY, Lee HS, Lee VLL, Shaikh MF, Yeong KY. Repurposing Anakinra for Alzheimer's Disease: The In Vitro and In Vivo Effects of Anakinra on LPS- and AC-Induced Neuroinflammation. ACS Chem Neurosci 2024; 15:3298-3310. [PMID: 39213521 DOI: 10.1021/acschemneuro.4c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease is a significant global health issue, and studies suggest that neuroinflammation plays a vital role in the advancement of this disease. In this study, anakinra has been shown to display a time- and concentration-dependent antineuroinflammatory effect. In the in vitro studies, it diminished the gene expressions of tumor necrosis factor-alpha (TNF-α) and nitric oxide (NO) synthase 2 stimulated by lipopolysaccharide (LPS). Anakinra also reduced the LPS-induced production of NO and reactive oxygen species. Thus, the hypertrophic state of LPS-activated BV2 microglial cells was reversed by anakinra. Furthermore, acrylamide (ACR)-induced activation of nuclear transcription factor-κB, TNF-α, and interleukin-1β was downregulated, while cAMP response element binding protein and brain-derived neurotrophic factor expression levels were markedly enhanced in ACR-treated zebrafish larvae. It was also observed that anakinra improved the uncoordinated swimming behaviors in ACR-exposed zebrafish larvae. Overall, anakinra demonstrated potential antineuroinflammatory and antioxidative effects.
Collapse
Affiliation(s)
- Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Amber Lot Yee Lee
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Hsien Siang Lee
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Vanessa Lin Lin Lee
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange 2795, NSW, Australia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
12
|
Ji Y, McLean JL, Xu R. Emerging Human Pluripotent Stem Cell-Based Human-Animal Brain Chimeras for Advancing Disease Modeling and Cell Therapy for Neurological Disorders. Neurosci Bull 2024; 40:1315-1332. [PMID: 38466557 PMCID: PMC11365908 DOI: 10.1007/s12264-024-01189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/23/2023] [Indexed: 03/13/2024] Open
Abstract
Human pluripotent stem cell (hPSC) models provide unprecedented opportunities to study human neurological disorders by recapitulating human-specific disease mechanisms. In particular, hPSC-based human-animal brain chimeras enable the study of human cell pathophysiology in vivo. In chimeric brains, human neural and immune cells can maintain human-specific features, undergo maturation, and functionally integrate into host brains, allowing scientists to study how human cells impact neural circuits and animal behaviors. The emerging human-animal brain chimeras hold promise for modeling human brain cells and their interactions in health and disease, elucidating the disease mechanism from molecular and cellular to circuit and behavioral levels, and testing the efficacy of cell therapy interventions. Here, we discuss recent advances in the generation and applications of using human-animal chimeric brain models for the study of neurological disorders, including disease modeling and cell therapy.
Collapse
Affiliation(s)
- Yanru Ji
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jenna Lillie McLean
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Ranjie Xu
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
13
|
Tsintzas E, Niccoli T. Using Drosophila amyloid toxicity models to study Alzheimer's disease. Ann Hum Genet 2024; 88:349-363. [PMID: 38517001 DOI: 10.1111/ahg.12554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 03/23/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia and is characterised by a progressive loss of neurons, which manifests as gradual memory decline, followed by cognitive loss. Despite the significant progress in identifying novel biomarkers and understanding the prodromal pathology and symptomatology, AD remains a significant unmet clinical need. Lecanemab and aducanumab, the only Food and Drug Administration approved drugs to exhibit some disease-modifying clinical efficacy, target Aβ amyloid, underscoring the importance of this protein in disease aetiology. Nevertheless, in the absence of a definitive cure, the utilisation of preclinical models remains imperative for the identification of novel therapeutic targets and the evaluation of potential therapeutic agents. Drosophila melanogaster is a model system that can be used as a research tool to investigate neurodegeneration and therapeutic interventions. The short lifespan, low price and ease of husbandry/rearing make Drosophila an advantageous model organism from a practical perspective. However, it is the highly conserved genome and similarity of Drosophila and human neurobiology which make flies a powerful tool to investigate neurodegenerative mechanisms. In addition, the ease of transgenic modifications allows for early proof of principle studies for future therapeutic approaches in neurodegenerative research. This mini review will specifically focus on utilising Drosophila as an in vivo model of amyloid toxicity in AD.
Collapse
Affiliation(s)
- Elli Tsintzas
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| | - Teresa Niccoli
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| |
Collapse
|
14
|
Zhang H, Huang D, Chen E, Cao D, Xu T, Dizdar B, Li G, Chen Y, Payne P, Province M, Li F. mosGraphGPT: a foundation model for multi-omic signaling graphs using generative AI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606222. [PMID: 39149314 PMCID: PMC11326168 DOI: 10.1101/2024.08.01.606222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Generative pretrained models represent a significant advancement in natural language processing and computer vision, which can generate coherent and contextually relevant content based on the pre-training on large general datasets and fine-tune for specific tasks. Building foundation models using large scale omic data is promising to decode and understand the complex signaling language patterns within cells. Different from existing foundation models of omic data, we build a foundation model, mosGraphGPT, for multi-omic signaling (mos) graphs, in which the multi-omic data was integrated and interpreted using a multi-level signaling graph. The model was pretrained using multi-omic data of cancers in The Cancer Genome Atlas (TCGA), and fine-turned for multi-omic data of Alzheimer's Disease (AD). The experimental evaluation results showed that the model can not only improve the disease classification accuracy, but also is interpretable by uncovering disease targets and signaling interactions. And the model code are uploaded via GitHub with link: https://github.com/mosGraph/mosGraphGPT.
Collapse
Affiliation(s)
- Heming Zhang
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
| | - Di Huang
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
| | - Emily Chen
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- School of Arts and Sciences, University of Rochester, Rochester, NY, 14627, USA
| | - Dekang Cao
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Computer Science and Engineering
| | - Tim Xu
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Computer Science and Engineering
| | - Ben Dizdar
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Computer Science and Engineering
| | - Guangfu Li
- Department of Surgery, School of Medicine, University of Connecticut, CT, 06032, USA
| | - Yixin Chen
- Department of Computer Science and Engineering
| | - Philip Payne
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
| | | | - Fuhai Li
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
15
|
Xu C, Wu W, Fan Y, Zhu S. Independent causal effect of migraines on Alzheimer's disease risk: a multivariate Mendelian randomization study. Front Neurol 2024; 15:1401880. [PMID: 38903170 PMCID: PMC11188460 DOI: 10.3389/fneur.2024.1401880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Background The observational studies investigated the impact of migraine on Alzheimer's Disease (AD). However, these findings were limited by confounding factors and reverse causation, leading to contradictory results. Methods We utilized Univariable Mendelian Randomization (UVMR) to explore the link between migraine (13,971 cases/470,627 controls) and AD risk (Bellenguez et al., 39,106 cases/46,828 controls; FinnGen, 111,471 cases/111,471 controls). Meta-analysis was performed for comprehensive synthesis. Employing Multivariable Mendelian Randomization (MVMR), we created models incorporating migraine and 35 potential AD risk factors, examining migraine's independent impact on AD onset risk under considering these factors. Results The meta-analysis of inverse variance weighted MR results, combining data from Bellenguez et al. (odds ratio (OR) [95% confidence interval (CI)]: 1.5717 [1.1868-2.0814], p = 0.0016) and FinnGen (OR [95% CI]: 1.2904 [0.5419-3.0730], p = 0.5646), provided evidence for a causal relationship between genetically predicted migraine and the heightened risk of AD occurrence (OR [95% CI]: 1.54 [1.18, 2.00], p < 0.01). After adjusting for Diastolic blood pressure (OR [95% CI]: 1.4120 [0.8487-2.3493], p = 0.1840) and Tumor necrosis factor alpha (OR [95% CI]: 1.2411 [0.8352-1.8443], p = 0.2852), no discernible association was detected between migraine and the risk of AD. Conclusion This study offers compelling evidence indicating a significant correlation between genetically predicted migraine and an elevated risk of AD.
Collapse
Affiliation(s)
- Chengfeng Xu
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Wen Wu
- Department of Anesthesiology, Xichang People's Hospital, Xichang, Sichuan, China
| | - Yuchao Fan
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shuying Zhu
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
16
|
Thangeswaran D, Shamsuddin S, Balakrishnan V. A comprehensive review on the progress and challenges of tetrahydroisoquinoline derivatives as a promising therapeutic agent to treat Alzheimer's disease. Heliyon 2024; 10:e30788. [PMID: 38803973 PMCID: PMC11128835 DOI: 10.1016/j.heliyon.2024.e30788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Alzheimer's disease (AD) is the most common and irreversible neurodegenerative disorder worldwide. While the precise mechanism behind this rapid progression and multifaceted disease remains unknown, the numerous drawbacks of the available therapies are prevalent, necessitating effective alternative treatment methods. In view of the rising demand for effective AD treatment, numerous reports have shown that tetrahydroisoquinoline (THIQ) is a valuable scaffold in various clinical medicinal molecules and has a promising potential as a therapeutic agent in treating AD due to its significant neuroprotective, anti-inflammatory, and antioxidative properties via several mechanisms that target the altered signaling pathways. Therefore, this review comprehensively outlines the potential application of THIQ derivatives in AD treatment and the challenges in imparting the action of these prospective therapeutic agents. The review emphasizes a number of THIQ derivatives, including Dauricine, jatrorrhizine, 1MeTIQ, and THICAPA, that have been incorporated in AD studies in recent years. Subsequently, a dedicated section of the review briefly discusses the emerging potential benefits of multi-target therapeutics, which lie in their ability to be integrated with alternative therapeutics. Eventually, this review elaborates on the rising challenges and future recommendations for the development of therapeutic drug agents to treat AD effectively. In essence, the valuable research insights of THIQ derivatives presented in this comprehensive review would serve as an integral reference for future studies to develop potent therapeutic drugs for AD research.
Collapse
Affiliation(s)
- Danesh Thangeswaran
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| |
Collapse
|
17
|
Rani A, Zia-Ul-Sabah, Tabassum F, Sharma AK. Molecular interplay between phytoconstituents of Ficus Racemosa and neurodegenerative diseases. Eur J Neurosci 2024; 59:1833-1847. [PMID: 38217338 DOI: 10.1111/ejn.16250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/15/2024]
Abstract
Neurodegenerative diseases (NDs) are a significant global health concern, primarily affecting middle and older populations. Recently, there has been growing interest in herbal therapeutics as a potential approach to address diverse neuropathological conditions. Despite the widespread prevalence of NDs, limited phytochemical has been reported for their promising therapeutic potential with distinct underlying mechanisms. Additionally, the intricate molecular pathways influenced by herbal phytoconstituents, particularly in neurodegenerative disorders, are also not well documented. This report explores the phytoconstituents of Ficus racemosa (F. racemosa), an unfamiliar plant of the Moraceae family, for their potential interactions with pathological pathways of NDs. The influential phytoconstituents of F. racemosa, including polyphenols, glycosides, terpenoids, and furocoumarin, have been reported for targeting diverse pathological states. We proposed the most convincing molecular interplay between leading phytoconstituents and detrimental signalling cascades. However, extensive research is required to thoroughly understand the phytochemical persuaded intricate molecular pathway. The comprehensive evidence strongly suggests that F. racemosa and its natural compounds could be valuable in treating NDs. This points towards an exciting path for future research and the development of potential treatments based on a molecular level.
Collapse
Affiliation(s)
- Anu Rani
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, India
| | - Zia-Ul-Sabah
- Department of Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Fauzia Tabassum
- Department of Pharmacology, Vision College, Riyadh, Saudi Arabia
| | - Arun K Sharma
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, India
| |
Collapse
|
18
|
Maniam S, Maniam S. Screening Techniques for Drug Discovery in Alzheimer's Disease. ACS OMEGA 2024; 9:6059-6073. [PMID: 38371787 PMCID: PMC10870277 DOI: 10.1021/acsomega.3c07046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 02/20/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive and irreversible impairment of memory and other cognitive functions of the aging brain. Pathways such as amyloid beta neurotoxicity, tau pathogenesis and neuroinflammatory have been used to understand AD, despite not knowing the definite molecular mechanism which causes this progressive disease. This review attempts to summarize the small molecules that target these pathways using various techniques involving high-throughput screening, molecular modeling, custom bioassays, and spectroscopic detection tools. Novel and evolving screening methods developed to advance drug discovery initiatives in AD research are also highlighted.
Collapse
Affiliation(s)
- Sandra Maniam
- Department
of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Subashani Maniam
- School
of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
19
|
Agarwal D, Kumar S, Ambatwar R, Bhanwala N, Chandrakar L, Khatik GL. Lead Identification Through In Silico Studies: Targeting Acetylcholinesterase Enzyme Against Alzheimer's Disease. Cent Nerv Syst Agents Med Chem 2024; 24:219-242. [PMID: 38288823 DOI: 10.2174/0118715249268585240107184956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 07/23/2024]
Abstract
AIMS In this work, we aimed to acquire the best potential small molecule for Alzheimer's disease (AD) treatment using different models in Biovia Discovery Studio to identify new potential inhibitors of acetylcholinesterase (AChE) via in silico studies. BACKGROUND The prevalence of cognitive impairment-related neurodegenerative disorders, such as AD, has been observed to escalate rapidly. However, we still know little about the underlying functions, outcome predictors, or intervention targets causing AD. OBJECTIVES The objective of the study was to optimize and identify the lead compound to target AChE against Alzheimer's disease. METHODS Different in silico studies were employed, including the pharmacophore model, virtual screening, molecular docking, de novo evolution model, and molecular dynamics. RESULTS The pharmacophoric features of AChE inhibitors were determined by ligand-based pharmacophore models and 3D QSAR pharmacophore generation. Further validation of the best pharmacophore model was done using the cost analysis method, Fischer's randomization method, and test set. The molecules that harmonized the best pharmacophore model with the estimated activity < 1 nM and ADMET parameters were filtered, and 12 molecules were subjected to molecular docking studies to obtain binding energy. 3vsp_EK8_1 secured the highest binding energy of 65.60 kcal/mol. Further optimization led to a 3v_Evo_4 molecule with a better binding energy of 70.17 kcal/mol. The molecule 3v_evo_4 was subjected to 100 ns molecular simulation compared to donepezil, which showed better stability at the binding site. CONCLUSION A lead compound, 3v_Evo_4 molecule, was identified to inhibit AChE, and it could be further studied to develop as a drug with better efficacy than the existing available drugs for treating AD.
Collapse
Affiliation(s)
- Dhairiya Agarwal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Sumit Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Ramesh Ambatwar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Neeru Bhanwala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Lokesh Chandrakar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Gopal L Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| |
Collapse
|
20
|
Chen J, Pan Y, Liu Q, Li G, Chen G, Li W, Zhao W, Wang Q. The Interplay between Meningeal Lymphatic Vessels and Neuroinflammation in Neurodegenerative Diseases. Curr Neuropharmacol 2024; 22:1016-1032. [PMID: 36380442 PMCID: PMC10964105 DOI: 10.2174/1570159x21666221115150253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Meningeal lymphatic vessels (MLVs) are essential for the drainage of cerebrospinal fluid, macromolecules, and immune cells in the central nervous system. They play critical roles in modulating neuroinflammation in neurodegenerative diseases. Dysfunctional MLVs have been demonstrated to increase neuroinflammation by horizontally blocking the drainage of neurotoxic proteins to the peripheral lymph nodes. Conversely, MLVs protect against neuroinflammation by preventing immune cells from becoming fully encephalitogenic. Furthermore, evidence suggests that neuroinflammation affects the structure and function of MLVs, causing vascular anomalies and angiogenesis. Although this field is still in its infancy, the strong link between MLVs and neuroinflammation has emerged as a potential target for slowing the progression of neurodegenerative diseases. This review provides a brief history of the discovery of MLVs, introduces in vivo and in vitro MLV models, highlights the molecular mechanisms through which MLVs contribute to and protect against neuroinflammation, and discusses the potential impact of neuroinflammation on MLVs, focusing on recent progress in neurodegenerative diseases.
Collapse
Affiliation(s)
- Junmei Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qihua Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Guangyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Gongcan Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| |
Collapse
|
21
|
Li Y, Chen X, Zhou M, Feng S, Peng X, Wang Y. Microglial TLR4/NLRP3 Inflammasome Signaling in Alzheimer's Disease. J Alzheimers Dis 2024; 97:75-88. [PMID: 38043010 DOI: 10.3233/jad-230273] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
Alzheimer's disease is a pervasive neurodegenerative disease that is estimated to represent approximately 70% of dementia cases worldwide, and the molecular complexity that has been highlighted remains poorly understood. The accumulation of extracellular amyloid-β (Aβ), intracellular neurofibrillary tangles formed by tau hyperphosphorylation, and neuroinflammation are the major pathological features of Alzheimer's disease (AD). Over the years, there has been no apparent breakthrough in drug discovery based on the Aβ and tau hypotheses. Neuroinflammation has gradually become a hot spot in AD treatment research. As the primary cells of innate immunity in the central nervous system, microglia play a key role in neuroinflammation. Toll-like receptor 4 (TLR4) and nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasomes are vital molecules in neuroinflammation. In the pathological context of AD, the complex interplay between TLR4 and the NLRP3 inflammasomes in microglia influences AD pathology via neuroinflammation. In this review, the effect of the activation and inhibition of TLR4 and NLRP3 in microglia on AD pathology, as well as the cross-talk between TLR4 and the NLRP3 inflammasome, and the influence of essential molecules in the relevant signaling pathway on AD pathology, were expounded. In addition, the feasibility of these factors in representing a potential treatment option for AD has been clarified.
Collapse
Affiliation(s)
- Yunfeng Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mulan Zhou
- Department of Pharmacy, The People's Hospital of Gaozhou, Maoming, China
| | - Sifan Feng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoping Peng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
22
|
Syed RA, Hayat M, Qaiser H, Uzair M, Al-Regaiey K, Khallaf R, Kaleem I, Bashir S. Aging-Related Protein Alterations in the Brain. J Alzheimers Dis 2024; 99:S5-S22. [PMID: 38339930 DOI: 10.3233/jad-230801] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Aging is an intrinsic aspect of an organism's life cycle and is characterized by progressive physiological decline and increased susceptibility to mortality. Many age-associated disorders, including neurological disorders, are most commonly linked with the aging process, such as Alzheimer's disease (AD). This review aims to provide a comprehensive overview of the effects of aging and AD on the molecular pathways and levels of different proteins in the brain, including metalloproteins, neurotrophic factors, amyloid proteins, and tau proteins. AD is caused by the aggregation of amyloid proteins in the brain. Factors such as metal ions, protein ligands, and the oligomerization state of amyloid precursor protein significantly influence the proteolytic processing of amyloid-β protein precursor (AβPP). Tau, a disordered cytosolic protein, serves as the principal microtubule-associated protein in mature neurons. AD patients exhibit decreased levels of nerve growth factor within their nervous systems and cerebrospinal fluid. Furthermore, a significant increase in brain-derived neurotrophic factor resulting from the neuroprotective effect of glial cell line-derived neurotrophic factor suggests that the synergistic action of these proteins plays a role in inhibiting neuronal degeneration and atrophy. The mechanism through which Aβ and AβPP govern Cu2+ transport and their influence on Cu2+ and other metal ion pools requires elucidation in future studies. A comprehensive understanding of the influence of aging and AD on molecular pathways and varying protein levels may hold the potential for the development of novel diagnostic and therapeutic methods for the treatment of AD.
Collapse
Affiliation(s)
- Rafay Ali Syed
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mahnoor Hayat
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Hammad Qaiser
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Roaa Khallaf
- Department of Neurology, Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Imdad Kaleem
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
23
|
Zhou X, Kumar P, Bhuyan DJ, Jensen SO, Roberts TL, Münch GW. Neuroinflammation in Alzheimer's Disease: A Potential Role of Nose-Picking in Pathogen Entry via the Olfactory System? Biomolecules 2023; 13:1568. [PMID: 38002250 PMCID: PMC10669446 DOI: 10.3390/biom13111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline and memory impairment. Many possible factors might contribute to the development of AD, including amyloid peptide and tau deposition, but more recent evidence suggests that neuroinflammation may also play an-at least partial-role in its pathogenesis. In recent years, emerging research has explored the possible involvement of external, invading pathogens in starting or accelerating the neuroinflammatory processes in AD. In this narrative review, we advance the hypothesis that neuroinflammation in AD might be partially caused by viral, bacterial, and fungal pathogens entering the brain through the nose and the olfactory system. The olfactory system represents a plausible route for pathogen entry, given its direct anatomical connection to the brain and its involvement in the early stages of AD. We discuss the potential mechanisms through which pathogens may exploit the olfactory pathway to initiate neuroinflammation, one of them being accidental exposure of the olfactory mucosa to hands contaminated with soil and feces when picking one's nose.
Collapse
Affiliation(s)
- Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Paayal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| | - Deep J. Bhuyan
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Slade O. Jensen
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Microbiology and Infectious Diseases Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Tara L. Roberts
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Oncology Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Gerald W. Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| |
Collapse
|
24
|
Afzal S, Abdul Manap AS, Attiq A, Albokhadaim I, Kandeel M, Alhojaily SM. From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front Pharmacol 2023; 14:1269581. [PMID: 37927596 PMCID: PMC10622810 DOI: 10.3389/fphar.2023.1269581] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Increased production and buildup of reactive oxygen species (ROS) can lead to various health issues, including metabolic problems, cancers, and neurological conditions. Our bodies counteract ROS with biological antioxidants such as SOD, CAT, and GPx, which help prevent cellular damage. However, if there is an imbalance between ROS and these antioxidants, it can result in oxidative stress. This can cause genetic and epigenetic changes at the molecular level. This review delves into how ROS plays a role in disorders caused by oxidative stress. We also look at animal models used for researching ROS pathways. This study offers insights into the mechanism, pathology, epigenetic changes, and animal models to assist in drug development and disease understanding.
Collapse
Affiliation(s)
- Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Aimi Syamima Abdul Manap
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Ibrahim Albokhadaim
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sameer M. Alhojaily
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
25
|
Sivamaruthi BS, Raghani N, Chorawala M, Bhattacharya S, Prajapati BG, Elossaily GM, Chaiyasut C. NF-κB Pathway and Its Inhibitors: A Promising Frontier in the Management of Alzheimer's Disease. Biomedicines 2023; 11:2587. [PMID: 37761028 PMCID: PMC10526355 DOI: 10.3390/biomedicines11092587] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
The nuclear factor kappa B (NF-κB) pathway has emerged as a pivotal player in the pathogenesis of various diseases, including neurodegenerative illnesses like Alzheimer's disease (AD). The involvement of the NF-κB pathway in immune system responses, inflammation, oxidative stress, and neuronal survival highlights its significance in AD progression. We discuss the advantages of NF-κB pathway inhibition, including the potential to mitigate neuroinflammation, modulate amyloid beta (Aβ) production, and promote neuronal survival. However, we also acknowledge the limitations and challenges associated with this approach. Balancing the fine line between dampening inflammation and preserving physiological immune responses is critical to avoid unintended consequences. This review combines current knowledge on the NF-κB pathway's intricate involvement in AD pathogenesis, emphasizing its potential as a therapeutic target. By evaluating both advantages and limitations, we provide a holistic view of the feasibility and challenges of NF-κB pathway modulation in AD treatment. As the quest for effective AD therapies continues, an in-depth understanding of the NF-κB pathway's multifaceted roles will guide the development of targeted interventions with the potential to improve AD management.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Neha Raghani
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Mehul Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur 425405, India
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, India
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
26
|
Ravache TT, Batistuzzo A, Nunes GG, Gomez TGB, Lorena FB, Do Nascimento BPP, Bernardi MM, Lima ERR, Martins DO, Campos ACP, Pagano RL, Ribeiro MO. Multisensory Stimulation Reverses Memory Impairment in Adrβ 3KO Male Mice. Int J Mol Sci 2023; 24:10522. [PMID: 37445699 DOI: 10.3390/ijms241310522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Norepinephrine plays an important role in modulating memory through its beta-adrenergic receptors (Adrβ: β1, β2 and β3). Here, we hypothesized that multisensory stimulation would reverse memory impairment caused by the inactivation of Adrβ3 (Adrβ3KO) with consequent inhibition of sustained glial-mediated inflammation. To test this, 21- and 86-day-old Adrβ3KO mice were exposed to an 8-week multisensory stimulation (MS) protocol that comprised gustatory and olfactory stimuli of positive and negative valence; intellectual challenges to reach food; the use of hidden objects; and the presentation of food in ways that prompted foraging, which was followed by analysis of GFAP, Iba-1 and EAAT2 protein expression in the hippocampus (HC) and amygdala (AMY). The MS protocol reduced GFAP and Iba-1 expression in the HC of young mice but not in older mice. While this protocol restored memory impairment when applied to Adrβ3KO animals immediately after weaning, it had no effect when applied to adult animals. In fact, we observed that aging worsened the memory of Adrβ3KO mice. In the AMY of Adrβ3KO older mice, we observed an increase in GFAP and EAAT2 expression when compared to wild-type (WT) mice that MS was unable to reduce. These results suggest that a richer and more diverse environment helps to correct memory impairment when applied immediately after weaning in Adrβ3KO animals and indicates that the control of neuroinflammation mediates this response.
Collapse
Affiliation(s)
- Thaís T Ravache
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil
| | - Alice Batistuzzo
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil
| | - Gabriela G Nunes
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil
| | - Thiago G B Gomez
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil
| | - Fernanda B Lorena
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil
- Departamento de Medicina Translacional, Universidade Federal de São Paulo 04023-062, SP, Brazil
| | - Bruna P P Do Nascimento
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil
- Departamento de Medicina Translacional, Universidade Federal de São Paulo 04023-062, SP, Brazil
| | - Maria Martha Bernardi
- Graduate Program in Environmental and Experimental Pathology, Paulista University, São Paulo 04026-002, SP, Brazil
| | - Eduarda R R Lima
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-050, SP, Brazil
| | - Daniel O Martins
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-050, SP, Brazil
| | - Ana Carolina P Campos
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-050, SP, Brazil
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-050, SP, Brazil
| | - Miriam O Ribeiro
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil
| |
Collapse
|
27
|
Yang S, Wang L, Zeng Y, Wang Y, Pei T, Xie Z, Xiong Q, Wei H, Li W, Li J, Su Q, Wei D, Cheng W. Salidroside alleviates cognitive impairment by inhibiting ferroptosis via activation of the Nrf2/GPX4 axis in SAMP8 mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154762. [PMID: 36965372 DOI: 10.1016/j.phymed.2023.154762] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurogenerative disease and remains no effective method for stopping its progress. Ferroptosis and adaptive immunity have been proven to contribute to AD pathogenesis. Salidroside exhibits neuroprotective and immunomodulatory effects. However, the underlying mechanisms linking salidroside, ferroptosis, and adaptive immunity in AD remain uncertain. PURPOSE The objective of this study is to explore the neuroprotective effects and the potential molecular mechanisms of salidroside against neuronal ferroptosis and CD8+ T cell infiltration in senescence-accelerated mouse prone 8 (SAMP8) mice. STUDY DESIGN AND METHODS SAMP8 mice were employed as an AD model and were treated with salidroside for 12 weeks. Behavioral tests, immunohistochemistry, HE and Nissl staining, immunofluorescence, transmission electron microscopy, quantitative proteomics, bioinformatic analysis, flow cytometry, iron staining, western blotting, and molecular docking were performed. RESULTS Treatment with salidroside dose-dependently attenuated cognitive impairment, reduced the accumulation of Aβ plaques and restored neuronal damage. Salidroside also suppressed the infiltration of CD8+T cells, oxidative stress, and inflammatory cytokines, and improved mitochondrial metabolism, iron metabolism, lipid metabolism, and redox in the SAMP8 mice brain. The administration of salidroside decreased iron deposition, reduced TFR1, and ACSL4 protein expression, upregulated SLC7A11, and GPX4 protein expression, and promoted the Nrf2/GPX4 axis activation. CONCLUSION In conclusion, neuronal ferroptosis and CD8+T cells are involved in the process of cognitive impairment in SAMP8 mice. Salidroside alleviates cognitive impairment and inhibits neuronal ferroptosis. The underlying mechanisms may involve the Nrf2/GPX4 axis activation and reduction in CD8+T cells infiltration. This study provides some evidence for the roles of salidroside in adaptive immunity and neuronal ferroptosis in SAMP8 mice.
Collapse
Affiliation(s)
- Sixia Yang
- Department of Pharmacy, Zhu Jiang Hospital, Southern Medical University, Guangzhou 510260, China; School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Linshuang Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen Nei, Dongcheng District, Beijing 100700, China
| | - Yi Zeng
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Yong Wang
- Department of Pharmacy, Zhu Jiang Hospital, Southern Medical University, Guangzhou 510260, China
| | - Tingting Pei
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Zeping Xie
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Qiaowu Xiong
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Hui Wei
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Wenxu Li
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Jiaqi Li
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Qian Su
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen Nei, Dongcheng District, Beijing 100700, China.
| | - Weidong Cheng
- Department of Pharmacy, Zhu Jiang Hospital, Southern Medical University, Guangzhou 510260, China; School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China.
| |
Collapse
|
28
|
Anwar MM, Mabrouk AA. Hepatic and cardiac implications of increased toxic amyloid-beta serum level in lipopolysaccharide-induced neuroinflammation in rats: new insights into alleviating therapeutic interventions. Inflammopharmacology 2023; 31:1257-1277. [PMID: 37017850 DOI: 10.1007/s10787-023-01202-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 04/06/2023]
Abstract
Neuroinflammation is a devastating predisposing factor for Alzheimer's disease (AD). A number of clinical findings have reported peripheral disorders among AD patients. Amyloid beta (Aβ) is a toxic physiological aggregate that serves as a triggering factor for hepatic and cardiac disorders related to neurotoxicity. As a drawback of Aβ excessive accumulation in the brain, part of Aβ is believed to readily cross the blood-brain barrier (BBB) into the peripheral circulation resulting in serious inflammatory and toxic cascades acting as a direct bridge to cardiac and hepatic pathophysiology. The main aim is to find out whether neuroinflammation-related AD may result in cardiac and liver dysfunctions. Potential therapeutic interventions are also suggested to alleviate AD's cardiac and hepatic defects. Male rats were divided into: control group I, lipopolysaccharide (LPS)-neuroinflammatory-induced group II, LPS-neuroinflammatory-induced group treated with sodium hydrogen sulphide donor (NaHS) (group III), and LPS-neuroinflammatory-induced group treated with mesenchymal stem cells (MSCs) (group IV). Behavior and histopathological studies were conducted in addition to the estimation of different biological biomarkers. It was revealed that the increased toxic Aβ level in blood resulted in cardiac and hepatic malfunctions as a drawback of exaggerated inflammatory cascades. The administration of NaHS and MSCs proved their efficiency in combating neuroinflammatory drawbacks by hindering cardiac and hepatic dysfunctions. The consistent direct association of decreased heart and liver functions with increased Aβ levels highlights the direct involvement of AD in other organ complications. Thereby, these findings will open new avenues for combating neuroinflammatory-related AD and long-term asymptomatic toxicity.
Collapse
Affiliation(s)
- Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt.
| | - Abeer A Mabrouk
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| |
Collapse
|
29
|
Li S. The β-adrenergic hypothesis of synaptic and microglial impairment in Alzheimer's disease. J Neurochem 2023; 165:289-302. [PMID: 36799441 DOI: 10.1111/jnc.15782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease originating partly from amyloid β protein-induced synaptic failure. As damaging of noradrenergic neurons in the locus coeruleus (LC) occurs at the prodromal stage of AD, activation of adrenergic receptors could serve as the first line of defense against the onset of the disease. Activation of β2 -ARs strengthens long-term potentiation (LTP) and synaptic activity, thus improving learning and memory. Physical stimulation of animals exposed to an enriched environment (EE) leads to the activation of β2 -ARs and prevents synaptic dysfunction. EE also suppresses neuroinflammation, suggesting that β2 -AR agonists may play a neuroprotective role. The β2 -AR agonists used for respiratory diseases have been shown to have an anti-inflammatory effect. Epidemiological studies further support the beneficial effects of β2 -AR agonists on several neurodegenerative diseases. Thus, I propose that β2 -AR agonists may provide therapeutic value in combination with novel treatments for AD.
Collapse
Affiliation(s)
- Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Dorey CK, Gierhart D, Fitch KA, Crandell I, Craft NE. Low Xanthophylls, Retinol, Lycopene, and Tocopherols in Grey and White Matter of Brains with Alzheimer's Disease. J Alzheimers Dis 2023; 94:1-17. [PMID: 35988225 PMCID: PMC10357197 DOI: 10.3233/jad-220460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Oxidative stress contributes to pathogenesis and progression of Alzheimer's disease (AD). Higher levels of the dietary antioxidants- carotenoids and tocopherols- are associated with better cognitive functions and lower risk for AD, and lower levels of multiple carotenoids are found in serum and plasma of patients with AD. Although brains donated by individuals with mild cognitive impairment had significantly lower levels of lutein and beta-carotene, previous investigators found no significant difference in carotenoid levels of brains with AD and cognitively normal brains. OBJECTIVE This study tested the hypothesis that micronutrients are significantly lower in donor brains with AD than in healthy elderly brains. METHODS Samples of donor brains with confirmed AD or verified health were dissected into grey and white matter, extracted with organic solvents and analyzed by HPLC. RESULTS AD brains had significantly lower levels of lutein, zeaxanthin, anhydrolutein, retinol, lycopene, and alpha-tocopherol, and significantly increased levels of XMiAD, an unidentified xanthophyll metabolite. No meso-zeaxanthin was detected. The overlapping protective roles of xanthophylls, carotenes, α- and γ-tocopherol are discussed. CONCLUSION Brains with AD had substantially lower concentrations of some, but not all, xanthophylls, carotenes, and tocopherols, and several-fold higher concentrations of an unidentified xanthophyll metabolite increased in AD (XMiAD).
Collapse
Affiliation(s)
| | | | - Karlotta A. Fitch
- Alzheimer’s Disease Research Center, Massachusetts General Hospital Boston, MA, USA
| | - Ian Crandell
- Center for Biostatistics and Health Data Science, Virginia Tech, Roanoke, VA, USA
| | | |
Collapse
|
31
|
Tang Y, Rubini P, Yin HY, Illes P. Acupuncture for Counteracting P2X4 and P2X7 Receptor Involvement in Neuroinflammation. PURINERGIC SIGNALING IN NEURODEVELOPMENT, NEUROINFLAMMATION AND NEURODEGENERATION 2023:359-374. [DOI: 10.1007/978-3-031-26945-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Lyu W, Chen Y, Zhao K, Tan X, Wu Y, Qiu S. Alterations of peripheral cytokines, BDNF, and surface-based morphometry indices in T2DM patients without cognitive impairment. Front Neurosci 2023; 17:1141261. [PMID: 37113152 PMCID: PMC10126356 DOI: 10.3389/fnins.2023.1141261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Purpose This study aimed to investigate potential biological mechanisms underlying cognitive function alterations in Type 2 diabetes mellitus (T2DM) patients by integrating cortical morphology with peripheral cytokine levels and brain-derived neurotrophic factor (BDNF) levels, and to offer potential insights for the early detection of T2DM-related cognitive impairment. Methods This study included 16 T2DM patients with a Montreal Cognitive Assessment (MoCA) score of at least 26 points, as well as 16 healthy controls with normal cognitive function. The participants also completed the digit span test and digit symbol substitution test. Participants' serum levels of Interleukin 4 (IL-4), IL-6, IL-10, tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and BDNF were also examined. Each subject underwent a high-resolution 3T structural brain MRI scan. Based on the aparc. a2009s atlas, we calculated the cortical thickness, sulcus depth, gyrification index, and fractal dimension for each participant using surface-based morphometry (SBM). Correlation analysis between cognitive measures, serum levels of cytokines and BDNF, and SBM indices were further performed. Results The levels of IL-4 and BDNF showed significant group differences. In the T2DM group, the sulcus depth exhibited a significant decrease in the left transverse frontopolar gyri and sulci, as well as in the right pole-occipital; the fractal dimension showed a significant increase in the right posterior-dorsal part of the cingulate gyrus; and the gyrification index significantly increased in the left inferior part of the precentral sulcus and right triangular part of the inferior frontal gyrus. Correlation analysis revealed a significant positive correlation between IL-10 levels and the sulcus depth of left transverse frontopolar gyri and sulci; a significant positive correlation between the sulcus depth of the right pole-occipital and the digit span test-forward scores, and a significant negative correlation between the gyrification index of the left inferior part of the precentral sulcus and the digit span test-backward scores among T2DM participants. Conclusion T2DM patients without cognitive impairment displayed reductions in IL 4 and BDNF levels, as well as significant alterations in their SBM indices, indicating that prior to the emergence of cognitive impairment, the SBM indices, peripheral cytokines, and BDNF may have altered in T2DM patients. IL-10 may lessen inflammation-related brain edema and preserve sulcus depth in T2DM patients through its anti-inflammatory activity.
Collapse
Affiliation(s)
- Wenjiao Lyu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuna Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Kui Zhao
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xin Tan
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ye Wu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
- Ye Wu,
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- *Correspondence: Shijun Qiu,
| |
Collapse
|
33
|
Puleo MG, Miceli S, Di Chiara T, Pizzo GM, Della Corte V, Simonetta I, Pinto A, Tuttolomondo A. Molecular Mechanisms of Inflammasome in Ischemic Stroke Pathogenesis. Pharmaceuticals (Basel) 2022; 15:1168. [PMID: 36297283 PMCID: PMC9612213 DOI: 10.3390/ph15101168] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Ischemic stroke (also called cerebral ischemia) is one of the leading causes of death and severe disability worldwide. NLR inflammasomes play a crucial role in sensing cell damage in response to a harmful stimuli and modulating the inflammatory response, promoting the release of pro-inflammatory cytokines such as IL-18 and IL-1β following ischemic injury. Therefore, a neuroprotective effect is achieved by inhibiting the expression, assembly, and secretion of inflammasomes, thus limiting the extent of brain detriment and neurological sequelae. This review aims to illustrate the molecular characteristics, expression levels, and assembly of NLRP3 (nucleotide-binding oligomerization domain-like receptor [NLR] family pyrin-domain-containing 3) inflammasome, the most studied in the literature, in order to discover promising therapeutic implications. In addition, we provide some information regarding the contribution of NLRP1, NLRP2, and NLRC4 inflammasomes to ischemic stroke pathogenesis, highlighting potential therapeutic strategies that require further study.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Antonino Tuttolomondo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, “G. D’Alessandro”, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy
| |
Collapse
|
34
|
Sang Z, Bai P, Ban Y, Wang K, Wu A, Mi J, Hu J, Xu R, Zhu G, Wang J, Zhang J, Wang C, Tan Z, Tang L. Novel donepezil-chalcone-rivastigmine hybrids as potential multifunctional anti-Alzheimer's agents: Design, synthesis, in vitro biological evaluation, in vivo and in silico studies. Bioorg Chem 2022; 127:106007. [PMID: 35849893 DOI: 10.1016/j.bioorg.2022.106007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/12/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023]
Abstract
Alzheimer's disease (AD) is a chronic, progressive brain neurodegenerative disorder. Up to now, there is no effective drug to halt or reverse the progress of AD. Given the complex pathogenesis of AD, the multi-target-directed ligands (MTDLs) strategy is considered as the promising therapy. Herein, a series of novel donepezil-chalone-rivastigmine hybrids was rationally designed and synthesized by fusing donepezil, chalone and rivastigmine. The in vitro bioactivity results displayed that compound 10c was a reversible huAChE (IC50 = 0.87 μM) and huBuChE (IC50 = 3.3 μM) inhibitor. It also presented significant anti-inflammation effects by suppressing the level of IL-6 and TNF-α production, and significantly inhibited self-mediated Aβ1-42 aggregation (60.6%) and huAChE-mediated induced Aβ1-40 aggregation (46.2%). In addition, 10c showed significant neuroprotective effect on Aβ1-42-induced PC12 cell injury and activated UPS pathway in HT22 cells to degrade tau and amyloid precursor protein (APP). Furthermore, compound 10c presented good stabilty in artificial gastrointestinal fluids and liver microsomes in vitro. The pharmacokinetic study showed that compound 10c was rapidly absorbed in rats and distributed in rat brain after intragastric administration. The PET-CT imaging demonstrated that [11C]10c could quickly enter the brain and washed out gradually in vivo. Further, compound 10c at a dose of 5 mg/kg improved scopolamine-induced memory impairment, deserving further investigations.
Collapse
Affiliation(s)
- Zhipei Sang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China; College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China; School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China.
| | - Ping Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Yujuan Ban
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Keren Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Southwest Medical University, Luzhou 646000, China
| | - Jing Mi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jiaqi Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Rui Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Gaofeng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Jianta Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Jiquan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Zhenghuai Tan
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China.
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
35
|
Lee DH, Lee JY, Hong DY, Lee EC, Park SW, Jo YN, Park YJ, Cho JY, Cho YJ, Chae SH, Lee MR, Oh JS. ROCK and PDE-5 Inhibitors for the Treatment of Dementia: Literature Review and Meta-Analysis. Biomedicines 2022; 10:biomedicines10061348. [PMID: 35740369 PMCID: PMC9219677 DOI: 10.3390/biomedicines10061348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Dementia is a disease in which memory, thought, and behavior-related disorders progress gradually due to brain damage caused by injury or disease. It is mainly caused by Alzheimer’s disease or vascular dementia and several other risk factors, including genetic factors. It is difficult to treat as its incidence continues to increase worldwide. Many studies have been performed concerning the treatment of this condition. Rho-associated kinase (ROCK) and phosphodiesterase-5 (PDE-5) are attracting attention as pharmacological treatments to improve the symptoms. This review discusses how ROCK and PDE-5 affect Alzheimer’s disease, vascular restructuring, and exacerbation of neuroinflammation, and how their inhibition helps improve cognitive function. In addition, the results of the animal behavior analysis experiments utilizing the Morris water maze were compared through meta-analysis to analyze the effects of ROCK inhibitors and PDE-5 inhibitors on cognitive function. According to the selection criteria, 997 publications on ROCK and 1772 publications on PDE-5 were screened, and conclusions were drawn through meta-analysis. Both inhibitors showed good improvement in cognitive function tests, and what is expected of the synergy effect of the two drugs was confirmed in this review.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Ji Young Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
| | - Dong-Yong Hong
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Eun Chae Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Sang-Won Park
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Yu Na Jo
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Yu Jin Park
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Jae Young Cho
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Yoo Jin Cho
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Su Hyun Chae
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Man Ryul Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
- Correspondence: (M.R.L.); (J.S.O.)
| | - Jae Sang Oh
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
- Correspondence: (M.R.L.); (J.S.O.)
| |
Collapse
|
36
|
Microglia in Alzheimer’s Disease: A Favorable Cellular Target to Ameliorate Alzheimer’s Pathogenesis. Mediators Inflamm 2022; 2022:6052932. [PMID: 35693110 PMCID: PMC9184163 DOI: 10.1155/2022/6052932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Microglial cells serve as molecular sensors of the brain that play a role in physiological and pathological conditions. Under normal physiology, microglia are primarily responsible for regulating central nervous system homeostasis through the phagocytic clearance of redundant protein aggregates, apoptotic cells, damaged neurons, and synapses. Furthermore, microglial cells can promote and mitigate amyloid β phagocytosis and tau phosphorylation. Dysregulation of the microglial programming alters cellular morphology, molecular signaling, and secretory inflammatory molecules that contribute to various neurodegenerative disorders especially Alzheimer’s disease (AD). Furthermore, microglia are considered primary sources of inflammatory molecules and can induce or regulate a broad spectrum of cellular responses. Interestingly, in AD, microglia play a double-edged role in disease progression; for instance, the detrimental microglial effects increase in AD while microglial beneficiary mechanisms are jeopardized. Depending on the disease stages, microglial cells are expressed differently, which may open new avenues for AD therapy. However, the disease-related role of microglial cells and their receptors in the AD brain remain unclear. Therefore, this review represents the role of microglial cells and their involvement in AD pathogenesis.
Collapse
|
37
|
Uddin MS, Lim LW. Glial cells in Alzheimer's disease: From neuropathological changes to therapeutic implications. Ageing Res Rev 2022; 78:101622. [PMID: 35427810 DOI: 10.1016/j.arr.2022.101622] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that usually develops slowly and progressively worsens over time. Although there has been increasing research interest in AD, its pathogenesis is still not well understood. Although most studies primarily focus on neurons, recent research findings suggest that glial cells (especially microglia and astrocytes) are associated with AD pathogenesis and might provide various possible therapeutic targets. Growing evidence suggests that microglia can provide protection against AD pathogenesis, as microglia with weakened functions and impaired responses to Aβ proteins are linked with elevated AD risk. Interestingly, numerous findings also suggest that microglial activation can be detrimental to neurons. Indeed, microglia can induce synapse loss via the engulfment of synapses, possibly through a complement-dependent process. Furthermore, they can worsen tau pathology and release inflammatory factors that cause neuronal damage directly or through the activation of neurotoxic astrocytes. Astrocytes play a significant role in various cerebral activities. Their impairment can mediate neurodegeneration and ultimately the retraction of synapses, resulting in AD-related cognitive deficits. Deposition of Aβ can result in astrocyte reactivity, which can further lead to neurotoxic effects and elevated secretion of inflammatory mediators and cytokines. Moreover, glial-induced inflammation in AD can exert both beneficial and harmful effects. Understanding the activities of astrocytes and microglia in the regulation of AD pathogenesis would facilitate the development of novel therapies. In this article, we address the implications of microglia and astrocytes in AD pathogenesis. We also discuss the mechanisms of therapeutic agents that exhibit anti-inflammatory effects against AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
38
|
Reducing PDK1/Akt Activity: An Effective Therapeutic Target in the Treatment of Alzheimer's Disease. Cells 2022; 11:cells11111735. [PMID: 35681431 PMCID: PMC9179555 DOI: 10.3390/cells11111735] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a common age-related neurodegenerative disease that leads to memory loss and cognitive function damage due to intracerebral neurofibrillary tangles (NFTs) and amyloid-β (Aβ) protein deposition. The phosphoinositide-dependent protein kinase (PDK1)/protein kinase B (Akt) signaling pathway plays a significant role in neuronal differentiation, synaptic plasticity, neuronal survival, and neurotransmission via the axon–dendrite axis. The phosphorylation of PDK1 and Akt rises in the brain, resulting in phosphorylation of the TNF-α-converting enzyme (TACE) at its cytoplasmic tail (the C-terminal end), changing its internalization as well as its trafficking. The current review aimed to explain the mechanisms of the PDK1/Akt/TACE signaling axis that exerts its modulatory effect on AD physiopathology. We provide an overview of the neuropathological features, genetics, Aβ aggregation, Tau protein hyperphosphorylation, neuroinflammation, and aging in the AD brain. Additionally, we summarized the phosphoinositide 3-kinase (PI3K)/PDK1/Akt pathway-related features and its molecular mechanism that is dependent on TACE in the pathogenesis of AD. This study reviewed the relationship between the PDK1/Akt signaling pathway and AD, and discussed the role of PDK1/Akt in resisting neuronal toxicity by suppressing TACE expression in the cell membrane. This work also provides a perspective for developing new therapeutics targeting PDK1/Akt and TACE for the treatment of AD.
Collapse
|
39
|
Therapeutic Potential of Exosomes Derived from Adipose Tissue-Sourced Mesenchymal Stem Cells in the Treatment of Neural and Retinal Diseases. Int J Mol Sci 2022; 23:ijms23094487. [PMID: 35562878 PMCID: PMC9105552 DOI: 10.3390/ijms23094487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022] Open
Abstract
Therapeutic agents that are able to prevent or attenuate inflammation and ischemia-induced injury of neural and retinal cells could be used for the treatment of neural and retinal diseases. Exosomes derived from adipose tissue-sourced mesenchymal stem cells (AT-MSC-Exos) are extracellular vesicles that contain neurotrophins, immunoregulatory and angio-modulatory factors secreted by their parental cells. AT-MSC-Exos are enriched with bioactive molecules (microRNAs (miRNAs), enzymes, cytokines, chemokines, immunoregulatory, trophic, and growth factors), that alleviate inflammation and promote the survival of injured cells in neural and retinal tissues. Due to the nano-sized dimension and bilayer lipid envelope, AT-MSC-Exos easily bypass blood–brain and blood–retinal barriers and deliver their cargo directly into the target cells. Accordingly, a large number of experimental studies demonstrated the beneficial effects of AT-MSC-Exos in the treatment of neural and retinal diseases. By delivering neurotrophins, AT-MSC-Exos prevent apoptosis of injured neurons and retinal cells and promote neuritogenesis. AT-MSC-Exos alleviate inflammation in the injured brain, spinal cord, and retinas by delivering immunoregulatory factors in immune cells, suppressing their inflammatory properties. AT-MSC-Exos may act as biological mediators that deliver pro-angiogenic miRNAs in endothelial cells, enabling re-vascularization of ischemic neural and retinal tissues. Herewith, we summarized current knowledge about molecular mechanisms which were responsible for the beneficial effects of AT-MSC-Exos in the treatment of neural and retinal diseases, emphasizing their therapeutic potential in neurology and ophthalmology.
Collapse
|
40
|
Su J, Dou Z, Hong H, Xu F, Lu X, Lu Q, Ye T, Huang C. KRIBB11: A Promising Drug that Promotes Microglial Process Elongation and Suppresses Neuroinflammation. Front Pharmacol 2022; 13:857081. [PMID: 35370703 PMCID: PMC8971675 DOI: 10.3389/fphar.2022.857081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Microglia are key components of the central innate immune system. The over-activation of microglia, which occurs in nervous system disorders, is usually accompanied with retractions of their ramified processes. Reversing of microglial process retraction is a potential strategy for the prevention of neuroinflammation. Our previous studies have reported some endogenous molecules and drugs that can promote microglial process elongation at conditions in vitro and in vivo, such as butyrate and β-hydroxybutyrate, sulforaphane, and diallyl disulfide. Here, reported another compound that can promote microglial process elongation. We found that KRIBB11, a compound which has been reported to suppress nitric oxide production in microglia, induced significant elongations of the processes in microglia in cultured and in vivo conditions in a reversible manner. KRIBB11 pretreatment also prevented lipopolysaccharide (LPS)-induced shortenings of microglial process in cultured conditions and in vivo conditions, inflammatory responses in primary cultured microglia and the prefrontal cortex, and depression-like behaviors in mice. Mechanistic studies revealed that KRIBB11 incubation up-regulated phospho-Akt in cultured microglia and Akt inhibition blocked the pro-elongation effect of KRIBB11 on microglial process in cultured conditions and in vivo conditions, suggesting that the regulatory effect of KRIBB11 is Akt-dependent. Akt inhibition was also found to abrogate the preventive effect of KRIBB11 on LPS-induced inflammatory responses in primary cultured microglia and prefrontal cortexes as well as LPS-induced depression-like behaviors in mice. Collectively, our findings demonstrated that KRIBB11 is a novel compound that can prevent microglial activation and neuroinflammation-associated behavioral deficits possibly through inducing the Akt-mediated elongation of microglial process.
Collapse
Affiliation(s)
- Jianbin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People’s Hospital of Nantong City, Nantong, China
- *Correspondence: Jianbin Su, ; Chao Huang,
| | - Zhihua Dou
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, Nantong, China
| | - Hongxiang Hong
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, First People’s Hospital of Nantong City, Nantong, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People’s Hospital of Nantong City, Nantong, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Qun Lu
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, Nantong, China
| | - Ting Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
- *Correspondence: Jianbin Su, ; Chao Huang,
| |
Collapse
|
41
|
Onaolapo OJ, Olofinnade AT, Ojo FO, Onaolapo AY. Neuroinflammation and Oxidative Stress in Alzheimer's Disease; Can Nutraceuticals and Functional Foods Come to the Rescue? Antiinflamm Antiallergy Agents Med Chem 2022; 21:75-89. [PMID: 36043770 DOI: 10.2174/1871523021666220815151559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease (AD), the most prevalent form of age-related dementia, is typified by progressive memory loss and spatial awareness with personality changes. The increasing socioeconomic burden associated with AD has made it a focus of extensive research. Ample scientific evidence supports the role of neuroinflammation and oxidative stress in AD pathophysiology, and there is increasing research into the possible role of anti-inflammatory and antioxidative agents as disease modifying therapies. While, the result of numerous preclinical studies has demonstrated the benefits of anti-inflammatory agents, these benefits however have not been replicated in clinical trials, necessitating a further search for more promising anti-inflammatory agents. Current understanding highlights the role of diet in the development of neuroinflammation and oxidative stress, as well as the importance of dietary interventions and lifestyle modifications in mitigating them. The current narrative review examines scientific literature for evidence of the roles (if any) of dietary components, nutraceuticals and functional foods in the prevention or management of AD. It also examines how diet/ dietary components could modulate oxidative stress/inflammatory mediators and pathways that are crucial to the pathogenesis and/or progression of AD.
Collapse
Affiliation(s)
- Olakunle J Onaolapo
- Department of Pharmacology, Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Anthony T Olofinnade
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, College of Medicine, Lagos State University, Ikeja, Lagos State, Nigeria
| | - Folusho O Ojo
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Adejoke Y Onaolapo
- Department of Anatomy, Behavioural Neuroscience Unit, Neurobiology Subdivision, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|