1
|
Chen S, Fu J, Long J, Liu C, Ai X, Long D, Leng X, Zhang Y, Liao Z, Li C, Zhou Y, Dong S, Huang B, Feng C. Bulk RNA-seq conjoined with ScRNA-seq analysis reveals the molecular characteristics of nucleus pulposus cell ferroptosis in rat aging intervertebral discs. Arthritis Res Ther 2025; 27:90. [PMID: 40247370 PMCID: PMC12004870 DOI: 10.1186/s13075-025-03550-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/27/2025] [Indexed: 04/19/2025] Open
Abstract
OBJECTIVE Recently, several studies have reported that nucleus pulposus (NP) cell ferroptosis plays a key role in IDD. However, the characteristics and molecular mechanisms of cell subsets involved remain unclear. We aimed to define the key factors driving ferroptosis, and the characteristics of ferroptotic NP cells subsets during IDD. METHODS The accumulation of iron ions in NP tissues of rats caudal intervertebral discs (IVDs) was determined by Prussian blue staining. Fluorescent probe Undecanoyl Boron Dipyrromethene (C11-BODIPY) and lipid peroxidation product 4-Hydroxynonenal (4-HNE) staining were performed to assess lipid peroxidation level of NP cells. The differentially expressed genes in NP tissues with aging were overlapped with FerrDB database to screen ferroptosis driving genes associated with aging-related IDD. In addition, single cell sequencing (ScRNA-seq) was used to map the NP cells, and further identify ferroptotic NP cell subsets, as well as their crucial drivers. Finally, cluster analysis was performed to identify the marker genes of ferroptotic NP cells. RESULTS Histological staining showed that, compared with 10 months old (10M-old) group, the accumulation of iron ions increased in NP tissues of 20 months old (20M-old) rats, and the level of lipid peroxidation was also enhanced. 15 ferroptosis driving factors related to IDD were selected by cross-enrichment. ScRNA-seq identified 14 subsets in NP tissue cells, among which the number and ratio of 5 subsets was reduced, and the intracellular ferroptosis related signaling pathways were significantly enriched, accompanied by enhanced cell lipid peroxidation. Notably, ranking the up-regulation fold of ferroptosis related genes, we found Atf3 was always present within TOP2 of these five cell subsets, suggests it is the key driving factor in NP cell ferroptosis. Finally, cluster cross-enrichment and fluorescence colocalization analysis revealed that Rps6 +/Cxcl1- was a common molecular feature among the 5 ferroptotic NP cell subsets. CONCLUSIONS This study reveals that ATF3 is a key driver of NP cell ferroptosis during IDD, and Rps6 +/Cxcl1- is a common molecular feature of ferroptotic NP cell subsets. These findings provide evidence and theoretical support for subsequent targeted intervention of NP cell ferroptosis, as well as provide directions for preventing and delaying IDD.
Collapse
Affiliation(s)
- Shipeng Chen
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Jiawei Fu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Jiang Long
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Chang Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Xuezheng Ai
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Dan Long
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Xue Leng
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Yang Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Zhengao Liao
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Army Medical University, Chongqing, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China.
| | - Bo Huang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China.
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China.
| | - Chencheng Feng
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China.
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China.
| |
Collapse
|
2
|
Yang F, Duan Y, Li Y, Zhu D, Wang Z, Luo Z, Zhang Y, Zhang G, He X, Kang X. S100A6 Regulates nucleus pulposus cell apoptosis via Wnt/β-catenin signaling pathway: an in vitro and in vivo study. Mol Med 2024; 30:87. [PMID: 38877413 PMCID: PMC11179208 DOI: 10.1186/s10020-024-00853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a common musculoskeletal degenerative disease, which often leads to low back pain and even disability, resulting in loss of labor ability and decreased quality of life. Although many progresses have been made in the current research, the underlying mechanism of IDD remains unclear. The apoptosis of nucleus pulposus (NP) cells (NPCs) is an important pathological mechanism in intervertebral disc degeneration (IDD). This study evaluated the relationship between S100A6 and NPCs and its underlying mechanism. METHODS Mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used to screen and verify hub genes for IDD in human IVD specimens with different degeneration degrees. Western blotting, immunohistochemistry (IHC), and/or immunofluorescence (IF) were used to detect the expression level of S100A6 in human NP tissues and NPCs. The apoptotic phenotype of NPCs and Wnt/β-catenin signaling pathway were evaluated using flow cytometry, western blotting, and IF. S100A6 was overexpressed or knocked down in NPCs to determine its impact on apoptosis and Wnt/β-catenin signaling pathway activity. Moreover, we used the XAV-939 to inhibit and SKL2001 to activate the Wnt/β-catenin signaling pathway. The therapeutic effect of S100A6 inhibition on IDD was also evaluated. RESULTS S100A6 expression increased in IDD. In vitro, increased S100A6 expression promoted apoptosis in interleukin (IL)-1β-induced NPCs. In contrast, the inhibition of S100A6 expression partially alleviated the progression of annulus fibrosus (AF) puncture-induced IDD in rats. Mechanistic studies revealed that S100A6 regulates NPC apoptosis via Wnt/β-catenin signaling pathway. CONCLUSIONS This study showed that S100A6 expression increased during IDD and promoted NPCs apoptosis by regulating the Wnt/β-catenin signaling pathway, suggesting that S100A6 is a promising new therapeutic target for IDD.
Collapse
Affiliation(s)
- Fengguang Yang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yanni Duan
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yanhu Li
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Daxue Zhu
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Zhaoheng Wang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Zhangbin Luo
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yizhi Zhang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Xuegang He
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Xuewen Kang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China.
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China.
| |
Collapse
|
3
|
Swahn H, Mertens J, Olmer M, Myers K, Mondala TS, Natarajan P, Head SR, Alvarez‐Garcia O, Lotz MK. Shared and Compartment-Specific Processes in Nucleus Pulposus and Annulus Fibrosus During Intervertebral Disc Degeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309032. [PMID: 38403470 PMCID: PMC11077672 DOI: 10.1002/advs.202309032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/08/2024] [Indexed: 02/27/2024]
Abstract
Elucidating how cell populations promote onset and progression of intervertebral disc degeneration (IDD) has the potential to enable more precise therapeutic targeting of cells and mechanisms. Single-cell RNA-sequencing (scRNA-seq) is performed on surgically separated annulus fibrosus (AF) (19,978; 26,983 cells) and nucleus pulposus (NP) (20,884; 24,489 cells) from healthy and diseased human intervertebral discs (IVD). In both tissue types, depletion of cell subsets involved in maintenance of healthy IVD is observed, specifically the immature cell subsets - fibroblast progenitors and stem cells - indicative of an impairment of normal tissue self-renewal. Tissue-specific changes are also identified. In NP, several fibrotic populations are increased in degenerated IVD, indicating tissue-remodeling. In degenerated AF, a novel disease-associated subset is identified, which expresses disease-promoting genes. It is associated with pathogenic biological processes and the main gene regulatory networks include thrombospondin signaling and FOXO1 transcription factor. In NP and AF cells thrombospondin protein promoted expression of genes associated with TGFβ/fibrosis signaling, angiogenesis, and nervous system development. The data reveal new insights of both shared and tissue-specific changes in specific cell populations in AF and NP during IVD degeneration. These identified mechanisms and molecules are novel and more precise targets for IDD prevention and treatment.
Collapse
Affiliation(s)
- Hannah Swahn
- Department of Molecular and Cellular Biology & Department of Molecular MedicineScripps ResearchLa JollaCA92037USA
| | - Jasmin Mertens
- Department of Molecular and Cellular Biology & Department of Molecular MedicineScripps ResearchLa JollaCA92037USA
| | - Merissa Olmer
- Department of Molecular and Cellular Biology & Department of Molecular MedicineScripps ResearchLa JollaCA92037USA
| | - Kevin Myers
- Department of Molecular and Cellular Biology & Department of Molecular MedicineScripps ResearchLa JollaCA92037USA
| | - Tony S. Mondala
- Center for Computational Biology & Bioinformatics and Genomics CoreScripps ResearchLa JollaCA92037USA
| | - Padmaja Natarajan
- Center for Computational Biology & Bioinformatics and Genomics CoreScripps ResearchLa JollaCA92037USA
| | - Steven R. Head
- Center for Computational Biology & Bioinformatics and Genomics CoreScripps ResearchLa JollaCA92037USA
| | - Oscar Alvarez‐Garcia
- Department of Molecular and Cellular Biology & Department of Molecular MedicineScripps ResearchLa JollaCA92037USA
| | - Martin K. Lotz
- Department of Molecular and Cellular Biology & Department of Molecular MedicineScripps ResearchLa JollaCA92037USA
| |
Collapse
|
4
|
Zhao Y, Dong H, Xia Q, Wang Y, Zhu L, Hu Z, Xia J, Mao Q, Weng Z, Yi J, Feng S, Jiang Y, Liao W, Xin Z. A new strategy for intervertebral disc regeneration: The synergistic potential of mesenchymal stem cells and their extracellular vesicles with hydrogel scaffolds. Biomed Pharmacother 2024; 172:116238. [PMID: 38308965 DOI: 10.1016/j.biopha.2024.116238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a disease that severely affects spinal health and is prevalent worldwide. Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have regenerative potential and have emerged as promising therapeutic tools for treating degenerative discs. However, challenges such as the harsh microenvironment of degenerated intervertebral discs and EVs' limited stability and efficacy have hindered their clinical application. In recent years, hydrogels have attracted much attention in the field of IDD therapy because they can mimic the physiologic microenvironment of the disc and provide a potential solution by providing a suitable growth environment for MSCs and EVs. This review introduced the biological properties of MSCs and their derived EVs, summarized the research on the application of MSCs and EVs in IDD, summarized the current clinical trial studies of MSCs and EVs, and also explored the mechanism of action of MSCs and EVs in intervertebral discs. In addition, plenty of research elaborated on the mechanism of action of different classified hydrogels in tissue engineering, the synergistic effect of MSCs and EVs in promoting intervertebral disc regeneration, and their wide application in treating IDD. Finally, the challenges and problems still faced by hydrogel-loaded MSCs and EVs in the treatment of IDD are summarized, and potential solutions are proposed. This paper outlines the synergistic effects of MSCs and EVs in treating IDD in combination with hydrogels and aims to provide theoretical references for future related studies.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yanyang Wang
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zongyue Hu
- Department of Pain Rehabilitation, Affiliated Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443003, Hubei, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiangbi Yi
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Shuai Feng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Youhong Jiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China; Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
5
|
Chen Z, Liao Z, Liu M, Lin F, Chen S, Wang G, Zheng Z, Liu B, Li C, Wang Z, Chen T, Huang H, Liao Q, Cui W. Nucleus Pulposus-Targeting Nanocarriers Facilitate Mirna-Based Therapeutics for Intervertebral Disc Degeneration. Adv Healthc Mater 2023; 12:e2301337. [PMID: 37625164 DOI: 10.1002/adhm.202301337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/23/2023] [Indexed: 08/27/2023]
Abstract
Intervertebral disc degeneration (IDD) is a common cause of low back pain. Understanding its molecular mechanisms is the basis for developing specific treatment. To demonstrate that miR-22-3p is critical in the regulation of IDD, miRNA microarray analyses are conducted in conjunction with in vivo and in vitro experiments. The miR-22-3p knockout (KO) mice show a marked decrease in the histological scores. Bioinformatic analysis reveals that miR-22-3p plays a mechanistic role in the development of IDD by targeting SIRT1, which in turn activates the JAK1/STAT3 signaling pathway. This is confirmed by a luciferase reporter assay and western blot analysis. Therapeutically, the delivery of miR-22-3p inhibitors and mimics through the synthesized nanoparticles in the IDD model alleviates and aggravates IDD, respectively. The nanocarriers enhance transportation of miR-22-3p to nucleus pulposus cells, thus enabling the in vivo inhibition of miR-22-3p for therapeutic purposes and consequently promoting the development of miRNA-specific drugs for IDD.
Collapse
Affiliation(s)
- Zhonghui Chen
- Orthopaedic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350000, China
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
- Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000, China
| | - Zhong Liao
- Orthopaedic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350000, China
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Ming Liu
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Fengfei Lin
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Shunyou Chen
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Geng Wang
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Zhong Zheng
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Boling Liu
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Chaoxiong Li
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Zheqiang Wang
- Department of Sport's Medicine, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, 350000, China
| | - Tianlai Chen
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Hongzhe Huang
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Qi Liao
- Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000, China
| | - Weiliang Cui
- Orthopaedic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350000, China
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| |
Collapse
|
6
|
Samanta A, Lufkin T, Kraus P. Intervertebral disc degeneration-Current therapeutic options and challenges. Front Public Health 2023; 11:1156749. [PMID: 37483952 PMCID: PMC10359191 DOI: 10.3389/fpubh.2023.1156749] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Degeneration of the intervertebral disc (IVD) is a normal part of aging. Due to the spine's declining function and the development of pain, it may affect one's physical health, mental health, and socioeconomic status. Most of the intervertebral disc degeneration (IVDD) therapies today focus on the symptoms of low back pain rather than the underlying etiology or mechanical function of the disc. The deteriorated disc is typically not restored by conservative or surgical therapies that largely focus on correcting symptoms and structural abnormalities. To enhance the clinical outcome and the quality of life of a patient, several therapeutic modalities have been created. In this review, we discuss genetic and environmental causes of IVDD and describe promising modern endogenous and exogenous therapeutic approaches including their applicability and relevance to the degeneration process.
Collapse
Affiliation(s)
| | | | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY, United States
| |
Collapse
|
7
|
Xia KS, Li DD, Wang CG, Ying LW, Wang JK, Yang B, Shu JW, Huang XP, Zhang YA, Yu C, Zhou XP, Li FC, Slater NK, Tang JB, Chen QX, Liang CZ. An esterase-responsive ibuprofen nano-micelle pre-modified embryo derived nucleus pulposus progenitor cells promote the regeneration of intervertebral disc degeneration. Bioact Mater 2023; 21:69-85. [PMID: 36017070 PMCID: PMC9399388 DOI: 10.1016/j.bioactmat.2022.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 10/27/2022] Open
|
8
|
Lufkin L, Samanta A, Baker D, Lufkin S, Schulze J, Ellis B, Rose J, Lufkin T, Kraus P. Glis1 and oxaloacetate in nucleus pulposus stromal cell somatic reprogramming and survival. Front Mol Biosci 2022; 9:1009402. [PMID: 36406265 PMCID: PMC9671658 DOI: 10.3389/fmolb.2022.1009402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Regenerative medicine aims to repair degenerate tissue through cell refurbishment with minimally invasive procedures. Adipose tissue (FAT)-derived stem or stromal cells are a convenient autologous choice for many regenerative cell therapy approaches. The intervertebral disc (IVD) is a suitable target. Comprised of an inner nucleus pulposus (NP) and an outer annulus fibrosus (AF), the degeneration of the IVD through trauma or aging presents a substantial socio-economic burden worldwide. The avascular nature of the mature NP forces cells to reside in a unique environment with increased lactate levels, conditions that pose a challenge to cell-based therapies. We assessed adipose and IVD tissue-derived stromal cells through in vitro transcriptome analysis in 2D and 3D culture and suggested that the transcription factor Glis1 and metabolite oxaloacetic acid (OAA) could provide NP cells with survival tools for the harsh niche conditions in the IVD.
Collapse
Affiliation(s)
- Leon Lufkin
- Department of Statistics and Data Science, Yale University, New Haven, CT, United States,The Clarkson School, Clarkson University, Potsdam, NY, United States
| | - Ankita Samanta
- Department of Biology, Clarkson University, Potsdam, NY, United States
| | - DeVaun Baker
- The Clarkson School, Clarkson University, Potsdam, NY, United States,Department of Biology, Clarkson University, Potsdam, NY, United States
| | - Sina Lufkin
- The Clarkson School, Clarkson University, Potsdam, NY, United States,Department of Biology, Clarkson University, Potsdam, NY, United States
| | | | - Benjamin Ellis
- Department of Biology, Clarkson University, Potsdam, NY, United States
| | - Jillian Rose
- Department of Biology, Clarkson University, Potsdam, NY, United States
| | - Thomas Lufkin
- Department of Biology, Clarkson University, Potsdam, NY, United States
| | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY, United States,*Correspondence: Petra Kraus,
| |
Collapse
|
9
|
Researches on Stem and Progenitor Cells in Intervertebral Discs: An Analysis of the Scientific Landscape. Stem Cells Int 2022; 2022:1274580. [PMID: 36093440 PMCID: PMC9458398 DOI: 10.1155/2022/1274580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Low back pain (LBP) is a common clinical symptom, and the prevalence is ranged from 60% to 70%. With the deepening of basic research, the development of intervertebral disc regeneration-oriented cell therapy, especially stem and progenitor cells therapy, showed good research prospects and was expected to become new methods of treatment for LBP. Our study is aimed at analyzing the scientific output of stem and progenitor cells in intervertebral discs and at driving future research into new publications. Researches focused on this file were searched from the Science Citation Index Expanded (SCI-E) of the Web of Science (WOS) core collection database and were screened according to inclusion criteria. We evaluated and visualized the results, including annual publications, citations, authors, organizations, countries, research directions, funds, and journals by bibliometric website, VOSviewer, and Citespace softwares on May 27, 2022. A total of 450 original articles and reviews were included, and the overall trend of the number of publications rapidly increased. In worldwide, China and the USA were the leading countries for research production. The retrieved 450 publications received 14322 citations, with an average of 31.83 citations and an H-index of 62. The most high-yield author, organization, country, research directions, funds, and journals were Chen QX from Zhejiang University, Zhejiang University, China, Cell Biology, National Natural Science Foundation of China, and Spine, respectively. Keywords cluster analysis showed the research hotspots in the future, including “human intervertebral disc”, “adipose-derived mesenchymal stem cell”, “intervertebral disc degeneration”, “degenerative disc model”, “nucleus pulposus regeneration”, “human cartilage”, “3d culture”, “shrinkage-free preparation”, and “polylactide disc”. Furthermore, with accumulating evidence demonstrating the role of stem and progenitor cells in intervertebral discs, “microenvironment”, “activation”, “intervertebral disc degeneration”, and “oxidative stress” are becoming the research frontiers and trends.
Collapse
|
10
|
Humphreys PA, Mancini FE, Ferreira MJS, Woods S, Ogene L, Kimber SJ. Developmental principles informing human pluripotent stem cell differentiation to cartilage and bone. Semin Cell Dev Biol 2022; 127:17-36. [PMID: 34949507 DOI: 10.1016/j.semcdb.2021.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Human pluripotent stem cells can differentiate into any cell type given appropriate signals and hence have been used to research early human development of many tissues and diseases. Here, we review the major biological factors that regulate cartilage and bone development through the three main routes of neural crest, lateral plate mesoderm and paraxial mesoderm. We examine how these routes have been used in differentiation protocols that replicate skeletal development using human pluripotent stem cells and how these methods have been refined and improved over time. Finally, we discuss how pluripotent stem cells can be employed to understand human skeletal genetic diseases with a developmental origin and phenotype, and how developmental protocols have been applied to gain a better understanding of these conditions.
Collapse
Affiliation(s)
- Paul A Humphreys
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, University of Manchester, UK
| | - Fabrizio E Mancini
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Miguel J S Ferreira
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, University of Manchester, UK
| | - Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Leona Ogene
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| |
Collapse
|
11
|
Chen Q, Wu Y, Zhong M, Xu C, Chen R, Liu N. Amphiregulin secreted by cartilage endplate stem cells inhibits intervertebral disk degeneration and TNF-α production via PI3K/AKT and ERK1/2 signaling pathways. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Sakai D, Schol J, Watanabe M. Clinical Development of Regenerative Medicine Targeted for Intervertebral Disc Disease. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:267. [PMID: 35208590 PMCID: PMC8878570 DOI: 10.3390/medicina58020267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Low back pain is critical health, social, and economic issue in modern societies. This disease is often associated with intervertebral disc degeneration; however, contemporary treatments are unable to target this underlying pathology to alleviate the pain symptoms. Cell therapy offers a promising novel therapeutic that, in theory, should be able to reduce low back pain through mitigating the degenerative disc environment. With the clinical development of cell therapeutics ongoing, this review aims to summarize reporting on the different clinical trials and assess the different regenerative strategies being undertaken to collectively obtain an impression on the potential safety and effectiveness of cell therapeutics against intervertebral disc-related diseases.
Collapse
Affiliation(s)
- Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, School of Medicine, Tokai University, Isehara 259-1193, Japan; (J.S.); (M.W.)
| | | | | |
Collapse
|
13
|
Shi Z, He J, He J, Xu Y. High hydrostatic pressure (30 atm) enhances the apoptosis and inhibits the proteoglycan synthesis and extracellular matrix level of human nucleus pulposus cells via promoting the Wnt/β-catenin pathway. Bioengineered 2022; 13:3070-3081. [PMID: 35100096 PMCID: PMC8974124 DOI: 10.1080/21655979.2022.2025518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hydrostatic pressure is known to regulate bovine nucleus pulposus cell metabolism, but its mechanism in human nucleus pulposus cells (HNPCs) remains obscure, which attracts our attention and becomes the focus in this study. Specifically, HNPCs were treated with SKL2001 (an agonist in the Wnt/β-catenin pathway) or XAV-939 (an inhibitor of the Wnt/β-catenin pathway), and pressurized under the hydrostatic pressure of 1, 3 and 30 atm. The viability, apoptosis and proteoglycan synthesis of treated HNPC were assessed by CCK-8, flow cytometry and radioisotope incorporation assays. The levels of extracellular matrix, Collagen-II, matrix metalloproteinase 3 (MMP3), Wnt-3a and β-catenin were measured by toluidine blue staining, immunocytochemistry and Western blot. Appropriate hydrostatic stimulation (3 atm) enhanced the viability and proteoglycan synthesis yet inhibited the apoptosis of HNPCs, which also up-regulated extracellular matrix and Collagen-II levels, and down-regulated MMP3, Wnt-3a and β-catenin levels in treated HNPCs. Furthermore, high hydrostatic pressure (30 atm) inhibited the viability and proteoglycan synthesis, and promoted the morphological change and apoptosis of HNPCs, which also down-regulated extracellular matrix and Collagen-II levels and up-regulated MMP3, Wnt-3a and β-catenin levels. Besides, SKL2001 reversed the effects of hydrostatic pressure (3 atm) on inhibiting Wnt-3a, β-catenin, and MMP3 levels and promoting Collagen-II level in HNPC; whereas, XAV-939 reversed the effects of high hydrostatic pressure (30 atm) on promoting MMP3, Wnt-3a, and β-catenin levels and inhibiting Collagen-II level and proteoglycan synthesis of HNPCs. Collectively, high hydrostatic pressure promoted the apoptosis and inhibited the viability of HNPCs via activating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Zongting Shi
- Department of Spine, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Jun He
- Department of Orthopedics, Zhejiang Hospital, Hangzhou City, Zhejiang Province, China
| | - Jian He
- Department of Orthopedics, Zhejiang Hospital, Hangzhou City, Zhejiang Province, China
| | - Yuan Xu
- Department of Orthopedics, Zhejiang Hospital, Hangzhou City, Zhejiang Province, China
| |
Collapse
|
14
|
KRAUS P, SAMANTA A, LUFKIN S, LUFKIN T. Stem cells in intervertebral disc regeneration-more talk than action? BIOCELL 2021; 46:893-898. [PMID: 34966192 PMCID: PMC8713956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pain and lifestyle changes are common consequences of intervertebral disc degeneration (IVDD) and affect a large part of the aging population. The stemness of cells is exploited in the field of regenerative medicine as key to treat degenerative diseases. Transplanted cells however often face delivery and survival challenges, especially in tissues with a naturally harsh microniche environment such as the intervertebral disc. Recent interest in the secretome of stem cells, especially cargo protected from microniche-related decay as frequently present in degenerating tissues, provides new means of rejuvenating ailing cells and tissues. Exosomes, a type of extracellular vesicles with purposeful cargo gained particular interest in conveying stem cell related attributes of rejuvenation, which will be discussed here in the context of IVDD.
Collapse
Affiliation(s)
- Petra KRAUS
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA, Address correspondence to: Petra Kraus,
| | - Ankita SAMANTA
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| | - Sina LUFKIN
- The Clarkson School, Clarkson University, Potsdam, NY 13699, USA
| | - Thomas LUFKIN
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
15
|
Luo Z, Ma Y, Di T, Ma B, Li H, An J, Wang Y, Zhang H. DNMT3B decreases extracellular matrix degradation and alleviates intervertebral disc degeneration through TRPA1 methylation to inhibit the COX2/YAP axis. Aging (Albany NY) 2021; 13:20258-20276. [PMID: 34428744 PMCID: PMC8436916 DOI: 10.18632/aging.203410] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/08/2021] [Indexed: 01/14/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a main cause of low back pain that is associated with extracellular matrix (ECM) degradation and inflammation. This study aims to investigate the role of DNMT3B and its regulatory mechanisms in IVDD. IVDD rat models were constructed followed by transfections with oe-DNMT3B or oe-YAP in order to explore the role of DNMT3B in the development of IVDD. After that transfection, nucleus pulposus (NP) cells were isolated and transfected with oe-DNMT3B, oe-TRPA1, si-YAP, oe-YAP or oe-COX2 in order to investigate the functions of DNMT3B in NP cells. DNMT3B was poorly expressed in IVDD tissues and NP cells whereas TRPA1, COX2, and YAP were highly expressed. The proliferation or apoptosis of NP cells was detected through CCK-8 assay or flow cytometry, respectively. Overexpression of DNMT3B promoted the proliferation of NP cells, inhibited their apoptosis, as well as increasing the expression of collagen II and aggrecan and decreasing expression of MMP3 and MMP9. Besides, DNMT3B suppressed inflammation and alleviated IVDD. Mechanistically, DNMT3B modified the TRPA1 promoter by methylation to inhibit the expression of COX2. Overexpression of COX2 promoted the apoptosis of NP cells and decreased the expression of YAP, which was reversed by upregulating DNMT3B. DNMT3B may promote the proliferation of NP cells and prevent their ECM degradation through the TRPA1/COX2/YAP axis, thereby alleviating IVDD in rats.
Collapse
Affiliation(s)
- Zhiqiang Luo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| | - Yanchao Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| | - Tianning Di
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| | - Bing Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| | - Hongwei Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| | - Jiangdong An
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| | - Haihong Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| |
Collapse
|
16
|
Wang Q, Wang J, Gu X, Feng D, Li D, Jiang T. MicroRNA-124-3p inhibits the differentiation of precartilaginous stem cells into nucleus pulposus-like cells via targeting FSTL1. Exp Ther Med 2021; 22:725. [PMID: 34007334 PMCID: PMC8120511 DOI: 10.3892/etm.2021.10157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/18/2021] [Indexed: 11/05/2022] Open
Abstract
MicroRNA (miRNA/miR)-124-3p has been extensively studied in tumor biology and stem cells. However, little is known regarding its functional roles in the differentiation of precartilaginous stem cells (PSCs) into nucleus pulposus-like cells (NPLCs). In the present study, using miRNA microarray screening, it was demonstrated that the miRNA expression profiles differed between rat primary PSCs and TGF-β1-induced differentiated NPLCs, and that miR-124-3p was significantly differentially expressed during the differentiation of PSCs to NPLCs. Furthermore, RT-qPCR analysis verified that miR-124-3p expression was decreased during PSC differentiation, with the lowest levels being detected at the later stages. Subsequent experiments revealed that miR-124-3p overexpression significantly decreased the expression of the extracellular matrix proteins, aggrecan and collagen type II, which was accompanied by a significant decrease in follistatin-related protein 1 (FSTL1) expression levels. Moreover, bioinformatics analysis indicated that FSTL1 was a potential target of miR-124-3p, which was additionally verified using luciferase reporter assays. Taken together, these data revealed a specific regulatory pathway of miR-124-3p, which negatively regulated its target gene, FSTL1, during the differentiation of PSCs to NPLCs, and suggested a functional role for miR-124-3p in the differentiation of PSCs.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Junfang Wang
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Xiaofeng Gu
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Dehong Feng
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Ding Li
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Tao Jiang
- Department of Orthopedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| |
Collapse
|
17
|
The Application of Mesenchymal Stromal Cells and Their Homing Capabilities to Regenerate the Intervertebral Disc. Int J Mol Sci 2021; 22:ijms22073519. [PMID: 33805356 PMCID: PMC8036861 DOI: 10.3390/ijms22073519] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic low back pain (LBP) remains a challenging condition to treat, and especially to cure. If conservative treatment approaches fail, the current “gold standard” for intervertebral disc degeneration (IDD)-provoked back pain is spinal fusion. However, due to its invasive and destructive nature, the focus of orthopedic research related to the intervertebral disc (IVD) has shifted more towards cell-based therapeutic approaches. They aim to reduce or even reverse the degenerative cascade by mimicking the human body’s physiological healing system. The implementation of progenitor and/or stem cells and, in particular, the delivery of mesenchymal stromal cells (MSCs) has revealed significant potential to cure the degenerated/injured IVD. Over the past decade, many research groups have invested efforts to find ways to utilize these cells as efficiently and sustainably as possible. This narrative literature review presents a summary of achievements made with the application of MSCs for the regeneration of the IVD in recent years, including their preclinical and clinical applications. Moreover, this review presents state-of-the-art strategies on how the homing capabilities of MSCs can be utilized to repair damaged or degenerated IVDs, as well as their current limitations and future perspectives.
Collapse
|
18
|
Baumgartner L, Wuertz-Kozak K, Le Maitre CL, Wignall F, Richardson SM, Hoyland J, Ruiz Wills C, González Ballester MA, Neidlin M, Alexopoulos LG, Noailly J. Multiscale Regulation of the Intervertebral Disc: Achievements in Experimental, In Silico, and Regenerative Research. Int J Mol Sci 2021; 22:E703. [PMID: 33445782 PMCID: PMC7828304 DOI: 10.3390/ijms22020703] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a major risk factor of low back pain. It is defined by a progressive loss of the IVD structure and functionality, leading to severe impairments with restricted treatment options due to the highly demanding mechanical exposure of the IVD. Degenerative changes in the IVD usually increase with age but at an accelerated rate in some individuals. To understand the initiation and progression of this disease, it is crucial to identify key top-down and bottom-up regulations' processes, across the cell, tissue, and organ levels, in health and disease. Owing to unremitting investigation of experimental research, the comprehension of detailed cell signaling pathways and their effect on matrix turnover significantly rose. Likewise, in silico research substantially contributed to a holistic understanding of spatiotemporal effects and complex, multifactorial interactions within the IVD. Together with important achievements in the research of biomaterials, manifold promising approaches for regenerative treatment options were presented over the last years. This review provides an integrative analysis of the current knowledge about (1) the multiscale function and regulation of the IVD in health and disease, (2) the possible regenerative strategies, and (3) the in silico models that shall eventually support the development of advanced therapies.
Collapse
Affiliation(s)
- Laura Baumgartner
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY 14623, USA;
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), 81547 Munich, Germany
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Francis Wignall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Carlos Ruiz Wills
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Miguel A. González Ballester
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Michael Neidlin
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Leonidas G. Alexopoulos
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Jérôme Noailly
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| |
Collapse
|
19
|
Wang J, Huang L, Huang Y, Jiang Y, Zhang L, Feng G, Liu L. Therapeutic effect of the injectable thermosensitive hydrogel loaded with SHP099 on intervertebral disc degeneration. Life Sci 2020; 266:118891. [PMID: 33310047 DOI: 10.1016/j.lfs.2020.118891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 02/05/2023]
Abstract
AIMS Intervertebral disc (IVD) degeneration (IDD), a common musculoskeletal disease with limited self-healing ability, is challenging to treat. The development of innovative therapies to reverse IDD depends on the elucidation of its regulatory mechanisms. Therefore, the role of Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2) in the pathogenesis of IDD and the therapeutic effect of its small-molecule inhibitor, SHP099, were investigated. MATERIALS AND METHODS The expression of SHP2 by nucleus pulposus (NP) cells in IVD was investigated in vitro and in vivo, and its molecular mechanism in IDD was explored using transfection technology. Injectable N-isopropylacrylamide-based thermosensitive hydrogels were synthesized for SHP099 delivery. KEY FINDINGS SHP2 was highly expressed in degenerated IVDs, where its overexpression in NP cells inhibited the expression of Sry-related HMG box-9 (Sox9), leading to the decreased expression of key proteins (collagen II and aggrecan) and consequently to IDD. SHP099 reversed the degeneration of NP cells in vitro. Moreover, its administration in rats via the injectable thermosensitive hydrogel had a therapeutic effect on IDD. SIGNIFICANCE Our results suggest that SHP2 is a key factor in IDD progression, and SHP099 inhibits both its expression and NP cell degeneration. Therefore, SHP099 delivery via injectable thermosensitive hydrogels is a potential treatment strategy for IDD.
Collapse
Affiliation(s)
- Jingcheng Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Leizhen Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yong Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yulin Jiang
- Analytical and Testing Center, State Key Laboratory of Oral Diseases, School of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Li Zhang
- Analytical and Testing Center, State Key Laboratory of Oral Diseases, School of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ganjun Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Limin Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
20
|
Li M, Li R, Yang S, Yang D, Gao X, Sun J, Ding W, Ma L. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Prevent Acidic pH-Induced Damage in Human Nucleus Pulposus Cells. Med Sci Monit 2020; 26:e922928. [PMID: 32436493 PMCID: PMC7257871 DOI: 10.12659/msm.922928] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background The exosomes (Exo) derived from mesenchymal stem cells (MSCs) are capable of attenuating the apoptosis of nucleus pulposus cells (NPCs) elicited by proinflammatory cytokines. However, it remains unknown whether MSC-derived Exo also exert a protective effect on NPCs in the pathological acid environment. Material/Methods NPCs were divided into 3 groups: Group A, pH 7.1–7.3; Group B, pH 6.5–6.7 and Group C, pH 5.9–6.1. The NPCs were cultured in the above-defined acidic medium, and 3 different amounts of Exo were added into the media. Finally, the expression of the caspase-3, aggrecan, collagen II, and MMP-13 was analyzed and compared among the different groups. Results Compared with cells cultured at pH 7.1–7.3 (Group A), proliferation activity of NPCs cultured at pH 5.9–6.7 (Group B and C) decreased significantly. Collagen II and aggrecan expression was also obviously reduced with the decrease of cell proliferation. Conversely, the expression of caspase-3 and MMP-13 significantly increased. Further experiments showed that proliferation activity was significantly attenuated in NPCs cultured at pH 5.9–6.1 without Exo treatment (Group E) compared with those cultured at pH 7.1–7.3 without Exo treatment (Group D). Conclusions In the pathological acid environment, MSC-derived Exo promotes the expression of chondrocyte extracellular matrix, collagen II, and aggrecan, and reduces matrix degradation by downregulating matrix-degrading enzymes, protecting NPCs from acidic pH-induced apoptosis. This study reveals a promising strategy for treatment of IVD degeneration.
Collapse
Affiliation(s)
- Ming Li
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Ruoyu Li
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Sidong Yang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Dalong Yang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Xianda Gao
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Jiayuan Sun
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Wenyuan Ding
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Lei Ma
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|