1
|
Yang H, Feng R, Heng X, Shan F, Wang Y, Yao L, Wang S, Chen G, Chen H. Enhanced Whole Tumor Cell-Based Vaccines by a RAFT and Protein Fusion Strategy for Tumor Immunotherapy. Biomacromolecules 2025; 26:2690-2699. [PMID: 40117506 DOI: 10.1021/acs.biomac.5c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Inactivated whole tumor cell-based vaccines (WTVs) are a promising strategy for tumor immunotherapy, but have exhibited limited antitumor effects clinically. Aiming at constructing enhanced WTVs, we developed glycopolymer-engineered WTVs (G-WTVs) using a Halo-Tag protein (HTP) fusion technique and reversible addition-fragmentation chain transfer (RAFT) polymerization. In our study, G-WTVs with varying molecular weights of glycopolymers were constructed. Compared to unmodified tumor cells, all G-WTVs effectively induced the polarization of macrophages toward the M1 phenotype and promoted the secretion of pro-inflammatory cytokines. This enhanced immune response was attributed to the improved interactions between G-WTVs and the macrophages. Among the G-WTVs, the medium molecular weight variant demonstrated the most pronounced enhancement of antitumor immune responses. Notably, the administration of optimized G-WTVs effectively inhibited the growth of B16 melanoma in mice. Our findings provide a new approach to enhance the antitumor efficacy of WTVs via cell membrane glycopolymer engineering, offering a promising strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- He Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Ruyan Feng
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, P. R. China
| | - Xingyu Heng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Fangjian Shan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Yichen Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Lihua Yao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Sujian Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Gaojian Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Biosurf Biotech Co., Ltd., Suzhou 215123, P. R. China
| |
Collapse
|
2
|
Wiseman CL, Holmes JP, Calfa C, Dakhil SR, Bhattacharya S, Peoples GE, Lacher MD, Lopez-Lago M, Kharazi A, Del Priore G, Chang M, Adams DL, Williams WV. Results of a phase I/IIa trial of SV-BR-1-GM inoculation with low-dose cyclophosphamide and interferon alpha (Bria-IMT) in metastatic breast cancer. Hum Vaccin Immunother 2024; 20:2379864. [PMID: 39165083 PMCID: PMC11340742 DOI: 10.1080/21645515.2024.2379864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024] Open
Abstract
This Phase I/IIa open-label, single-arm clinical trial addressing advanced, refractory, metastatic breast cancer was conducted at six medical centers in the United States. We repeated inoculations with irradiated SV-BR-1-GM, a breast cancer cell line with antigen-presenting activity engineered to release granulocyte-macrophage colony-stimulating factor (GM-CSF), with pre-dose low-dose cyclophosphamide and post-dose local interferon alpha. Twenty-six patients were enrolled; 23 (88.5%) were inoculated, receiving a total of 79 inoculations. There were six Grade 4 and one Grade 5 adverse events noted (judged unrelated to SV-BR-1-GM). Disease control (stable disease [SD]) occurred in 8 of 16 evaluable patients; 4 showed objective regression of metastases, including 1 patient with near-complete regressions in 20 of 20 pulmonary lesions. All patients with regressions had human leukocyte antigen (HLA) matches with SV-BR-1-GM; non-responders were equally divided between matching and nonmatching (p = .01, Chi-squared), and having ≥2 HLA matches with SV-BR-1-GM (n = 6) correlated with clinical benefit. Delayed-type hypersensitivity (DTH) testing to candida antigen and SV-BR-1-GM generated positive responses (≥5 mm) in 11 (42.3%) and 13 (50%) patients, respectively. Quantifying peripheral circulating tumor cells (CTCs) and cancer-associated macrophage-like cells (CAMLs) showed that a drop in CAMLs was significantly correlated with an improvement in progression-free survival (PFS; 4.1 months vs. 1.8 months, p = .0058). Eight of 10 patients significantly upregulated programmed cell death ligand 1 (PD-L1) on CTCs/CAMLs with treatment (p = .0012). These observations support the safety of the Bria-IMT regimen, demonstrate clinical regressions, imply a role for HLA matching, and identify a possible value for monitoring CAMLs in peripheral blood.
Collapse
Affiliation(s)
| | - Jarrod P. Holmes
- Hematology Oncology, Providence Medical Group Santa Rosa - Cancer Center, Santa Rosa, CA, USA
| | - Carmen Calfa
- Medical Oncology, University of Miami, Miami, FL, USA
| | | | | | | | | | | | - Alex Kharazi
- Development, BriaCell Therapeutics Corp, Philadelphia, PA, USA
- Discovery, Stemedica Cell Technologies, Inc, San Diego, USA
| | - Giuseppe Del Priore
- Development, BriaCell Therapeutics Corp, Philadelphia, PA, USA
- Obstetrics & Gynecology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Mingjin Chang
- Development, BriaCell Therapeutics Corp, Philadelphia, PA, USA
| | | | | |
Collapse
|
3
|
Lan HR, Chen M, Yao SY, Chen JX, Jin KT. Novel immunotherapies for breast cancer: Focus on 2023 findings. Int Immunopharmacol 2024; 128:111549. [PMID: 38266449 DOI: 10.1016/j.intimp.2024.111549] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Immunotherapy has emerged as a revolutionary approach in cancer therapy, and recent advancements hold significant promise for breast cancer (BCa) management. Employing the patient's immune system to combat BCa has become a focal point in immunotherapeutic investigations. Strategies such as immune checkpoint inhibitors (ICIs), adoptive cell transfer (ACT), and targeting the tumor microenvironment (TME) have disclosed encouraging clinical outcomes. ICIs, particularly programmed cell death protein 1 (PD-1)/PD-L1 inhibitors, exhibit efficacy in specific BCa subtypes, including triple-negative BCa (TNBC) and human epidermal growth factor receptor 2 (HER2)-positive cancers. ACT approaches, including tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T-cell therapy, showed promising clinical outcomes in enhancing tumor recognition and elimination. Targeting the TME through immune agonists and oncolytic viruses signifies a burgeoning field of research. While challenges persist in patient selection, resistance mechanisms, and combination therapy optimization, these novel immunotherapies hold transformative potential for BCa treatment. Continued research and clinical trials are imperative to refine and implement these innovative approaches, paving the way for improved outcomes and revolutionizing the management of BCa. This review provides a concise overview of the latest immunotherapies (2023 studies) in BCa, highlighting their potential and current status.
Collapse
Affiliation(s)
- Huan-Rong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China
| | - Min Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Shi-Ya Yao
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China
| | - Jun-Xia Chen
- Department of Gynecology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China.
| | - Ke-Tao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
4
|
Zou Y, Ye F, Kong Y, Hu X, Deng X, Xie J, Song C, Ou X, Wu S, Wu L, Xie Y, Tian W, Tang Y, Wong C, Chen Z, Xie X, Tang H. The Single-Cell Landscape of Intratumoral Heterogeneity and The Immunosuppressive Microenvironment in Liver and Brain Metastases of Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203699. [PMID: 36529697 PMCID: PMC9929130 DOI: 10.1002/advs.202203699] [Citation(s) in RCA: 133] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/11/2022] [Indexed: 05/07/2023]
Abstract
Distant metastasis remains the major cause of morbidity for breast cancer. Individuals with liver or brain metastasis have an extremely poor prognosis and low response rates to anti-PD-1/L1 immune checkpoint therapy compared to those with metastasis at other sites. Therefore, it is urgent to investigate the underlying mechanism of anti-PD-1/L1 resistance and develop more effective immunotherapy strategies for these patients. Using single-cell RNA sequencing, a high-resolution map of the entire tumor ecosystem based on 44 473 cells from breast cancer liver and brain metastases is depicted. Identified by canonical markers and confirmed by multiplex immunofluorescent staining, the metastatic ecosystem features remarkable reprogramming of immunosuppressive cells such as FOXP3+ regulatory T cells, LAMP3+ tolerogenic dendritic cells, CCL18+ M2-like macrophages, RGS5+ cancer-associated fibroblasts, and LGALS1+ microglial cells. In addition, PD-1 and PD-L1/2 are barely expressed in CD8+ T cells and cancer/immune/stromal cells, respectively. Interactions of the immune checkpoint molecules LAG3-LGALS3 and TIGIT-NECTIN2 between CD8+ T cells and cancer/immune/stromal cells are found to play dominant roles in the immune escape. In summary, this study dissects the intratumoral heterogeneity and immunosuppressive microenvironment in liver and brain metastases of breast cancer for the first time, providing insights into the most appropriate immunotherapy strategies for these patients.
Collapse
Affiliation(s)
- Yutian Zou
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Feng Ye
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Yanan Kong
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Xiaoqian Hu
- School of Biomedical SciencesFaculty of MedicineThe University of Hong Kong21 Sassoon RoadHong Kong999077China
| | - Xinpei Deng
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Jindong Xie
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Cailu Song
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Xueqi Ou
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Song Wu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Linyu Wu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Yi Xie
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Wenwen Tian
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Yuhui Tang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Chau‐Wei Wong
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Zhe‐Sheng Chen
- College of Pharmacy and Health SciencesSt. John's UniversityQueensNYUSA
| | - Xinhua Xie
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Hailin Tang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| |
Collapse
|