1
|
Amiri M, Jafari S, Lavasanifar A, Molavi O, Montazersaheb S. Nano-delivery of Silibinin Potentiate the Induction of Immunogenic Cell Death (ICD) in Melanoma Cells. Curr Pharm Biotechnol 2025; 26:392-401. [PMID: 38482616 DOI: 10.2174/0113892010280336240227062954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 03/25/2025]
Abstract
BACKGROUND Induction of immunogenic cell death (ICD) in tumors can enhance antitumor immunity and modulate immunosuppression in the tumor microenvironment (TME). OBJECTIVE In the current study, we investigated the effect of silibinin, a natural compound with anticancer activity, and its polymer-based nanoformulations on the induction of apoptosis and ICD in cancer cells. METHODS Free and nanoparticulate silibinin were evaluated for their growth-inhibitory effects using an MTT assay. Annexin V/PI staining was used to analyze apoptosis. Calreticulin (CRT) expression was measured by flow cytometry. Western blotting was conducted to examine the levels of elf2α, which plays a role in the ICD pathway. The HSP90 and ATP levels were determined using specific detection kits. RESULTS Compared to the free drug, silibinin-loaded nanocarriers significantly increased the induction of apoptosis and ICD in B16F10 cells. ICD induction was characterized by significantly increased levels of ICD biomarkers, including CRT, HSP90, and ATP. We also observed an increased expression of p-elf-2α/ elf-2α in B16F10 cells treated with silibinin-loaded micelles compared to cells that received free silibinin. CONCLUSION Our findings showed that the encapsulation of silibinin in polymeric nanocarriers can potentiate the effects of this drug on the induction of apoptosis and ICD in B16F10 melanoma cells.
Collapse
Affiliation(s)
- Mina Amiri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Jafari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Wu Y, Chen R, Ni S, Hu K. Biomimetic "nano-spears" for CAFs-targeting: splintered three "shields" with enhanced cisplatin anti-TNBC efficiency. J Control Release 2024; 370:556-569. [PMID: 38697316 DOI: 10.1016/j.jconrel.2024.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
The treatment dilemma of triple-negative breast cancer (TNBC) revolves around drug resistance and metastasis. Cancer-associated fibroblasts (CAFs) contribute to cisplatin (Cis) resistance and further metastasis in TNBC, making TNBC a difficult-to-treat disease. The dense stromal barrier which restricts drug delivery, invasive phenotype of tumor cells, and immunosuppressive tumor microenvironment (TME) induced by CAFs serve as three "shields" for TNBC against Cis therapy. Here, we designed a silybin-loaded biomimetic nanoparticle coated with anisamide-modified red blood cell membrane (ARm@SNP) as a "nanospear" for CAFs-targeting, which could shatter the "shields" and significantly exhibit inhibitory effect on 4T1 cells in combination with Cis both in vitro and in vivo. The ARm@SNP/Cis elicited 4T1 tumor growth arrest and destroyed three "shields" as follows: disintegrating the stromal barrier by inhibiting blood vessels growth and the expression of fibronectin; decreasing 4T1 cell invasion and metastasis by affecting the TGF-β/Twist/EMT pathway which impeded EMT activation; reversing the immunosuppressive microenvironment by increasing the activity and infiltration of immunocompetent cells. Based on CAFs-targeting, ARm@SNP reversed the resistance of Cis, remodeled the TME and inhibited invasion and metastasis while significantly improving the therapeutic effect of Cis on 4T1 tumor-bearing mice, providing a promising approach for treating intractable TNBC.
Collapse
Affiliation(s)
- Yufan Wu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rujing Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Shuting Ni
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Bouyahya A, Bakrim S, Aboulaghras S, El Kadri K, Aanniz T, Khalid A, Abdalla AN, Abdallah AA, Ardianto C, Ming LC, El Omari N. Bioactive compounds from nature: Antioxidants targeting cellular transformation in response to epigenetic perturbations induced by oxidative stress. Biomed Pharmacother 2024; 174:116432. [PMID: 38520868 DOI: 10.1016/j.biopha.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Oxidative stress results from a persistent imbalance in oxidation levels that promotes oxidants, playing a crucial role in the early and sustained phases of DNA damage and genomic and epigenetic instability, both of which are intricately linked to the development of tumors. The molecular pathways contributing to carcinogenesis in this context, particularly those related to double-strand and single-strand breaks in DNA, serve as indicators of DNA damage due to oxidation in cancer cases, as well as factors contributing to epigenetic instability through ectopic expressions. Oxidative stress has been considered a therapeutic target for many years, and an increasing number of studies have highlighted the promising effectiveness of natural products in cancer treatment. In this regard, we present significant research on the therapeutic targeting of oxidative stress using natural molecules and underscore the essential role of oxidative stress in cancer. The consequences of stress, especially epigenetic instability, also offer significant therapeutic prospects. In this context, the use of natural epi-drugs capable of modulating and reorganizing the epigenetic network is beginning to emerge remarkably. In this review, we emphasize the close connections between oxidative stress, epigenetic instability, and tumor transformation, while highlighting the role of natural substances as antioxidants and epi-drugs in the anti-tumoral context.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Kawtar El Kadri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Tarik Aanniz
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan PO Box: 114, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed A Abdallah
- Department of Anatomy, Faculty of Medicine, Umm Alqura University, Makkah 21955, Saudi Arabia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia; School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| |
Collapse
|
4
|
Long L, Fei X, Chen L, Yao L, Lei X. Potential therapeutic targets of the JAK2/STAT3 signaling pathway in triple-negative breast cancer. Front Oncol 2024; 14:1381251. [PMID: 38699644 PMCID: PMC11063389 DOI: 10.3389/fonc.2024.1381251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its propensity for metastasis and poor prognosis. TNBC evades the body's immune system recognition and attack through various mechanisms, including the Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. This pathway, characterized by heightened activity in numerous solid tumors, exhibits pronounced activation in specific TNBC subtypes. Consequently, targeting the JAK2/STAT3 signaling pathway emerges as a promising and precise therapeutic strategy for TNBC. The signal transduction cascade of the JAK2/STAT3 pathway predominantly involves receptor tyrosine kinases, the tyrosine kinase JAK2, and the transcription factor STAT3. Ongoing preclinical studies and clinical research are actively investigating this pathway as a potential therapeutic target for TNBC treatment. This article comprehensively reviews preclinical and clinical investigations into TNBC treatment by targeting the JAK2/STAT3 signaling pathway using small molecule compounds. The review explores the role of the JAK2/STAT3 pathway in TNBC therapeutics, evaluating the benefits and limitations of active inhibitors and proteolysis-targeting chimeras in TNBC treatment. The aim is to facilitate the development of novel small-molecule compounds that target TNBC effectively. Ultimately, this work seeks to contribute to enhancing therapeutic efficacy for patients with TNBC.
Collapse
Affiliation(s)
- Lin Long
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiangyu Fei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Liucui Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Liang Yao
- Department of Pharmacy, Central Hospital of Hengyang, Hengyang, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
5
|
Fakhri S, Moradi SZ, Abbaszadeh F, Faraji F, Amirian R, Sinha D, McMahon EG, Bishayee A. Targeting the key players of phenotypic plasticity in cancer cells by phytochemicals. Cancer Metastasis Rev 2024; 43:261-292. [PMID: 38169011 DOI: 10.1007/s10555-023-10161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Plasticity of phenotypic traits refers to an organism's ability to change in response to environmental stimuli. As a result, the response may alter an organism's physiological state, morphology, behavior, and phenotype. Phenotypic plasticity in cancer cells describes the considerable ability of cancer cells to transform phenotypes through non-genetic molecular signaling activities that promote therapy evasion and tumor metastasis via amplifying cancer heterogeneity. As a result of metastable phenotypic state transitions, cancer cells can tolerate chemotherapy or develop transient adaptive resistance. Therefore, new findings have paved the road in identifying factors and agents that inhibit or suppress phenotypic plasticity. It has also investigated novel multitargeted agents that may promise new effective strategies in cancer treatment. Despite the efficiency of conventional chemotherapeutic agents, drug toxicity, development of resistance, and high-cost limit their use in cancer therapy. Recent research has shown that small molecules derived from natural sources are capable of suppressing cancer by focusing on the plasticity of phenotypic responses. This systematic, comprehensive, and critical review analyzes the current state of knowledge regarding the ability of phytocompounds to target phenotypic plasticity at both preclinical and clinical levels. Current challenges/pitfalls, limitations, and future perspectives are also discussed.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| | - Roshanak Amirian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700 026, West Bengal, India
| | - Emily G McMahon
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
6
|
Ray PP, Islam MA, Islam MS, Han A, Geng P, Aziz MA, Mamun AA. A comprehensive evaluation of the therapeutic potential of silibinin: a ray of hope in cancer treatment. Front Pharmacol 2024; 15:1349745. [PMID: 38487172 PMCID: PMC10937417 DOI: 10.3389/fphar.2024.1349745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Natural compounds hold promise in the search for cancer therapies due to their unique chemical structures and combinations that may effectively combat cancer while minimizing toxicity and side effects compared to conventional treatments. Silibinin, a natural lignan, has been found to possess strong anti-cancer activity against several types of human cancers based on emerging research. This study aims to provide an overview of the therapeutic potential of silibinin in the treatment and prevention of cancers. A comprehensive search was conducted using various internet databases such as PubMed, Google Scholar, and ScienceDirect to identify relevant research papers. Silibinin has been shown to exhibit anticancer activity against several types of cancers, including liver, lungs, breast, prostate, colorectal, skin, and bladder cancers. Its multifaceted mechanisms of action contribute to its therapeutic effects. Silibinin exerts antioxidant, anti-inflammatory, anti-proliferative, pro-apoptotic, anti-metastatic, and anti-angiogenic activities, making it a promising candidate for cancer therapy. One of the key mechanisms underlying the anticancer effects of silibinin is its ability to modulate multiple signaling pathways involved in cancer development and progression. It can inhibit the activation of various oncogenic pathways, including PI3K/Akt, NF-κB, Wnt/β-catenin, and MAPK pathways, thereby suppressing cancer cell proliferation, inducing cell cycle arrest, and promoting apoptosis. Silibinin possesses great potential as an effective treatment agent for cancer. The multifaceted mechanisms of action, favorable safety profile, and potential synergistic effects of silibinin with conventional therapies make it an attractive candidate for further investigation and development as a cancer treatment. However, more extensive clinical studies are necessary to fully establish the efficacy, optimal dosage, and long-term effects of silibinin in cancer treatment.
Collapse
Affiliation(s)
- Pantha Prodip Ray
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | | | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Aixia Han
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, China
| | - Peiwu Geng
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, China
| | - Md. Abdul Aziz
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, China
| |
Collapse
|
7
|
Sharma P, Gupta K, Khandai SK, Malik S, Thareja S. Phytometabolites as modulators of breast cancer: a comprehensive review of mechanistic insights. Med Oncol 2024; 41:45. [PMID: 38172452 DOI: 10.1007/s12032-023-02269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
Breast cancer (BC) is a highly debilitating malignancy affecting females globally and imposing a substantial burden on healthcare systems in both developed and developing nations. Despite the application of conventional therapeutic modalities such as chemotherapy, radiation therapy, and hormonal intervention, BC frequently exhibits resistance, necessitating the urgent development of novel, cost-effective, and accessible treatment strategies. In this context, there is a growing scientific interest in exploring the pharmacological potential of chemical compounds derived from botanical sources, which often exhibit notable biological activity. Extensive in vitro and in vivo investigations have revealed the capacity of these compounds, referred to as phytochemicals, to attenuate the metastatic cascade and reduce the risk of cancer dissemination. These phytochemicals exert their effects through modulation of key molecular and metabolic processes, including regulation of the cell cycle, induction of apoptotic cell death, inhibition of angiogenesis, and suppression of metastatic progression. To shed light on the latest advancements in this field, a comprehensive review of the scientific literature has been conducted, focusing on secondary metabolite agents that have recently been investigated and have demonstrated promising anticancer properties. This review aims to delineate their underlying mechanisms of action and elucidate the associated signaling pathways, thereby contributing to a deeper understanding of their therapeutic potential in the context of BC management.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Khushi Gupta
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Sumit Kumar Khandai
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Sonia Malik
- Laboratory of Woody Plants and Crops Biology, University of Orleans, Orleans, France
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
8
|
Liu M, Liu X, Qiao J, Cao B. Silibinin suppresses glioblastoma cell growth, invasion, stemness, and glutamine metabolism by YY1/SLC1A5 pathway. Transl Neurosci 2024; 15:20220333. [PMID: 38410123 PMCID: PMC10896183 DOI: 10.1515/tnsci-2022-0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024] Open
Abstract
Background Silibinin has been found to inhibit glioblastoma (GBM) progression. However, the underlying molecular mechanism by which Silibinin regulates GBM process remains unclear. Methods GBM cell proliferation, apoptosis, invasion, and stemness are assessed by cell counting kit-8 assay, EdU assay, flow cytometry, transwell assay, and sphere formation assay. Western blot is used to measure the protein expression levels of apoptosis-related markers, solute carrier family 1 member 5 (SLC1A5), and Yin Yang-1 (YY1). Glutamine consumption, glutamate production, and α-ketoglutarate production are detected to evaluate glutamine metabolism in cells. Also, SLC1A5 and YY1 mRNA levels are examined using quantitative real-time PCR. Chromatin immunoprecipitation assay and dual-luciferase reporter assay are used to detect the interaction between YY1 and SLC1A5. Mice xenograft models are constructed to explore Silibinin roles in vivo. Results Silibinin inhibits GBM cell proliferation, invasion, stemness, and glutamine metabolism, while promotes apoptosis. SLC1A5 is upregulated in GBM and its expression is decreased by Silibinin. SLC1A5 overexpression abolishes the anti-tumor effect of Silibinin in GBM cells. Transcription factor YY1 binds to SLC1A5 promoter region to induce SLC1A5 expression, and the inhibition effect of YY1 knockdown on GBM cell growth, invasion, stemness, and glutamine metabolism can be reversed by SLC1A5 overexpression. In addition, Silibinin reduces GBM tumor growth by regulating YY1/SLC1A5 pathway. Conclusion Silibinin plays an anti-tumor role in GBM process, which may be achieved via inhibiting YY1/SLC1A5 pathway.
Collapse
Affiliation(s)
- Ming Liu
- Department of Neurosurgery, The First Affiliated Hospital of Hebei North University, 12 Changqing Road, Qiaoxi District, Zhangjiakou City, 075000, Hebei Province, China
| | - Xipeng Liu
- Department of Neurosurgery, The First Affiliated Hospital of Hebei North University, 12 Changqing Road, Qiaoxi District, Zhangjiakou City, 075000, Hebei Province, China
| | - Jianxin Qiao
- Department of Neurosurgery, The First Affiliated Hospital of Hebei North University, 12 Changqing Road, Qiaoxi District, Zhangjiakou City, 075000, Hebei Province, China
| | - Bing Cao
- Department of Neurosurgery, The First Affiliated Hospital of Hebei North University, 12 Changqing Road, Qiaoxi District, Zhangjiakou City, 075000, Hebei Province, China
| |
Collapse
|
9
|
Moalefshahri R, Javid H, Gheybi F, Fallahnezhad S, Hashemy SI. The Role of Silymarin in Mitigating Inflammation and Cognitive Impairment Induced by Ovariectomy in Wistar Rats. Mediators Inflamm 2023; 2023:1-18. [DOI: 10.1155/2023/6639533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Background. Silymarin, a polyphenolic flavonoid found in milk thistle, has been used to treat liver and brain injuries in humans and animals. The study aims to investigate the protective effects of silymarin on spatial and passive avoidance memory, oxidative stress, and inflammatory factors in the brain and liver tissues of ovariectomized (OVX) Wistar rats. Methods. The study involved 30 female Wistar rats divided into control, sham, and three silymarin-treated groups. After ovariectomy, rats underwent CT scan, and some of them were administered silymarin via gavage for 2 months. Memory and learning were assessed using Morris water maze and shuttle box tests. Brain and liver tissues were analyzed for inflammatory factors (IL-1β, TNFα, and IL-6) and oxidative stress markers (CAT, SOD, and MDA) after sacrifice. Results. Silymarin improved spatial memory and fear learning compared to the sham group ( to ). It also significantly reduced IL-1β, TNF-α, and IL-6 levels in the cortex, hippocampus, and liver ( to ) and increased CAT and SOD while decreasing MDA levels ( to ) compared to control and sham groups. Conclusion. Long-term administration of silymarin extract can improve learning and memory, reverse cognitive impairment caused by ovariectomy, and reduce oxidative stress and inflammatory factors induced by ovariectomy in the liver and brain of Wistar rats. This is due to the reduction in MDA levels and an increase in CAT activity, although silymarin has some effect on SOD at high doses.
Collapse
Affiliation(s)
- Razieh Moalefshahri
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somaye Fallahnezhad
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Zhang W, Zhang Y, Wen C, Jiang X, Wang L. In vitro Assessment of the Effects of Silybin on CYP2B6-mediated Metabolism. PLANTA MEDICA 2023; 89:1195-1203. [PMID: 37236224 PMCID: PMC10575715 DOI: 10.1055/a-2102-0648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Silybin is a flavonol compound with a variety of physiological properties, such as hepatoprotective, anti-fibrogenic, and hypocholesterolemic effects. Although the in vivo and in vitro effects of silybin are frequently reported, studies on herb-drug interactions have yet to be performed. With the discovery of multiple important substrates of CYP2B6 recently, there is a growing body of evidence indicating that CYP2B6 plays a much larger role in human drug metabolism than previously thought.The purpose of this study is to determine how silybin affects the CYP2B6 enzyme's activity, as well as to clarify the molecular mechanisms for inhibition by silybin. The results showed that silybin inhibited CYP2B6 activity in liver microsomes in a non-competitive manner, with IC50 and Ki values of 13.9 µM and 38.4 µM, respectively. Further investigations revealed that silybin could down-regulate the expression of CYP2B6 protein in HepaRG cells. The hydrogen bond conformation of silybin in the active site of the CYP2B6 isoform was revealed by a molecular docking study. Collectively, our findings verify that silybin is an inhibitor of CYP2B6 and explain the molecular mechanism of inhibition. This can lead to a better understanding of the herb-drug interaction between silybin and the substrates of the CYP2B6 enzyme, as well as a more rational clinical use of silybin.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu, China
- Deparment of Pharmacy, Xiʼan Childrenʼs Hospital, The Affiliated Children Hospital of Xiʼan Jiaotong University, Xiʼan, China
| | - Yice Zhang
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu, China
| | - Chengming Wen
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu, China
| | - Xuehua Jiang
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu, China
| | - Ling Wang
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Caeiro L, Gandhay D, Anderson LJ, Garcia JM. A Review of Nutraceuticals in Cancer Cachexia. Cancers (Basel) 2023; 15:3884. [PMID: 37568700 PMCID: PMC10417577 DOI: 10.3390/cancers15153884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer cachexia is largely characterized by muscle wasting and inflammation, leading to weight loss, functional impairment, poor quality of life (QOL), and reduced survival. The main barrier to therapeutic development is a lack of efficacy for improving clinically relevant outcomes, such as physical function or QOL, yet most nutraceutical studies focus on body weight. This review describes clinical and pre-clinical nutraceutical studies outside the context of complex nutritional and/or multimodal interventions, in the setting of cancer cachexia, in view of considerations for future clinical trial design. Clinical studies mostly utilized polyunsaturated fatty acids or amino acids/derivatives, and they primarily focused on body weight and, secondarily, on muscle mass and/or QOL. The few studies that measured physical function almost exclusively utilized handgrip strength with, predominantly, no time and/or group effect. Preclinical studies focused mainly on amino acids/derivatives and polyphenols, assessing body weight, muscle mass, and occasionally physical function. While this review does not provide sufficient evidence of the efficacy of nutraceuticals for cancer cachexia, more preclinical and adequately powered clinical studies are needed, and they should focus on clinically meaningful outcomes, including physical function and QOL.
Collapse
Affiliation(s)
- Lucas Caeiro
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA (L.J.A.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Devika Gandhay
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA (L.J.A.)
| | - Lindsey J. Anderson
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA (L.J.A.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jose M. Garcia
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA (L.J.A.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Fatima GN, Fatma H, Saraf SK. Vaccines in Breast Cancer: Challenges and Breakthroughs. Diagnostics (Basel) 2023; 13:2175. [PMID: 37443570 DOI: 10.3390/diagnostics13132175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer is a problem for women's health globally. Early detection techniques come in a variety of forms ranging from local to systemic and from non-invasive to invasive. The treatment of cancer has always been challenging despite the availability of a wide range of therapeutics. This is either due to the variable behaviour and heterogeneity of the proliferating cells and/or the individual's response towards the treatment applied. However, advancements in cancer biology and scientific technology have changed the course of the cancer treatment approach. This current review briefly encompasses the diagnostics, the latest and most recent breakthrough strategies and challenges, and the limitations in fighting breast cancer, emphasising the development of breast cancer vaccines. It also includes the filed/granted patents referring to the same aspects.
Collapse
Affiliation(s)
- Gul Naz Fatima
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, Uttar Pradesh, India
| | - Hera Fatma
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, Uttar Pradesh, India
| | - Shailendra K Saraf
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, Uttar Pradesh, India
| |
Collapse
|
13
|
Ma X, Xia K, Xie J, Yan B, Han X, Li S, Wang Y, Fu T. Treatment of Idiopathic Pulmonary Fibrosis by Inhaled Silybin Dry Powder Prepared via the Nanosuspension Spray Drying Technology. ACS Pharmacol Transl Sci 2023; 6:878-891. [PMID: 37325446 PMCID: PMC10262316 DOI: 10.1021/acsptsci.3c00033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Indexed: 06/17/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a kind of life-threatening interstitial lung disease characterized by progressive dyspnea with accurate pathogenesis unknown. At present, heat shock protein inhibitors are gradually used to treat IPF. Silybin, a heat shock protein C-terminal inhibitor, has high safety and good application prospects. In this work, we have developed a silybin powder able to be used for inhalation administration for the treatment of IPF. Silybin powder was prepared by the spray drying method and identified using cascade impactometry, particle size, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. A rat model of bleomycin-induced IPF was used to assess the effect of inhaled silybin spray-dried powder. Lung hydroxyproline content, wet weight, histology, inflammatory factor expression, and gene expression were examined. The results showed that inhaled silybin spray-dried powder alleviated inflammation and fibrosis, limited hydroxyproline accumulation in the lungs, modulated gene expression in the development of IPF, and improved postoperative survival. The results of this study suggest that silybin spray-dried powder is an attractive candidate for the treatment of IPF.
Collapse
Affiliation(s)
| | | | - Jianjun Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Baofei Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xingxing Han
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sipan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yongan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingming Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
14
|
Talapatra J, Reddy MM. Lipid Metabolic Reprogramming in Embryonal Neoplasms with MYCN Amplification. Cancers (Basel) 2023; 15:cancers15072144. [PMID: 37046804 PMCID: PMC10093342 DOI: 10.3390/cancers15072144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Tumor cells reprogram their metabolism, including glucose, glutamine, nucleotide, lipid, and amino acids to meet their enhanced energy demands, redox balance, and requirement of biosynthetic substrates for uncontrolled cell proliferation. Altered lipid metabolism in cancer provides lipids for rapid membrane biogenesis, generates the energy required for unrestricted cell proliferation, and some of the lipids act as signaling pathway mediators. In this review, we focus on the role of lipid metabolism in embryonal neoplasms with MYCN dysregulation. We specifically review lipid metabolic reactions in neuroblastoma, retinoblastoma, medulloblastoma, Wilms tumor, and rhabdomyosarcoma and the possibility of targeting lipid metabolism. Additionally, the regulation of lipid metabolism by the MYCN oncogene is discussed.
Collapse
Affiliation(s)
- Jyotirmayee Talapatra
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar 751024, India
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India
| | - Mamatha M Reddy
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar 751024, India
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India
| |
Collapse
|
15
|
Ma X, Xu W, Jin X, Mu H, Wang Z, Hua Y, Cai Z, Zhang T. Telocinobufagin inhibits osteosarcoma growth and metastasis by inhibiting the JAK2/STAT3 signaling pathway. Eur J Pharmacol 2023; 942:175529. [PMID: 36690054 DOI: 10.1016/j.ejphar.2023.175529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Osteosarcoma is the most common primary bone malignancy in children and adolescents; it exhibits rapid growth and a high metastatic potential and may thus lead to relatively high mortality. The JAK2/STAT3 signaling pathway, which plays a critical role in the occurrence and development of osteosarcoma, is a potential target for the treatment of osteosarcoma. Here, we identified the natural product telocinobufagin (TCB), which is a component isolated from toad cake, as a potent candidate with anti-osteosarcoma effects. TCB inhibited osteosarcoma cell growth, migration, invasion and induced cancer cell apoptosis. Mechanistically, TCB specifically inhibited the JAK2/STAT3 signaling pathway. More importantly, TCB significantly suppressed tumor growth and metastasis in an osteosarcoma xenograft animal model. Moreover, TCB also showed strong inhibitory effects in other cancer types, such as lung cancer, liver cancer, colon cancer, breast cancer and gastric cancer. Hence, our study reveals TCB as a potent anti-osteosarcoma therapeutic agent that inhibits the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xinglong Ma
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China; Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Wenyuan Xu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Xinmeng Jin
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Haoran Mu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Zhuoying Wang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Tao Zhang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| |
Collapse
|
16
|
Nan Y, Su H, Zhou B, Liu S. The function of natural compounds in important anticancer mechanisms. Front Oncol 2023; 12:1049888. [PMID: 36686745 PMCID: PMC9846506 DOI: 10.3389/fonc.2022.1049888] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
The existence of malignant tumors has been a threat to human life, health, and safety. Although the rapid development of radiotherapy, drug therapy, surgery, and local therapy has improved the quality of life of tumor patients, there are still some risks. Natural compounds are widely used in cancer because they are easy to obtain, have a good curative effects and have no obvious side effects, and play a vital role in the prevention and treatment of various cancers. Phenolic, flavonoids, terpenoids, alkaloids, and other natural components of traditional Chinese medicine have certain anti-tumor activities, which can promote apoptosis, anti-proliferation, anti-metastasis, inhibit angiogenesis, change the morphology of cancer cells and regulate immune function, etc., and have positive effects on breast cancer, liver cancer, lung cancer, gastric cancer, rectal cancer and so on. To better understand the effects of natural compounds on cancer, this paper screened out four important pathways closely related to cancer, including cell death and immunogenic cell death, immune cells in the tumor microenvironment, inflammation and related pathways and tumor metastasis, and systematically elaborated the effects of natural compounds on cancer.
Collapse
Affiliation(s)
- Yang Nan
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China
| | - Hongchan Su
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China
| | - Bo Zhou
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China
| | - Shumin Liu
- Chinese Medicine Research Institute, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China,*Correspondence: Shumin Liu,
| |
Collapse
|
17
|
Hybrid Ultrasound-Activated Nanoparticles Based on Graphene Quantum Dots for Cancer Treatment. Int J Pharm 2022; 629:122373. [DOI: 10.1016/j.ijpharm.2022.122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
18
|
Ribeiro VR, Romao-Veiga M, Nunes PR, de Oliveira LRC, Romagnoli GG, Peracoli JC, Peracoli MTS. Silibinin downregulates the expression of the Th1 and Th17 profiles by modulation of STATs and transcription factors in pregnant women with preeclampsia. Int Immunopharmacol 2022; 109:108807. [DOI: 10.1016/j.intimp.2022.108807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 11/29/2022]
|
19
|
Shilpa G, Lakshmi S, Jamsheena V, Lankalapalli RS, Prakash V, Sadasivam A, Priya S. Studies on the mode of action of synthetic diindolylmethane derivatives against triple negative breast cancer cells. Basic Clin Pharmacol Toxicol 2022; 131:224-240. [PMID: 35750657 DOI: 10.1111/bcpt.13767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
Diindolylmethane (DIM) is a metabolic product of indole-3-carbinol (I3C), the major phytochemicals present in cruciferous vegetables, which can modulate multiple signalling pathways in cancer. The present study deals with the mechanism of action of two synthetic biaryl conjugates of DIM in triple negative breast cancer cells. Out of twelve DIM derivatives tested, two compounds, DIM-1 and DIM-4, exhibit cytotoxicity with GI50 values of 9.83±0.2195 μM and 8.726±0.5234 μM, respectively, in 2D culture. In 3D culture, DIM-1 and DIM-4 show GI50 values of 24.000±0.7240 μM and 19.230±0.3754 μM, respectively. The non-toxic nature of the compounds was also established by the toxicity studies using the zebrafish model system. The two compounds induced apoptosis and anoikis in the cancer cells, which was confirmed by morphological analysis, nuclear fragmentation, membrane integrity assay, caspase activity measurements, and modulation of pro/anti-apoptotic proteins. The compounds inhibited cell migration and MMP-2 and MMP-9 activities indicating their anti-metastatic property. They also reduced the expression of active Ras, phosphorylated forms of PI3K, Akt and mTOR. Immunofluorescence studies revealed the reduced expression of EGFR and pEGFR in treated cells. To conclude, DIM-1 and DIM-4 induced anti-breast cancer effects by blocking EGF receptor and subsequently inhibiting Ras-mediated PI3K-Akt-mTOR signalling pathway.
Collapse
Affiliation(s)
- Ganesan Shilpa
- Biochemistry Section, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad
| | - Sreerenjini Lakshmi
- Biochemistry Section, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad
| | - Vellekkatt Jamsheena
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad
| | - Ravi Shankar Lankalapalli
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad
| | - Ved Prakash
- Ecotoxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad
| | - Anbumani Sadasivam
- Ecotoxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad
| | - Sulochana Priya
- Biochemistry Section, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad
| |
Collapse
|
20
|
Budurova D, Momekova D, Momekov G, Shestakova P, Penchev H, Rangelov S. PEG-Modified tert-Octylcalix[8]arenes as Drug Delivery Nanocarriers of Silibinin. Pharmaceutics 2021; 13:2025. [PMID: 34959307 PMCID: PMC8709077 DOI: 10.3390/pharmaceutics13122025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
The hepatoprotective properties of silibinin, as well its therapeutic potential as an anticancer and chemo-preventive agent, have failed to progress towards clinical development and commercialization due to this material's unfavorable pharmacokinetics and physicochemical properties, low aqueous solubility, and chemical instability. The present contribution is focused on the feasibility of using PEGylated calixarene, in particular polyoxyethylene-derivatized tert-octylcalix[8]arene, to prepare various platforms for the delivery of silibinin, such as inclusion complexes and supramolecular aggregates thereof. The inclusion complex is characterized by various instrumental methods. At concentrations exceeding the critical micellization concentration of PEGylated calixarene, the tremendous solubility increment of silibinin is attributed to the additional solubilization and hydrophobic non-covalent interactions of the drug with supramolecular aggregates. PEG-modified tert-octylcalix[8]arenes, used as drug delivery carriers for silibinin, were additionally investigated for cytotoxicity against human tumor cell lines.
Collapse
Affiliation(s)
- Desislava Budurova
- Institute of Polymers, Bulgarian Academy of Sciences, 103 Acad. Georgi Bonchev St., 1113 Sofia, Bulgaria;
| | - Denitsa Momekova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University—Sofia, 2 Dunav St., 1000 Sofia, Bulgaria;
| | - Georgi Momekov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University—Sofia, 2 Dunav St., 1000 Sofia, Bulgaria;
| | - Pavletta Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St. Bldg 9, 1113 Sofia, Bulgaria;
| | - Hristo Penchev
- Institute of Polymers, Bulgarian Academy of Sciences, 103 Acad. Georgi Bonchev St., 1113 Sofia, Bulgaria;
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, 103 Acad. Georgi Bonchev St., 1113 Sofia, Bulgaria;
| |
Collapse
|
21
|
Jeong DW, Lee S, Chun YS. How cancer cells remodel lipid metabolism: strategies targeting transcription factors. Lipids Health Dis 2021; 20:163. [PMID: 34775964 PMCID: PMC8590761 DOI: 10.1186/s12944-021-01593-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Reprogramming of lipid metabolism has received increasing recognition as a hallmark of cancer cells because lipid dysregulation and the alteration of related enzyme profiles are closely correlated with oncogenic signals and malignant phenotypes, such as metastasis and therapeutic resistance. In this review, we describe recent findings that support the importance of lipids, as well as the transcription factors involved in cancer lipid metabolism. With recent advances in transcription factor analysis, including computer-modeling techniques, transcription factors are emerging as central players in cancer biology. Considering the limited number and the crucial role of transcription factors associated with lipid rewiring in cancers, transcription factor targeting is a promising potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Do-Won Jeong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Seulbee Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Yang-Sook Chun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
22
|
Addeo R. Silibinin: A New Opportunity for the Treatment of Brain Metastasis from Lung Cancer. J Exp Pharmacol 2021; 13:901-903. [PMID: 34611448 PMCID: PMC8487014 DOI: 10.2147/jep.s326871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/13/2021] [Indexed: 11/23/2022] Open
Abstract
Despite multimodal treatment, the prognosis of brain metastases (BM) remains limited, with a survival of only a few months. In this report, silibinin (or silybin), a natural polyphenolic flavonoid isolated from seed extracts of the herb milk thistle, is discussed as a potential therapeutic option for the treatment of BM. This molecule has an anticancer effect, blocking the migratory and invasive properties of neoplastic cells. This mechanism is focused on controlling the signal transducer and activator of transcription 3 (STAT3)-mediated pathway. STAT3 plays a major role in the growth of tumors and leads to metastasis, including BM. The promising but preliminary clinical results achieved by silibinin on lung cancer BM suggest new opportunities for combined treatment with radiotherapy and/or temozolomide, not just to limit severe neurological symptoms but also to control clinical progression of the disease.
Collapse
Affiliation(s)
- Raffaele Addeo
- U.O.C. Oncologia, "S. Giovanni di Dio" Hospital, ASLNA2NORD, Naples, 80027, Italy
| |
Collapse
|
23
|
Koushki M, Khedri A, Aberomand M, Akbari Baghbani K, Mohammadzadeh G. Synergistic anti-cancer effects of silibinin-etoposide combination against human breast carcinoma MCF-7 and MDA-MB-231 cell lines. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1211-1219. [PMID: 35083008 PMCID: PMC8751753 DOI: 10.22038/ijbms.2021.56341.12575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/19/2021] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Recently, there is a significant focus on combination chemotherapy for cancer using a cytotoxic drug and a phytochemical compound. We investigated the effect of silibinin on etoposide-induced apoptosis in MCF-7 and MDA-MB-231 breast carcinoma cell lines. MATERIALS AND METHODS The cytotoxic effects of silibinin and etoposide were determined using MTT assay after 24 and 48 hr incubation with these drugs individually and combined. The mRNA expression of Bax and Bcl2, and protein levels of P53, phosphorylated p53 (P-P53), and P21 were determined using real-time PCR and western blot analysis, respectively. The caspase 9 activity was measured using an ELISA kit. RESULTS Silibinin and etoposide alone and combined significantly inhibit cell growth in a dose and time-dependent manner in both cell lines. The strongest synergistic effects in terms of MCF-7 cell growth inhibition [combination index (CI) = 0.066] were evident. The silibinin-etoposide combinations cause a much powerful apoptotic death (47% and 40%) compared with each compound individually in MCF-7 and MDA-MB 231 cells, respectively. Additionally, the silibinin-etoposide combinations significantly increased the expression of P53, P-P53, and P21 in MCF-7 cells. Neither silibinin nor etoposide individually increased the level of P53 and P-P53 in MDA-MB-231 cells, but both of them individually and combined increased the level of P21. CONCLUSION Since the silibinin-etoposide combination induces apoptosis in both cell lines with and without expression of p53, thus, it is suggested that this combination may be a successful therapeutic strategy for breast cancer regardless of P53 status.
Collapse
Affiliation(s)
- Mahdie Koushki
- Department of Clinical Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azam Khedri
- Department of Clinical Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Aberomand
- Toxicology Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Ghorban Mohammadzadeh
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
24
|
Zhou L, Liu J, Meng W, Zhang H, Chen B. Evaluation of Silibinin-Loaded Microbubbles Combined with Ultrasound in Ovarian Cancer Cells: Cytotoxicity and Mechanisms. Anticancer Agents Med Chem 2021; 22:1320-1327. [PMID: 34102993 DOI: 10.2174/1871520621666210608101649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/15/2021] [Accepted: 04/25/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The anticancer activity of silibinin (SB) has been demonstrated in various cancer cell types. However, its low solubility and poor bioavailability limit its clinical potential in biomedical applications. Microbubbles in combination with ultrasound are promising vehicles for local drug delivery. OBJECTIVE The present study determined the antitumour effects and molecular mechanism of silibinin-loaded microbubbles (SBMBs) in combination with ultrasound on ovarian cancer in vitro. METHODS SBMBs were prepared using mechanical vibration. The viability of A2780 cells was determined using the MTT assay. Flow cytometry was performed to detect cell apoptosis and the cell cycle. The expression of receptor tyrosine kinase (RTK)-associated downstream proteins was detected using multiplex assays and Western blots. RESULTS The present study designed and synthesized SBMBs. SBMBs in combination with ultrasound decreased A2780 cell viability in a dose- and time-dependent manner. The half maximal inhibitory concentration (IC50) showed that the cytotoxicity of the SBMBs was approximately 1.5 times greater than that of the SB in A2780 cells. SBMBs in combination with ultrasound resulted in significantly higher apoptosis efficiency compared to the SB group, and the SBMB population of cells was arrested in the G1/G0 phase. Further experiments demonstrated that SBMBs decreased the expression of signal transducer and activator of transcription 3 (STAT3), Ak strain transforming (AKT), and extracellular signal-regulated kinase (Erk) and had a greater effect than SB in A2780 cells. Inhibitors of AKT, Erk and STAT3 promoted the cytotoxicity of SBMBs. CONCLUSION SBMBs in combination with ultrasound may enhance the cytotoxicity efficiency of SB via the promotion of apoptosis and cell cycle arrest in ovarian cancer cells and the inactivation of the STAT3, AKT and Erk signalling pathways.
Collapse
Affiliation(s)
- Liguang Zhou
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Liu
- Department of Cardiology, Taishan Sanatorium of Shandong Province, Taian, China
| | - Wen Meng
- Outpatient Department, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Huawei Zhang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bo Chen
- Department of Thyroid Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
25
|
Danciu C. Natural Bioactive Compounds, Vegetal Extracts and Modern Pharmaceutical Formulations: New Insights into the Anti-Cancer Mechanism of Action. Anticancer Agents Med Chem 2021; 20:1754-1755. [PMID: 33138743 DOI: 10.2174/187152062015200911152012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Corina Danciu
- University of Medicine and Pharmacy "Victor Babes" Timisoara Eftimie Murgu Square no.2, RO-300041, Romania
| |
Collapse
|
26
|
Gomes VJ, Rezeck Nunes P, Haworth SM, Sandrim VC, Peraçoli JC, Peraçoli MTS, Carlström M. Monocytes from preeclamptic women previously treated with silibinin attenuate oxidative stress in human endothelial cells. Hypertens Pregnancy 2021; 40:124-132. [PMID: 33586558 DOI: 10.1080/10641955.2021.1884258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objective: To investigate whether the supernatant from monocytes of preeclamptic and normotensive pregnant women, cultured in vitro with silibinin, can modulate oxidative stress in HUVEC.Methods: Concentrations of IL-1β, IL-10, and TNF-α in monocyte culture supernatants were determined by ELISA. HUVEC and their supernatant cultures were employed for determination of NO, nitrite and nitrate, lipid peroxidation, and hemeoxygenase-1 (HO-1).Results: HUVEC treatment with supernatant of preeclamptic monocytes cultured with silibinin produced increased levels of nitrite, reduced lipid peroxidation, and increased HO-1.Conclusion: Supernatant of monocytes from preeclamptic women induce oxidative stress in HUVEC which can be reduced by silibinin treatment.Abbreviations: DAF-FMTM, Diaminofluorescein-FM; EDTA, Ethylenediaminetetraacetic acid; HO-1, heme oxygenase-1; HPLC, high-performance liquid chromatography; HUVEC, human umbilical vein endothelial cell; MDA, malondialdehyde; NO, nitric oxide; NT, normotensive; PE, preeclampsia; ROS, reactive oxygen species; Sb, silibinin.
Collapse
Affiliation(s)
- Virgínia Juliani Gomes
- Department of Gynecology and Obstetrics, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo, Brazil
| | - Priscila Rezeck Nunes
- Department of Gynecology and Obstetrics, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo, Brazil
| | - Sarah McCann Haworth
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Valéria Cristina Sandrim
- Department of Biological and Chemical Sciences, Institute of Biosciences of Botucatu, Sao Paulo State University (Unesp), Botucatu, Sao Paulo, Brazil
| | - José Carlos Peraçoli
- Department of Gynecology and Obstetrics, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo, Brazil
| | - Maria Terezinha S Peraçoli
- Department of Biological and Chemical Sciences, Institute of Biosciences of Botucatu, Sao Paulo State University (Unesp), Botucatu, Sao Paulo, Brazil
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|