1
|
Karaogul E, Ugurtay A. Unveiling modeling and SEM/XRD insights into enhanced antibacterial, antioxidant, and bioactive potentials of Micro-encapsulated Pistacia vera hull extract. Food Chem 2025; 477:143510. [PMID: 40048936 DOI: 10.1016/j.foodchem.2025.143510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/24/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025]
Abstract
The study aimed to investigate the effects and properties of micro-encapsulation (Mc) of bioactive extracts from Pistacia vera hull (Pv-He) using response surface methodology (RSM) for mathematical modeling-optimization (MMO). The independent variables optimized were temperature (T:120-180 °C), extract dilution (Eks-Dl:0-4), maltodextrin/gum arabic (MDx/GA:20-80 %), and extract-to-wall blend (W-Rt:5-20 g) in spray-drying. The variables significantly influenced water activity (Wa, P < .01 for T), wettability (Wt, P < .0001 for W-Rt), hausner-ratio (Hr, P < .05 for T, P < .001 for W-Rt), efficiency (Efc%, P < .01 for W-Rt), shikimic acid (Sh-Ac, P < .0001 for Eks-Dl/W-Rt), Mc-yield (Mc-Yd), mass (MD) and bulk density (BD), and carr-index (CI). Linear models fit well for Wa, Wt, and Sh-Ac, while quadratic models were better for Hr and Efc%. Optimal conditions were T:150 °C, Eks-Dl:0, MDx/GA:20 %, and W-Rt:20 g, achieving a desirability of 0.992. Predicted values were compared with experimental and nanoencapsulated (Nc) Pv-He. Mc exhibited significantly higher bioactive properties than Nc. Total phenolic (TPC; 21.44 vs. 0.54 mgGAE/gDW), flavonoid (TFC; 16.84 vs. 0.15 mgQrc/gDW), and tannin (TCT; 23.09 vs. 0 mg/gDW) contents were determined. Mc-Sp enhanced antioxidant performance, showing superior DPPH&ABTS results. The antimicrobial activity of Mc showed good antibacterial effects, with inhibition zones ranging from 13.57 to 20.46 mm and minimum inhibitory concentrations from 14.55 to 485 μg/mL, comparable to antibiotics. SEM revealed regular, micron-sized microspherical structures with smooth, unsplit walls, indicating strong coating material performance. XRD showed a high proportion of amorphous materials in Nc, suggesting less ordered structures. Encapsulation effectively enriched bioactive components in Pv-He, with optimized parameters improving efficacy and performance.
Collapse
Affiliation(s)
- Eyyup Karaogul
- Harran University, Faculty of Engineering, Department of Food Engineering, Şanliurfa, Turkey.
| | - Abdulhalik Ugurtay
- Harran University, Faculty of Engineering, Department of Food Engineering, Şanliurfa, Turkey
| |
Collapse
|
2
|
Adibifard A, Bozorgi M, Kolangi F, Enayati A, Daneshfard B, Gorji N, Memariani Z. Effects of Pistacia genus on gastrointestinal tract disorders: A systematic and comprehensive review. Fitoterapia 2024; 176:106038. [PMID: 38801894 DOI: 10.1016/j.fitote.2024.106038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Gastrointestinal (GI) disorders characterized by persistent and recurrence gastrointestinal symptoms are prevalent. The genus Pistacia is widely emphasized as the relief of gastrointestinal diseases in traditional medicine. This review aimed to investigate the latest evidence on the effect of the Pistacia genus on GI tract disorders. The systematic search was performed following to PRISMA guidelines. The databases PubMed and Scopus were searched from 1980 to 2022 with restrictions to the original studies. Electronic databases were searched in title/abstract, using the keywords relevant to GI tract disorders. Forty-eight studies were included in this review following the inclusion criteria. Fifteen and 22 studies were clinical and animal studies, respectively, of which 6 clinical and 13 animal studies were on Inflammatory Bowel diseases. Seven clinical studies were on functional GI disorders. The most pieces of evidence from animal and clinical studies were on the intestinal inflammation and peptic ulcer affecting the inflammation as well as oxidative stress through different mechanistic pathways. The most referred active phytochemicals seem to be terpenoid compounds. Various in vitro studies have also shown the inhibitory activity of the different plant parts of Pistacia herbs on several GI tract cancer cells. Available scientific evidence supports the effects of various components of Pistacia genus plants in the field of GI tract diseases, especially digestive inflammations. Further studies are required to systematically evaluate the natural products of the genus Pistacia, particularly in the context of digestive disorders.
Collapse
Affiliation(s)
- Amir Adibifard
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mahbubeh Bozorgi
- Department of Traditional Medicine, School of Persian Medicine, Shahed University, Tehran, Iran
| | - Fatemeh Kolangi
- Counseling and Reproductive Health Research Centre, Department of Persian Medicine, School of Persian Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Babak Daneshfard
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Persian Medicine Network (PMN), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Canadian College of Integrative Medicine, Montreal, Quebec, Canada
| | - Narjes Gorji
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Memariani
- Pharmaceutical Sciences Research Center, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
3
|
Kahraman M, Yurtseven S, Sakar E, Daş A, Yalçın H, Güngören G, Boyraz MÜ, Koyuncu İ. Pistachio, Pomegranate and Olive Byproducts Added to Sheep Rations Change the Biofunctional Properties of Milk through the Milk Amino Acid Profile. Food Sci Anim Resour 2023; 43:124-138. [PMID: 36789194 PMCID: PMC9890361 DOI: 10.5851/kosfa.2022.e65] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
This study was carried out to determine the effects of adding pistachio shell (PIS), pomegranate hull (POM), and olive pulp (OP) to the diet on milk amino acid and fatty acid parameters in Awassi sheep. In the study, 40 head of Awassi sheep, which gave birth at least twice, were used as animal material. Sheep were fed a control diet without added byproducts (CON), rations containing PIS, POM, and OP. Milk amino acid profile was determined by liquid chromatography-tandem mass spectrometry, milk fatty acid gas chromatography-flame ionization detection device. There was a dramatic reduction in alanine, citrulline, glutamine, glutamic acid, glycine, leucine, ornithine and alphaaminoadipic acid in the research groups. In the PIS group, argininosuccinic acid, gammaminobutyric acid, beta-alanine and sarcosine; In the POM group, asparagine, gammaminobutyric acid, beta-alanine, and taurine; In the OP group, a significant positive increase was found in terms of alanine, histidine, gammaminobutyric acid, and taurine amino acids. The applications in the study did not have a statistically significant effect on the ratio of short, medium and long chain fatty acids in milk (p>0.05). In the presented study, it was determined that PIS, POM, and OP, which were added to the sheep rations at a rate of 5%, caused significant changes in the milk amino acid profiles. In this change in milk amino acid profiles, the benefit-harm relationship should be considered.
Collapse
Affiliation(s)
- Mücahit Kahraman
- Department of Animal Science, Faculty of
Veterinary Medicine, Harran University,
Şanlıurfa 63300, Turkey,Corresponding author:
Mücahit Kahraman, Department of Animal Science, Faculty of Veterinary
Medicine, Harran University, Şanlıurfa 63300, Turkey, Tel:
+90-414-318-3918, Fax: +90-414-318-3922, E-mail:
| | - Sabri Yurtseven
- Department of Animal Science, Faculty of
Agriculture, Harran University, Şanlıurfa 63300,
Turkey
| | - Ebru Sakar
- Department of Horticulture, Faculty of
Agriculture, Harran University, Şanlıurfa 63300,
Turkey
| | - Aydın Daş
- Department of Animal Science, Faculty of
Veterinary Medicine, Harran University,
Şanlıurfa 63300, Turkey
| | - Hamza Yalçın
- Department of Biostatistics, Faculty of
Agriculture, Harran University, Şanlıurfa 63300,
Turkey
| | - Gülşah Güngören
- Department of Animal Science, Faculty of
Veterinary Medicine, Harran University,
Şanlıurfa 63300, Turkey
| | - Mustafa Ünal Boyraz
- Histology Department, Faculty of
Veterinary Medicine, Harran University,
Şanlıurfa 63300, Turkey
| | - İsmail Koyuncu
- Department of Biochemistry, Faculty of
Medicine, Harran University, Şanlıurfa 63300,
Turkey
| |
Collapse
|
4
|
Zhang Y, Liu K, Yan C, Yin Y, He S, Qiu L, Li G. Natural Polyphenols for Treatment of Colorectal Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248810. [PMID: 36557939 PMCID: PMC9787795 DOI: 10.3390/molecules27248810] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is a prevalent and serious gastrointestinal malignancy with high mortality and morbidity. Chemoprevention refers to a newly emerged strategy that uses drugs with chemopreventive properties to promote antioxidation, regulate cancer cell cycle, suppress proliferation, and induce cellular apoptosis, so as to improve cancer treatment outcomes. Natural polyphenols are currently recognized as a class of chemopreventive agents that have shown remarkable anticarcinogenic properties. Numerous in vitro and in vivo studies have elucidated the anti-CRC mechanisms of natural polyphenols, such as regulation of various molecular and signaling pathways. Natural polyphenols are also reportedly capable of modulating the gut microbiota and cancer stem cells (CSCs) to suppress tumor formation and progression. Combined use of different natural polyphenols is recommended due to their low bioavailability and instability, and combination treatment can exert synergistical effects, reduce side effects, and avoid drug resistance in CRC treatment. In summary, the application of polyphenols in the chemoprevention and treatment of CRC is promising. Further clinical evaluation of their effectiveness is warranted and anticipated.
Collapse
Affiliation(s)
- Yiwen Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Kunjian Liu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chengqiu Yan
- Anorectal Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Yu Yin
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shuangyan He
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Li Qiu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Guofeng Li
- Anorectal Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
- Correspondence:
| |
Collapse
|
5
|
Mateos R, Salvador MD, Fregapane G, Goya L. Why Should Pistachio Be a Regular Food in Our Diet? Nutrients 2022; 14:3207. [PMID: 35956383 PMCID: PMC9370095 DOI: 10.3390/nu14153207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
The pistachio is regarded as a relevant source of biologically active components that, compared to other nuts, possess a healthier nutritional profile with low-fat content composed mainly of monounsaturated fatty acids, a high source of vegetable protein and dietary fibre, remarkable content of minerals, especially potassium, and an excellent source of vitamins, such as vitamins C and E. A rich composition in terms of phytochemicals, such as tocopherols, carotenoids, and, importantly, phenolic compounds, makes pistachio a powerful food to explore its involvement in the prevention of prevalent pathologies. Although pistachio has been less explored than other nuts (walnut, almonds, hazelnut, etc.), many studies provide evidence of its beneficial effects on CVD risk factors beyond the lipid-lowering effect. The present review gathers recent data regarding the most beneficial effects of pistachio on lipid and glucose homeostasis, endothelial function, oxidative stress, and inflammation that essentially convey a protective/preventive effect on the onset of pathological conditions, such as obesity, type 2 diabetes, CVD, and cancer. Likewise, the influence of pistachio consumption on gut microbiota is reviewed with promising results. However, population nut consumption does not meet current intake recommendations due to the extended belief that they are fattening products, their high cost, or teething problems, among the most critical barriers, which would be solved with more research and information.
Collapse
Affiliation(s)
- Raquel Mateos
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
| | - María Desamparados Salvador
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Camilo José Cela n° 10, 13071 Ciudad Real, Spain
| | - Giuseppe Fregapane
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Camilo José Cela n° 10, 13071 Ciudad Real, Spain
| | - Luis Goya
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
| |
Collapse
|
6
|
Temiz E, Eği K, Koyuncu I, Yüksekdag O, Kurt Y, Tiken M, Akmese S. Cedrus libani tar prompts reactive oxygen species toxicity and DNA damage in colon cancer cells. Mol Biol Rep 2022; 49:7939-7952. [PMID: 35666426 DOI: 10.1007/s11033-022-07631-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Many chemotherapeutic drugs used in cancer treatment have anticancer properties by inducing reactive oxygen species (ROS). However, the same effect occurs in normal cells, limiting the availability of these drugs. Therefore, studies on the detection of new herbal anticancer agents that have selective effects on cancer cells are of great importance. The aim of this study is to investigate the metabolite profile of Cedrus libani tar and its mechanism of anticancer effect on colon cancer cells. METHODS AND RESULTS Effect of cedar tar on cells (12 cancers and 5 normal cell lines) viability was determined by MTT, apoptosis induction was determined by Annexin-V, ROS and MMP determined by flow cytometry assay. Cleaved caspase-8, 9 and Ɣ-H2AX expression determined by western blot. Apoptotic and antioxidant genes expression level determined by qPCR. Metabolite profiling was performed with LC-MS/MS and GC-MS. Cedar tar showed the highest cytotoxic effect among cancer cells in colon cancer (HCT-116, IC50: 30.4 μg/mL) and its toxic effect on normal cells (HUVEC, IC50: 74.07 μg/mL) was less than cancer cell. Cedar tar increases ROS production in colon cancer cells. The metabolite profile of the cedar tar contains high amounts of metabolites such as fatty acids mainly (Duprezianene, Himachalene and Chamigrene), phenolic compounds (mostly Coumarin, p-coumaric acid, Vanillic acid and tr-Ferulic acid etc.) and organic acids (mainly 3-oh propanoic acid, 2-oh butyric acid and 3-oh isovaleric acid etc.). CONCLUSION As a result, it has been found that cedar tar has the potential to be used in the treatment of colon cancer.
Collapse
Affiliation(s)
- Ebru Temiz
- Medical Promotion and Marketing Program, Health Services Vocational School, Harran University, Şanlıurfa, Turkey
| | - Kadir Eği
- Department of Medicinal Biochemistry, Medical Faculty, Harran University, Şanlıurfa, Turkey
| | - Ismail Koyuncu
- Department of Medicinal Biochemistry, Medical Faculty, Harran University, Şanlıurfa, Turkey.
| | - Ozgür Yüksekdag
- Department of Medicinal Biochemistry, Medical Faculty, Harran University, Şanlıurfa, Turkey
| | - Yusuf Kurt
- Department of Molecular Biology and Genetic, Science Faculty, Harran University, Şanlıurfa, Turkey
| | - Murat Tiken
- Department of Medicinal Biochemistry, Medical Faculty, Harran University, Şanlıurfa, Turkey
| | - Sükrü Akmese
- Department of Medicinal Biochemistry, Medical Faculty, Harran University, Şanlıurfa, Turkey
| |
Collapse
|
7
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
8
|
Temiz E, Koyuncu I, Durgun M, Caglayan M, Gonel A, Güler EM, Kocyigit A, Supuran CT. Inhibition of Carbonic Anhydrase IX Promotes Apoptosis through Intracellular pH Level Alterations in Cervical Cancer Cells. Int J Mol Sci 2021; 22:6098. [PMID: 34198834 PMCID: PMC8201173 DOI: 10.3390/ijms22116098] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Carbonic anhydrase IX (CAIX) is a hypoxia-related protein that plays a role in proliferation in solid tumours. However, how CAIX increases proliferation and metastasis in solid tumours is unclear. The objective of this study was to investigate how a synthetic CAIX inhibitor triggers apoptosis in the HeLa cell line. The intracellular effects of CAIX inhibition were determined with AO/EB, AnnexinV-PI, and γ-H2AX staining; measurements of intracellular pH (pHi), reactive oxygen species (ROS), and mitochondrial membrane potential (MMP); and analyses of cell cycle, apoptotic, and autophagic modulator gene expression (Bax, Bcl-2, caspase-3, caspase-8, caspase-9, caspase-12, Beclin, and LC3), caspase protein level (pro-caspase 3 and cleaved caspase-3, -8, -9), cleaved PARP activation, and CAIX protein level. Sulphonamide CAIX inhibitor E showed the lowest IC50 and the highest selectivity index in CAIX-positive HeLa cells. CAIX inhibition changed the morphology of HeLa cells and increased the ratio of apoptotic cells, dramatically disturbing the homeostasis of intracellular pHi, MMP and ROS levels. All these phenomena consequent to CA IX inhibition triggered apoptosis and autophagy in HeLa cells. Taken together, these results further endorse the previous findings that CAIX inhibitors represent an important therapeutic strategy, which is worth pursuing in different cancer types, considering that presently only one sulphonamide inhibitor, SLC-0111, has arrived in Phase Ib/II clinical trials as an antitumour/antimetastatic drug.
Collapse
Affiliation(s)
- Ebru Temiz
- Program of Medical Promotion and Marketing, Health Services Vocational School, Harran University, Sanliurfa 63300, Turkey
| | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa 63290, Turkey; (I.K.); (A.G.)
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Sanliurfa 63290, Turkey
| | - Murat Caglayan
- Department of Medical Biochemistry, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara 06110, Turkey;
| | - Ataman Gonel
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa 63290, Turkey; (I.K.); (A.G.)
| | - Eray Metin Güler
- Department of Medical Biochemistry, Faculty of Hamidiye Medicine, University of Health Sciences Turkey, Istanbul 34668, Turkey;
| | - Abdurrahim Kocyigit
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, Istanbul 34093, Turkey;
| | - Claudiu T. Supuran
- NEUROFARBA Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|