1
|
Khatoon S, Kalam N. Mechanistic insight of curcumin: a potential pharmacological candidate for epilepsy. Front Pharmacol 2025; 15:1531288. [PMID: 39845785 PMCID: PMC11752882 DOI: 10.3389/fphar.2024.1531288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Recurrent spontaneous seizures with an extended epileptic discharge are the hallmarks of epilepsy. At present, there are several available anti-epileptic drugs (AEDs) in the market. Still no adequate treatment for epilepsy treatment is available. The main disadvantages of AEDs are their associated adverse effects. It is a challenge to develop new therapies that can reduce seizures by modulating the underlying mechanisms with no adverse effects. In the last decade, the neuromodulatory potential of phytoconstituents has sparked their usage in the treatment of central nervous system disorders. Curcumin is an active polyphenolic component that interacts at cellular and molecular levels. Curcumin's neuroprotective properties have been discovered in recent preclinical and clinical studies due to its immunomodulatory effects. Curcumin has the propensity to modulate signaling pathways involved in cell survival and manage oxidative stress, apoptosis, and inflammatory mechanisms. Further, curcumin can persuade epigenetic alterations, including histone modifications (acetylation/deacetylation), which are the changes responsible for the altered expression of genes facilitating the process of epileptogenesis. The bioavailability of curcumin in the brain is a concern that needs to be tackled. Therefore, nanonization has emerged as a novel drug delivery system to enhance the pharmacokinetics of curcumin. In the present review, we reviewed curcumin's modulatory effects on potential biomarkers involved in epileptogenesis including dendritic cells, T cell subsets, cytokines, chemokines, apoptosis mediators, antioxidant mechanisms, and cognition impairment. Also, we have discussed the nanocarrier systems for encapsulating curcumin, offering a promising approach to enhance bioavailability of curcumin.
Collapse
Affiliation(s)
- Saima Khatoon
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nida Kalam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, Malaysia
| |
Collapse
|
2
|
Bierhansl L, Gola L, Narayanan V, Dik A, Meuth SG, Wiendl H, Kovac S. Neuronal Mitochondrial Calcium Uniporter (MCU) Deficiency Is Neuroprotective in Hyperexcitability by Modulation of Metabolic Pathways and ROS Balance. Mol Neurobiol 2024; 61:9529-9538. [PMID: 38652352 PMCID: PMC11496325 DOI: 10.1007/s12035-024-04148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
Epilepsy is one of the most common neurological disorders in the world. Common epileptic drugs generally affect ion channels or neurotransmitters and prevent the emergence of seizures. However, up to a third of the patients suffer from drug-resistant epilepsy, and there is an urgent need to develop new therapeutic strategies that go beyond acute antiepileptic (antiseizure) therapies towards therapeutics that also might have effects on chronic epilepsy comorbidities such as cognitive decline and depression. The mitochondrial calcium uniporter (MCU) mediates rapid mitochondrial Ca2+ transport through the inner mitochondrial membrane. Ca2+ influx is essential for mitochondrial functions, but longer elevations of intracellular Ca2+ levels are closely associated with seizure-induced neuronal damage, which are underlying mechanisms of cognitive decline and depression. Using neuronal-specific MCU knockout mice (MCU-/-ΔN), we demonstrate that neuronal MCU deficiency reduced hippocampal excitability in vivo. Furthermore, in vitro analyses of hippocampal glioneuronal cells reveal no change in total Ca2+ levels but differences in intracellular Ca2+ handling. MCU-/-ΔN reduces ROS production, declines metabolic fluxes, and consequently prevents glioneuronal cell death. This effect was also observed under pathological conditions, such as the low magnesium culture model of seizure-like activity or excitotoxic glutamate stimulation, whereby MCU-/-ΔN reduces ROS levels and suppresses Ca2+ overload seen in WT cells. This study highlights the importance of MCU at the interface of Ca2+ handling and metabolism as a mediator of stress-related mitochondrial dysfunction, which indicates the modulation of MCU as a potential target for future antiepileptogenic therapy.
Collapse
Affiliation(s)
- Laura Bierhansl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Lukas Gola
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Venu Narayanan
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Andre Dik
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
3
|
Guo W, Li YX, Zhang Y, Lv XR, Wang SX, Zhang SY, Wang ES, Chen XJ, Li Y. Risk analysis of depression among adult patients with epilepsy of different sex: a retrospective single-center study from China. Front Psychiatry 2023; 14:1283983. [PMID: 38111615 PMCID: PMC10725914 DOI: 10.3389/fpsyt.2023.1283983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
Objective To determine sex differences in the prevalence of depression and assess the risk factors for depression among adult patients with epilepsy from the Dali area of China. Methods We retrospectively analyzed the clinical data of adult patients with epilepsy who visited the First Affiliated Hospital of Dali University from January 2017 to January 2022. Patient Health Questionnaire-9 was used to assess depressive symptoms in patients with epilepsy. The risk factors of depression were analyzed by binary logistic regression among different sex in patients with epilepsy. Results There were significant sex differences in depression in patients with epilepsy (p < 0.001), and females were 4.27 times more likely to suffer from depression than males (95% confidence interval: 3.70-4.92). The risk factors for depression among female patients with epilepsy included occupation (p < 0.001), years with epilepsy (p < 0.001), seizure frequency (p < 0.001), seizure type (p < 0.001), etiology (p < 0.001), number of antiseizure medications used (p < 0.001), antiseizure medications (p < 0.001), and electroencephalogram findings (p < 0.001). The risk factors for depression among male patients with epilepsy included age (p < 0.001), ethnicity (p < 0.001), occupation (p < 0.001), years with epilepsy (p < 0.001), seizure frequency (p < 0.001), seizure type (p < 0.001), etiology (p < 0.001), number of antiseizure medications used (p < 0.001), antiseizure medications (p < 0.001), and electroencephalogram findings (p < 0.001). Conclusion Adult female patients with epilepsy had a higher risk of depression than adult male patients with epilepsy. There were sex differences in the risk factors associated with depression among patients with epilepsy.
Collapse
Affiliation(s)
- Wang Guo
- Clinical Medical School, Dali University, Dali, China
| | - Yu-xuan Li
- Clinical Medical School, Dali University, Dali, China
| | - Yi Zhang
- Clinical Medical School, Dali University, Dali, China
| | - Xue-rui Lv
- Clinical Medical School, Dali University, Dali, China
| | | | - Shuang-yuan Zhang
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
| | - En-si Wang
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
| | - Xin-jie Chen
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
| | - Yun Li
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
| |
Collapse
|
4
|
Miziak B, Czuczwar SJ, Pluta R. Comorbid epilepsy and depression—pharmacokinetic and pharmacodynamic drug interactions. Front Pharmacol 2022; 13:988716. [PMID: 36278185 PMCID: PMC9585163 DOI: 10.3389/fphar.2022.988716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Major depressive disorder may be encountered in 17% of patients with epilepsy and in patients with drug-resistant epilepsy its prevalence may reach 30%. This indicates that patients with epilepsy may require antidepressant treatment.Purpose: Both pharmacodynamic and pharmacokinetic interactions between antiepileptic (antiseizure) and antidepressant drugs have been reviewed. Also, data on the adverse effects of co-administration of antiepileptic with antidepressant drugs have been added. This article was submitted to Neuropharmacology, a section of the journal Frontiers in Pharmacology.Methods: The review of relevant literature was confined to English-language publications in PUBMED databases. Table data show effects of antidepressants on the seizure susceptibility in experimental animals, results of pharmacodynamic interactions between antiepileptic and antidepressant drugs mainly derived from electroconvulsions in mice, as well as results concerning pharmacokinetic interactions between these drugs in clinical conditions.Conclusion: Antidepressant drugs may exert differentiated effects upon the convulsive threshold which may differ in their acute and chronic administration. Animal data indicate that chronic administration of antidepressants could reduce (mianserin, trazodone) or potentiate the anticonvulsant activity of some antiepileptics (fluoxetine, reboxetine, venlafaxine). There are also examples of neutral interactions (milnacipran).
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University, Lublin, Poland
| | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University, Lublin, Poland
- *Correspondence: Stanisław J. Czuczwar, ; Ryszard Pluta,
| | - Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- *Correspondence: Stanisław J. Czuczwar, ; Ryszard Pluta,
| |
Collapse
|
5
|
Sun Q, Xu W, Piao J, Su J, Ge T, Cui R, Yang W, Li B. Transcription factors are potential therapeutic targets in epilepsy. J Cell Mol Med 2022; 26:4875-4885. [PMID: 36065764 PMCID: PMC9549512 DOI: 10.1111/jcmm.17518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
Academics generally believe that imbalance between excitation and inhibition of the nervous system is the root cause of epilepsy. However, the aetiology of epilepsy is complex, and its pathogenesis remains unclear. Many studies have shown that epilepsy is closely related to genetic factors. Additionally, the involvement of a variety of tumour‐related transcription factors in the pathogenesis of epilepsy has been confirmed, which also confirms the heredity of epilepsy. In this review, we summarize the existing research on a variety of transcription factors and epilepsy and present relevant evidence related to transcription factors that may be targets in epilepsy. This information is of great significance for revealing the in‐depth molecular and cellular mechanisms of epilepsy.
Collapse
Affiliation(s)
- Qihan Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wenbo Xu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Jingyun Su
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Zhang QZ, Zhong ZH, Hao D, Feng MN, Wang SC, Han QL, Bai Y, Xu D, Liao S, Xiao C, Zhang XL, Zheng X. Synthesis, crystal structure and bioactivities of α-asaronol. ACTA CRYSTALLOGRAPHICA SECTION C STRUCTURAL CHEMISTRY 2022; 78:265-270. [DOI: 10.1107/s2053229622003631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/30/2022] [Indexed: 11/10/2022]
Abstract
α-Asaronol [or (E)-3′-hydroxyasarone; systematic name: (E)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-ol; C12H16O4] was synthesized towards the development of a potential antiepileptic drug. Following purification by recrystallization, single crystals of α-asaronol were obtained by a liquid interface diffusion method at room temperature. The product was characterized by 1H and 13C NMR, and FT–IR spectroscopic analysis. X-ray crystallography revealed the title crystal to belong to the orthorhombic space group P212121. Preliminary bioassays with mouse neuroblastoma N2a cells demonstrated the neuroprotective activities of the synthesized α-asaronol.
Collapse
|
7
|
He LY, Hu MB, Li RL, Zhao R, Fan LH, He L, Lu F, Ye X, Huang YL, Wu CJ. Natural Medicines for the Treatment of Epilepsy: Bioactive Components, Pharmacology and Mechanism. Front Pharmacol 2021; 12:604040. [PMID: 33746751 PMCID: PMC7969896 DOI: 10.3389/fphar.2021.604040] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a chronic disease that can cause temporary brain dysfunction as a result of sudden abnormal discharge of the brain neurons. The seizure mechanism of epilepsy is closely related to the neurotransmitter imbalance, synaptic recombination, and glial cell proliferation. In addition, epileptic seizures can lead to mitochondrial damage, oxidative stress, and the disorder of sugar degradation. Although the mechanism of epilepsy research has reached up to the genetic level, the presently available treatment and recovery records of epilepsy does not seem promising. Recently, natural medicines have attracted more researches owing to their low toxicity and side-effects as well as the excellent efficacy, especially in chronic diseases. In this study, the antiepileptic mechanism of the bioactive components of natural drugs was reviewed so as to provide a reference for the development of potential antiepileptic drugs. Based on the different treatment mechanisms of natural drugs considered in this review, it is possible to select drugs clinically. Improving the accuracy of medication and the cure rate is expected to compensate for the shortage of the conventional epilepsy treatment drugs.
Collapse
Affiliation(s)
- Li-Ying He
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mei-Bian Hu
- Institute of Pharmaceutical and Food engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Ruo-Lan Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin-Hong Fan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin He
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Lu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xun Ye
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong-Liang Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chun-Jie Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|