1
|
Parmar K, Sondarva S. Aerosolizable Pyrazinamide-Loaded Biodegradable Nanoparticles for the Management of Pulmonary Tuberculosis. J Aerosol Med Pulm Drug Deliv 2024; 37:30-40. [PMID: 38197850 DOI: 10.1089/jamp.2022.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Background: Pyrazinamide is a Biopharmaceutical Classification System class III antibiotic indicated for active tuberculosis. Methods: In the present work, pyrazinamide-loaded biodegradable polymeric nanoparticles (PNPs) based dry powder inhaler were developed using the double emulsion solvent evaporation technique and optimized using design of experiments to provide direct pulmonary administration with minimal side effects. Batches were characterized for various physicochemical and aerosol performance properties. Results: Optimized batch exhibited particle size of 284.5 nm, % entrapment efficiency of 71.82%, polydispersibility index of 0.487, zeta potential of -17.23 mV, and in vitro drug release at 4 hours of 79.01%. Spray-dried PNPs were evaluated for drug content, in vitro drug release, and kinetics. The particle mass median aerodynamic diameter was within the alveolar region's range (2.910 μm). In the trachea and lung, there was a 2.5- and 1.2-fold increase in in vivo deposition with respect to pure drug deposition, respectively. In vitro drug uptake findings showed that alveolar macrophages with pyrazinamide PNPs had a considerably higher drug concentration. Furthermore, accelerated stability studies were carried out for the optimized batch. Results indicated no significant change in the evaluation parameters, which showed stability of the formulation for at least a 6-month period. Conclusion: PNPs prepared using biodegradable polymers exhibited efficient pulmonary drug delivery with decent stability.
Collapse
Affiliation(s)
- Komal Parmar
- Department of Pharmaceutics, ROFEL Shri G.M. Bilakhia College of Pharmacy, Vapi, Gujarat, India
| | - Swati Sondarva
- Department of Pharmaceutics, ROFEL Shri G.M. Bilakhia College of Pharmacy, Vapi, Gujarat, India
| |
Collapse
|
2
|
Mahar R, Chakraborty A, Nainwal N, Bahuguna R, Sajwan M, Jakhmola V. Application of PLGA as a Biodegradable and Biocompatible Polymer for Pulmonary Delivery of Drugs. AAPS PharmSciTech 2023; 24:39. [PMID: 36653547 DOI: 10.1208/s12249-023-02502-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Pulmonary administration of biodegradable polymeric formulation is beneficial in the treatment of various respiratory diseases. For respiratory delivery, the polymer must be non-toxic, biodegradable, biocompatible, and stable. Poly D, L-lactic-co-glycolic acid (PLGA) is a widely used polymer for inhalable formulations because of its attractive mechanical and processing characteristics which give great opportunities to pharmaceutical industries to formulate novel inhalable products. PLGA has many pharmaceutical applications and its biocompatible nature produces non-toxic degradation products. The degradation of PLGA takes place through the non-enzymatic hydrolytic breakdown of ester bonds to produce free lactic acid and glycolic acid. The biodegradation products of PLGA are eliminated in the form of carbon dioxide (CO2) and water (H2O) by the Krebs cycle. The biocompatible properties of PLGA are investigated in various in vivo and in vitro studies. The high structural integrity of PLGA particles provides better stability, excellent drug loading, and sustained drug release. This review provides detailed information about PLGA as an inhalable grade polymer, its synthesis, advantages, physicochemical properties, biodegradability, and biocompatible characteristics. The important formulation aspects that must be considered during the manufacturing of inhalable PLGA formulations and the toxicity of PLGA in the lungs are also discussed in this paper. Additionally, a thorough overview is given on the application of PLGA as a particulate carrier in the treatment of major respiratory diseases, such as cystic fibrosis, lung cancer, tuberculosis, asthma, and pulmonary hypertension.
Collapse
Affiliation(s)
- Riya Mahar
- School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, Uttarakhand, India
| | - Arpita Chakraborty
- School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, Uttarakhand, India
| | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, 248007, Uttarakhand, India.
| | - Richa Bahuguna
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Premnagar, Dehradun, 248007, Uttarakhand, India
| | - Meenakshi Sajwan
- Department of Pharmacy, GRD (PG) IMT, 214 Raipur Road, Dehradun, 248001, India
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, 248007, Uttarakhand, India
| |
Collapse
|
3
|
Saini V, Debnath SK, Maske P, Dighe V, Srivastava R. Targeted delivery of ursolic acid and oleanolic acid to lungs in the form of an inhaler for the management of tuberculosis: Pharmacokinetic and toxicity assessment. PLoS One 2022; 17:e0278103. [PMID: 36580459 PMCID: PMC9799288 DOI: 10.1371/journal.pone.0278103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/10/2022] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Ursolic acid (UA) and oleanolic acid (OA) are triterpenoids. They are used to treat numerous diseases, including tuberculosis. Combinations of these drugs provide new insight into the management of tuberculosis. The major obstacle is the effective delivery of these drugs to the lungs, which are mainly affected due to M. tuberculosis. A metered-dose inhaler (MDI) was developed to address this issue containing UA and OA, followed by in-vitro and in-vivo evaluation. METHODS In the present study, MDI formulation was prepared by incorporating UA and OA at the dose level of 120 μg/ml in each actuation. In-vitro evaluation of this MDI formulation was performed to ensure its suitability to deliver UA and OA preciously. With prior approval of IAEC, a pharmacokinetic and acute inhalation toxicity study was conducted using MDI on Wistar rats. RESULTS The pharmacokinetic study showed an increased biological half-life of UA (9.23±0.104 h) and OA (8.93±0.166 h) in combination therapy. In-vivo toxicity study demonstrated no adverse effects on body weight and vital organs in the treatment group compared with the control group. Histopathology examination of these essential organs showed no abnormalities. Mild alternation in the biochemical and hematological parameters was observed. However, these alterations did not affect the overall health of the animals. CONCLUSION The present study documents a detailed study for the safety and pharmacokinetics of UA and OA in-vivo for their advanced application in tuberculosis disease.
Collapse
Affiliation(s)
- Vinay Saini
- Nanobios Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Sujit Kumar Debnath
- Nanobios Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Priyanka Maske
- Nanobios Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Vikas Dighe
- National Centre for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Rohit Srivastava
- Nanobios Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
- * E-mail:
| |
Collapse
|
4
|
Debnath SK, Debnath M, Srivastava R. Opportunistic etiological agents causing lung infections: emerging need to transform lung-targeted delivery. Heliyon 2022; 8:e12620. [PMID: 36619445 PMCID: PMC9816992 DOI: 10.1016/j.heliyon.2022.e12620] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 09/03/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022] Open
Abstract
Lung diseases continue to draw considerable attention from biomedical and public health care agencies. The lung with the largest epithelial surface area is continuously exposed to the external environment during exchanging gas. Therefore, the chances of respiratory disorders and lung infections are overgrowing. This review has covered promising and opportunistic etiologic agents responsible for lung infections. These pathogens infect the lungs either directly or indirectly. However, it is difficult to intervene in lung diseases using available oral or parenteral antimicrobial formulations. Many pieces of research have been done in the last two decades to improve inhalable antimicrobial formulations. However, very few have been approved for human use. This review article discusses the approved inhalable antimicrobial agents (AMAs) and identifies why pulmonary delivery is explored. Additionally, the basic anatomy of the respiratory system linked with barriers to AMA delivery has been discussed here. This review opens several new scopes for researchers to work on pulmonary medicines for specific diseases and bring more respiratory medication to market.
Collapse
|
5
|
Nainwal N, Sharma Y, Jakhmola V. Dry powder inhalers of antitubercular drugs. Tuberculosis (Edinb) 2022; 135:102228. [PMID: 35779497 DOI: 10.1016/j.tube.2022.102228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/10/2022] [Accepted: 06/19/2022] [Indexed: 12/15/2022]
Abstract
Despite advancements in the medical and pharmaceutical fields, tuberculosis remains a major health problem globally. Patients do not widely accept the conventional approach to treating tuberculosis (TB) due to prolonged treatment periods with multiple high doses of drugs and associated side effects. A pulmonary route is a non-invasive approach to delivering drugs, hormones, nucleic acid, steroids, proteins, and peptides directly to the lungs, improving the efficacy of the treatment and consequently decreasing the adverse effect of the treatment. This route has been successfully developed for the treatment of various respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), tuberculosis (TB), lung cancer, and other pulmonary infections. The major approaches of inhalation delivery systems include nebulizers, metered-dose inhalers (MDIs), and dry powder inhalers (DPIs). However, dry powder inhalers (DPIs) are more advantageous due to their stability and ability to deliver a high dose of the drug to the lungs. The present review analyzes the modern therapeutic approach of inhaled dry powders, with a special focus on novel drug delivery system (NDDS) based DPIs for the treatment of TB. The article also discussed the challenges of preparing inhalable dry powder formulations for the treatment of TB. The clinical development of inhalable anti-TB drugs is also reviewed.
Collapse
Affiliation(s)
- Nidhi Nainwal
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248161, India.
| | - Yuwanshi Sharma
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248161, India.
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
6
|
Debnath SK, Srivastava R, Debnath M, Omri A. Status of inhalable antimicrobial agents for lung infection: progress and prospects. Expert Rev Respir Med 2021; 15:1251-1270. [PMID: 33866900 DOI: 10.1080/17476348.2021.1919514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Available parenteral and oral administration of antimicrobial agents (AMAs) in respiratory infections often show less penetration into the lung parenchyma. Due to inappropriate dose availability, the rate of antibiotic resistance is increasing gradually. Inhaled antibiotics intensely improve the availability of drugs at the site of respiratory infections. This targeted delivery minimizes systemic exposure and associated toxicity.Area covers: This review was performed by searching in the scientific database like PubMed and several trusted government sites like fda.gov, cdc.gov, ClinicalTrials.gov, etc. For better understanding, AMAs are classified in different stages of approval. Mechanism and characterization of pulmonary drug deposition section helps to understand the effective delivery of AMAs to the respiratory tract. There is a need for proper adoption of delivery devices for inhalable AMAs. Thus, delivery devices are extensively explained. Inspiratory flow has a remarkable impact on the delivery device that has been explained in detail.Expert opinion: Pulmonary delivery restricts the bulk administration of drugs in comparison with other routes. Therefore, novel AMAs with higher bactericidal activity at lower concentrations need to be synthesized. Extensive research is indeed in developing innovative delivery devices that would able to deliver higher doses of AMAs through the pulmonary route.
Collapse
Affiliation(s)
- Sujit Kumar Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, India
| | - Monalisha Debnath
- School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, India
| | - Abdelwahab Omri
- Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
7
|
Sankhe K, Khan T, Bhavsar C, Momin M, Omri A. Selective drug deposition in lungs through pulmonary drug delivery system for effective management of drug-resistant TB. Expert Opin Drug Deliv 2019; 16:525-538. [PMID: 31007100 DOI: 10.1080/17425247.2019.1609937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) is a major health issue and continues to be a global health concern. Despite significant advancements in treatment modalities, ~1.6 million deaths worldwide occur due to TB infection. This is because of tuberculosis reservoirs in the alveoli making it a challenge for the formulation scientist to target this. AREAS COVERED This review recent investigations on the forefront of pulmonary drug delivery for managing MDR-TB and XDR-TB. Novel delivery systems like liposomes, niosomes, employing carbohydrate, and -coated molecules via conjugation to selectively deliver the drugs to the lung TB reservoir via pulmonary administration are discussed. EXPERT OPINION Poor patient adherence to treatment due to side effects and extended therapeutic regimen leads to drug-resistant TB. Thus, it is essential to design novel strategies this issue by developing new chemical entities and/or new delivery systems for delivery to the lungs, consequently reducing the side effects, the frequency and the duration of treatment. Delivery of drugs to enhance the efficacy of new/existing anti-TB drugs to overcome the resistance and enhance patient compliance is underway.
Collapse
Affiliation(s)
- Kaksha Sankhe
- a Department of Pharm Chem and QA , SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai , India
| | - Tabassum Khan
- a Department of Pharm Chem and QA , SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai , India
| | - Chintan Bhavsar
- b Department of Pharmaceutics , SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai , India
| | - Munira Momin
- b Department of Pharmaceutics , SVKM's Dr. Bhanuben Nanavati College of Pharmacy , Mumbai , India
| | - Abdelwahab Omri
- c Department of Chemistry & Biochemistry , Laurentian University , Sudbury , Canada
| |
Collapse
|
8
|
Debnath SK, Saisivam S, Debanth M, Omri A. Development and evaluation of Chitosan nanoparticles based dry powder inhalation formulations of Prothionamide. PLoS One 2018; 13:e0190976. [PMID: 29370192 PMCID: PMC5784924 DOI: 10.1371/journal.pone.0190976] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/23/2017] [Indexed: 11/25/2022] Open
Abstract
Prothionamide (PTH), a second line antitubercular drug is used to administer in conventional oral route. However, its unpredictable absorption and frequent administration limit its use. An alternate approach was thought of administering PTH through pulmonary route in a form of nanoparticles, which can sustain the release for several hours in lungs. Chitosan, a bio-degradable polymer was used to coat PTH and further freeze dried to prepare dry powder inhaler (DPI) with aerodynamic particle size of 1.76μm. In vitro release study showed initial burst release followed by sustained release up to 96.91% in 24h. In vitro release further correlated with in vivo study. Prepared DPI maintained the PTH concentration above MIC for more than 12h after single dose administration and increased the PTH residency in the lungs tissue more than 24h. Animal study also revealed the reduction of dose in pulmonary administration, which will improve the management of tuberculosis.
Collapse
Affiliation(s)
- Sujit Kumar Debnath
- Department of Pharmacy, Bengal College of Pharmaceutical Sciences and Research, Durgapur, West Bengal, India
| | - Srinivasan Saisivam
- Department of Pharmacy, N. R. Vekaria Institute of Pharmacy, Junagadh, Gujarat, India
| | - Monalisha Debanth
- Department of Pharmacy, Bengal College of Pharmaceutical Sciences and Research, Durgapur, West Bengal, India
| | - Abdelwahab Omri
- Department of Chemistry & Biochemistry, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|