1
|
Gu Y, Yang R, Zhang Y, Guo M, Takehiro K, Zhan M, Yang L, Wang H. Molecular mechanisms and therapeutic strategies in overcoming chemotherapy resistance in cancer. MOLECULAR BIOMEDICINE 2025; 6:2. [PMID: 39757310 PMCID: PMC11700966 DOI: 10.1186/s43556-024-00239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Cancer remains a leading cause of mortality globally and a major health burden, with chemotherapy often serving as the primary therapeutic option for patients with advanced-stage disease, partially compensating for the limitations of non-curative treatments. However, the emergence of chemotherapy resistance significantly limits its efficacy, posing a major clinical challenge. Moreover, heterogeneity of resistance mechanisms across cancer types complicates the development of universally effective diagnostic and therapeutic approaches. Understanding the molecular mechanisms of chemoresistance and identifying strategies to overcome it are current research focal points. This review provides a comprehensive analysis of the key molecular mechanisms underlying chemotherapy resistance, including drug efflux, enhanced DNA damage repair (DDR), apoptosis evasion, epigenetic modifications, altered intracellular drug metabolism, and the role of cancer stem cells (CSCs). We also examine specific causes of resistance in major cancer types and highlight various molecular targets involved in resistance. Finally, we discuss current strategies aiming at overcoming chemotherapy resistance, such as combination therapies, targeted treatments, and novel drug delivery systems, while proposing future directions for research in this evolving field. By addressing these molecular barriers, this review lays a foundation for the development of more effective cancer therapies aimed at mitigating chemotherapy resistance.
Collapse
Affiliation(s)
- Yixiang Gu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ruifeng Yang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yang Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Miaomiao Guo
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | | | - Ming Zhan
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, 91016, USA
| | - Linhua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
2
|
Wan P, He X, Han Y, Wang L, Yuan Z. Stat5 inhibits NLRP3-mediated pyroptosis to enhance chemoresistance of breast cancer cells via promoting miR-182 transcription. Chem Biol Drug Des 2023; 102:14-25. [PMID: 36905318 DOI: 10.1111/cbdd.14229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
The treatment of breast cancer (BC) calls for targeted methods to overcome chemoresistance (CR). This study is expected to figure out the mechanism of signal transducer and activator of transcription 5 (STAT5) in NOD-like receptor family pyrin domain containing 3 (NLRP3)-mediated pyroptosis and CR in BC cells. BC cell lines resistant to paclitaxel (PTX) and cis-diamminedichloro-platinum (DDP) were prepared. Expressions of Stat5, miR-182, and NLRP3 were detected. The 50% inhibition concentration (IC50 ), proliferation, colony formation, apoptosis rate, and levels of pyroptosis-related factors were appraised and determined. The binding relationships of Stat5 and miR-182, and miR-182 and NLRP3 were testified. Stat5 and miR-182 were highly expressed in drug-resistant BC cells. Silencing Stat5 reduced proliferation and colony formation of drug-resistant BC cells, coincided with elevated levels of pyroptosis-related factors. Stat5 bound to the promoter region of miR-182 to promote miR-182 expression. miR-182 inhibition reversed the role of silencing Stat5 in BC cells. miR-182 inhibited NLRP3. Overall, Stat5 bound to the promoter region of miR-182 to promote miR-182 expression and inhibit NLRP3 transcription, thereby suppressing pyroptosis and enhancing CR of BC cells.
Collapse
Affiliation(s)
- Peng Wan
- Affiliated People's Hospital of Ningbo University Cancer Chemoradiotherapy Center, Ningbo, China
| | - Xiaolan He
- Affiliated People's Hospital of Ningbo University Cancer Chemoradiotherapy Center, Ningbo, China
| | - Ying Han
- Affiliated People's Hospital of Ningbo University Cancer Chemoradiotherapy Center, Ningbo, China
| | - Liangliang Wang
- Affiliated People's Hospital of Ningbo University Cancer Chemoradiotherapy Center, Ningbo, China
| | - Zuguo Yuan
- Affiliated People's Hospital of Ningbo University Cancer Chemoradiotherapy Center, Ningbo, China
| |
Collapse
|
3
|
TRAVERSI DEBORAH, CALABRÒ GIOVANNAELISA, FRANCESE CORINNE, FRANCHITTI ELENA, PULLIERO ALESSANDRA, SPATERA PAOLA, IZZOTTI ALBERTO, VENTURA CARLADELLA, LAI ALESSIA, BERGNA ANNALISA, GALLI MASSIMO, ZEHENDER GIANGUGLIELMO, TAMBURRO MANUELA, LOMBARDI ADELE, SALZO ANGELO, DE DONA ROBERTA, D’AMICO ANTONIO, VICCIONE VITTORIO, RIPABELLI GIANCARLO, BACCOLINI VALENTINA, MIGLIARA GIUSEPPE, PITINI ERICA, MARZUILLO CAROLINA, DE VITO CORRADO, PASTORINO ROBERTA, VILLARI PAOLO, BOCCIA STEFANIA. [Genomics in Public Health Scientific evidence and prospects for integration in the prevention practice]. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2023; 63:E1-E29. [PMID: 36818497 PMCID: PMC9910509 DOI: 10.15167/2421-4248/jpmh2022.63.3s2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- DEBORAH TRAVERSI
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino, Italia
| | - GIOVANNA ELISA CALABRÒ
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - CORINNE FRANCESE
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino, Italia
| | - ELENA FRANCHITTI
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino, Italia
| | | | - PAOLA SPATERA
- Dipartimento di Scienze della Salute, Università di Genova, Genova, Italia
| | - ALBERTO IZZOTTI
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italia
- IRCCS Ospedale Policlinico San Martino, Genova, Italia
| | - CARLA DELLA VENTURA
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Milano, Italia
- EpiSoMi CRC-Centro di Ricerca Coordinato, Università degli Studi di Milano, Milano, Italia
| | - ALESSIA LAI
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Milano, Italia
- EpiSoMi CRC-Centro di Ricerca Coordinato, Università degli Studi di Milano, Milano, Italia
| | - ANNALISA BERGNA
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Milano, Italia
- EpiSoMi CRC-Centro di Ricerca Coordinato, Università degli Studi di Milano, Milano, Italia
| | - MASSIMO GALLI
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Milano, Italia
| | - GIANGUGLIELMO ZEHENDER
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Milano, Italia
- EpiSoMi CRC-Centro di Ricerca Coordinato, Università degli Studi di Milano, Milano, Italia
| | - MANUELA TAMBURRO
- Dipartimento di Medicina e di Scienze della Salute “Vincenzo Tiberio”, Università del Molise, Campobasso, Italia
| | - ADELE LOMBARDI
- Dipartimento di Medicina e di Scienze della Salute “Vincenzo Tiberio”, Università del Molise, Campobasso, Italia
| | - ANGELO SALZO
- Azienda Sanitaria Regionale del Molise, Campobasso, Italia
| | - ROBERTA DE DONA
- Scuola di Specializzazione in Igiene e Medicina Preventiva, Università del Molise, Campobasso, Italia
| | - ANTONIO D’AMICO
- Scuola di Specializzazione in Igiene e Medicina Preventiva, Università del Molise, Campobasso, Italia
| | - VITTORIO VICCIONE
- Scuola di Specializzazione in Igiene e Medicina Preventiva, Università del Molise, Campobasso, Italia
| | - GIANCARLO RIPABELLI
- Dipartimento di Medicina e di Scienze della Salute “Vincenzo Tiberio”, Università del Molise, Campobasso, Italia
- Azienda Sanitaria Regionale del Molise, Campobasso, Italia
- Scuola di Specializzazione in Igiene e Medicina Preventiva, Università del Molise, Campobasso, Italia
| | - VALENTINA BACCOLINI
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Roma, Italia
| | - GIUSEPPE MIGLIARA
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Roma, Italia
| | | | - CAROLINA MARZUILLO
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Roma, Italia
| | - CORRADO DE VITO
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Roma, Italia
| | - ROBERTA PASTORINO
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
- Dipartimento Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - PAOLO VILLARI
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Roma, Italia
| | - STEFANIA BOCCIA
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
- Dipartimento Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| |
Collapse
|
4
|
Singh P, Yadav R, Verma M, Chhabra R. Antileukemic Activity of hsa-miR-203a-5p by Limiting Glutathione Metabolism in Imatinib-Resistant K562 Cells. Curr Issues Mol Biol 2022; 44:6428-6438. [PMID: 36547099 PMCID: PMC9777165 DOI: 10.3390/cimb44120438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Imatinib has been the first and most successful tyrosine kinase inhibitor (TKI) for chronic myeloid leukemia (CML), but many patients develop resistance to it after a satisfactory response. Glutathione (GSH) metabolism is thought to be one of the factors causing the emergence of imatinib resistance. Since hsa-miR-203a-5p was found to downregulate Bcr-Abl1 oncogene and also a link between this oncogene and GSH metabolism is reported, the present study aimed to investigate whether hsa-miR-203a-5p could overcome imatinib resistance by targeting GSH metabolism in imatinib-resistant CML cells. After the development of imatinib-resistant K562 (IR-K562) cells by gradually exposing K562 (C) cells to increasing doses of imatinib, resistant cells were transfected with hsa-miR-203a-5p (R+203). Thereafter, cell lysates from various K562 cell sets (imatinib-sensitive, imatinib-resistant, and miR-transfected imatinib-resistant K562 cells) were used for GC-MS-based metabolic profiling. L-alanine, 5-oxoproline (also known as pyroglutamic acid), L-glutamic acid, glycine, and phosphoric acid (Pi)-five metabolites from our data, matched with the enumerated 28 metabolites of the MetaboAnalyst 5.0 for the GSH metabolism. All of these metabolites were present in higher concentrations in IR-K562 cells, but intriguingly, they were all reduced in R+203 and equated to imatinib-sensitive K562 cells (C). Concludingly, the identified metabolites associated with GSH metabolism could be used as diagnostic markers.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda 151401, India
| | - Radheshyam Yadav
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda 151401, India
| | - Malkhey Verma
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda 151401, India
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
- Correspondence: or (M.V.); or (R.C.); Tel.: +91-7589489833 (M.V.); +91-9478723446 (R.C.)
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda 151401, India
- Correspondence: or (M.V.); or (R.C.); Tel.: +91-7589489833 (M.V.); +91-9478723446 (R.C.)
| |
Collapse
|
5
|
Tan Q, Ma J, Zhang H, Wu X, Li Q, Zuo X, Jiang Y, Liu H, Yan L. miR-125b-5p upregulation by TRIM28 induces cisplatin resistance in non-small cell lung cancer through CREB1 inhibition. BMC Pulm Med 2022; 22:469. [PMID: 36476351 PMCID: PMC9730690 DOI: 10.1186/s12890-022-02272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE miR-125b-5p plays an important role in the development of cancer and drug resistance. However, in cisplatin resistance of non-small cell lung cancer (NSCLC), the function and potential mechanism of miR-125b-5p is still unclear. The aim of this study was to investigate the role and molecular mechanism of miR-125b-5p in cisplatin resistance of NSCLC. METHODS A GEO dataset (GSE168707) was analyzed to find high miR-125b-5p levels were associated with DDP resistance. miR-125b-5p expression levels were detected in A549 and A549/DDP cells via real-time quantitative RT-PCR (qRT-PCR). Luciferase reporter assays, western blots and mouse model xenografted were performed to identify CREB1 as a direct target gene of miR-125b-5p. Cell proliferation and apoptosis were also performed to identify whether miR-125b-5p upregulation by TRIM28 induces DDP resistance in NSCLC through CREB1 inhibition. RESULTS In A549/DDP cells, miR-125b-5p expression was upregulated compared to A549 cells. Then miR-125b-5p was found to increase DDP resistance in NSCLC in vivo and in vitro by increasing cell proliferation and suppressing cell apoptosis. Bioinformatic analyses were used to search for gene which miR-125b-5p can target. We identified miR-125b-5p can regulate CREB1 via luciferase reporter assays, qRT-PCR and western blots. Cell proliferation and apoptosis were also performed to confirm miR-125b-5p could impact on CREB1 and induce the DDP resistance in NSCLC. Additionally, we used bioinformatic analyses to find tripartite motif-containing 28 (TRIM28) as a transcriptional enhance factor of miR-125b-5p. The expression of TRIM28 was upregulated in A549/DDP cells compared with that in A549 cells by qRT-PCR. Finally, we found TRIM28 could mediate DDP resistance through miR-125b-5p/CREB1 axis via cell proliferation, western blot and apoptosis assay. CONCLUSIONS Overall, our findings demonstrated novel functions and mechanisms underlying DDP resistance in NSCLC through the TRIM28/miR-125b-5p/CREB1 axis. These may serve as novel therapeutic targets to improve the treatment efficacy using DDP for NSCLC in the future.
Collapse
Affiliation(s)
- Qiuyu Tan
- grid.452929.10000 0004 8513 0241The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241002 Anhui China ,grid.443626.10000 0004 1798 4069Provincial Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, 241002 Anhui China
| | - Jinzhu Ma
- grid.443626.10000 0004 1798 4069Provincial Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, 241002 Anhui China
| | - Hao Zhang
- grid.411525.60000 0004 0369 1599Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai, 200433 China
| | - Xu Wu
- grid.443626.10000 0004 1798 4069Provincial Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, 241002 Anhui China
| | - Qiang Li
- grid.443626.10000 0004 1798 4069Provincial Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, 241002 Anhui China
| | - Xiaoxuan Zuo
- grid.443626.10000 0004 1798 4069Provincial Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, 241002 Anhui China
| | - Yuxin Jiang
- grid.411870.b0000 0001 0063 8301Department of Pathogen Biology and Immunology, Jiaxing University College of Medicine, Jiaxing, 314000 Zhejiang China
| | - Haijun Liu
- grid.452929.10000 0004 8513 0241The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241002 Anhui China
| | - Liang Yan
- grid.443626.10000 0004 1798 4069Provincial Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, 241002 Anhui China
| |
Collapse
|
6
|
Ponzetti M, Ucci A, Puri C, Giacchi L, Flati I, Capece D, Zazzeroni F, Cappariello A, Rucci N, Falone S. Effects of osteoblast-derived extracellular vesicles on aggressiveness, redox status and mitochondrial bioenergetics of MNNG/HOS osteosarcoma cells. Front Oncol 2022; 12:983254. [PMID: 36544705 PMCID: PMC9762506 DOI: 10.3389/fonc.2022.983254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary bone malignancy. The crosstalk between osteosarcoma and the surrounding tumour microenvironment (TME) drives key events that lead to metastasization, one of the main obstacles for definitive cure of most malignancies. Extracellular vesicles (EVs), lipid bilayer nanoparticles used by cells for intercellular communication, are emerging as critical biological mediators that permit the interplay between neoplasms and the tumour microenvironment, modulating re-wiring of energy metabolism and redox homeostatic processes. We previously showed that EVs derived from the human osteosarcoma cells influence bone cells, including osteoblasts. We here investigated whether the opposite could also be true, studying how osteoblast-derived EVs (OB-EVs) could alter tumour phenotype, mitochondrial energy metabolism, redox status and oxidative damage in MNNG/HOS osteosarcoma cells.These were treated with EVs obtained from mouse primary osteoblasts, and the following endpoints were investigated: i) cell viability and proliferation; ii) apoptosis; iii) migration and invasive capacity; iv) stemness features; v) mitochondrial function and energy metabolism; vi) redox status, antioxidant capacity and oxidative molecular damage. OB-EVs decreased MNNG/HOS metabolic activity and viability, which however was not accompanied by impaired proliferation nor by increased apoptosis, with respect to control. In addition, OB-EV-treated cells exhibited a significant reduction of motility and in vitro invasion as compared to untreated cells. Although the antioxidant N-acetyl-L-cysteine reverted the cytotoxic effect of OB-EVs, no evidence of oxidative stress was observed in treated cells. However, the redox balance of glutathione was significantly shifted towards a pro-oxidant state, even though the major antioxidant enzymatic protection did not respond to the pro-oxidant challenge. We did not find strong evidence of mitochondrial involvement or major energy metabolic switches induced by OB-EVs, but a trend of reduction in seahorse assay basal respiration was observed, suggesting that OB-EVs could represent a mild metabolic challenge for osteosarcoma cells. In summary, our findings suggest that OB-EVs could serve as important means through which TME and osteosarcoma core cross-communicate. For the first time, we proved that OB-EVs reduced osteosarcoma cells' aggressiveness and viability through redox-dependent signalling pathways, even though mitochondrial dynamics and energy metabolism did not appear as processes critically needed to respond to OB-EVs.
Collapse
Affiliation(s)
- Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Argia Ucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Chiara Puri
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Luca Giacchi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alfredo Cappariello
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy,*Correspondence: Nadia Rucci,
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
7
|
Lin L, Miao L, Lin H, Cheng J, Li M, Zhuo Z, He J. Targeting RAS in neuroblastoma: Is it possible? Pharmacol Ther 2022; 236:108054. [PMID: 34915055 DOI: 10.1016/j.pharmthera.2021.108054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
Neuroblastoma is a common solid tumor in children and a leading cause of cancer death in children. Neuroblastoma exhibits genetic, morphological, and clinical heterogeneity that limits the efficacy of current monotherapies. With further research on neuroblastoma, the pathogenesis of neuroblastoma is found to be complex, and more and more treatment therapies are needed. The importance of personalized therapy is growing. Currently, various molecular features, including RAS mutations, are being used as targets for the development of new therapies for patients with neuroblastoma. A recent study found that RAS mutations are frequently present in recurrent neuroblastoma. RAS mutations have been shown to activate the MAPK pathway and play an important role in neuroblastoma. Treating RAS mutated neuroblastoma is a difficult challenge, but many preclinical studies have yielded effective results. At the same time, many of the therapies used to treat RAS mutated tumors also have good reference values for treating RAS mutated neuroblastoma. The success of KRAS-G12C inhibitors has greatly stimulated confidence in the direct suppression of RAS. This review describes the biological role of RAS and the frequency of RAS mutations in neuroblastoma. This paper focuses on the strategies, preclinical, and clinical progress of targeting carcinogenic RAS in neuroblastoma, and proposes possible prospects and challenges in the future.
Collapse
Affiliation(s)
- Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huiran Lin
- Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| |
Collapse
|
8
|
Shi T, Zhang C, Xia S. The potential roles and mechanisms of non-coding RNAs in cancer anoikis resistance. Mol Cell Biochem 2022; 477:1371-1380. [PMID: 35142950 DOI: 10.1007/s11010-022-04384-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/01/2022] [Indexed: 11/29/2022]
Abstract
Increasing evidence indicates that anoikis resistance is a critical process for metastasis of cancer cells, making it the attractive therapeutic target for cancer benefit. Anoikis resistance is widely regulated by various factors, such as signaling pathways, integrins switch, and non-coding RNAs (ncRNAs). ncRNAs composed of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are frequently dysregulated in a variety of human malignancies and are closely related to anoikis resistance of cancer cells. Based on the available literature, we reviewed the molecular basis underlying ncRNAs modulating cancer cells anoikis resistance, which may contribute to a better understanding of cancer metastasis and provide new beneficial therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China.
| | - Chuanqiang Zhang
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, 1399 West Shichang Road, Suzhou, China
| | - Suhua Xia
- Department of Oncology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
| |
Collapse
|
9
|
Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
da Silveira MB, Pansa CC, Malaspina O, Moraes KCM. The functional activity of the miR-1914-5p in lipid metabolism of the hepatocarcinoma cell line HepG2: a potential molecular tool for controlling hepatic cellular migration. Mol Biol Rep 2021; 48:3463-3474. [PMID: 33907947 DOI: 10.1007/s11033-021-06364-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/16/2021] [Indexed: 11/26/2022]
Abstract
Hepatocellular carcinoma is one of the most common types of cancer in the world with high mortality rate and new therapies that control of fatty acid metabolism may limit the proliferation of cancer cells. In the last two decades, the non-coding RNAs have been considered as promising molecular tools to treat diseases, because they are able to modulate gene expression and the metabolic routes; however, deep investigation of their mechanistic behavior in pathologies must be performed. Thus, our aim was to evaluate the modulatory effect of the miR-1914-5p in controlling lipid metabolism in HepG2, a widely used human hepatocarcinoma cell line. The molecular and cellular analyses demonstrated that the functional inhibition of the investigated microRNA completely changed the cellular metabolism and behavior, compared to control groups. The in vitro inhibition of the miR-1914-5p increased the energy expenditure pointed in different analyses, decreasing cell doubling time and migration rate verified in wound healing and in the classical transwell chambers invasion assays, which makes the miR-1914-5p a candidate for further translational and preclinical studies to validate its function in controlling metastasis in liver cancer or even treat those diseases.
Collapse
Affiliation(s)
- Marina Bonfogo da Silveira
- Laboratório de Biologia Molecular, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Rio Claro, SP, 13506-900, Brazil
| | - Camila Cristiane Pansa
- Laboratório de Biologia Molecular, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Rio Claro, SP, 13506-900, Brazil
| | - Osmar Malaspina
- Instituto de Biociência, Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, SP, Brazil
| | - Karen C M Moraes
- Laboratório de Biologia Molecular, Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Rio Claro, SP, 13506-900, Brazil.
| |
Collapse
|
11
|
Li M, Zhang S, Ma Y, Yang Y, An R. Role of hsa‑miR‑105 during the pathogenesis of paclitaxel resistance and its clinical implication in ovarian cancer. Oncol Rep 2021; 45:84. [PMID: 33846814 PMCID: PMC8025119 DOI: 10.3892/or.2021.8035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
More than 70% of patients with epithelial ovarian cancer (EOC), one of the leading cause of gynecological cancer-related deaths worldwide, are diagnosed at an advanced stage of the disease. Currently, the mainstay for treatment of advanced EOC is tumor debulking surgery followed by combined platinum- and paclitaxel (PTX)-based chemotherapy. However, most patients eventually develop chemoresistance, which remains a major obstacle to successful treatment. Herein, by using clinical specimens and experimentally induced cell models, we found that the expression levels of hsa-miR-105 were significantly decreased in PTX-resistant EOC tissues and cell lines. Follow-up functional experiments demonstrated that repression of hsa-miR-105 conferred resistance to paclitaxel in EOC cells, whereas restoration of hsa-miR-105 expression in situ via intratumoral injection of hsa-miR-105 micrON™ agomir potentiated in vivo sensitivity to PTX and thereafter significantly inhibited tumor growth in a PTX-challenged xenograft model. Mechanistically, hsa-miR-105 exerted its tumor suppressor function by directly inhibiting the zinc and ring finger 2 (ZNRF2) signaling pathway. Importantly, aberrant expression of hsa-miR-105 in both tumor and circulating samples predicted a poor post-chemotherapy prognosis in EOC patients. These findings collectively suggest that hsa-miR-105 may act as a potent tumor suppressor miRNA during the progression of EOC, likely affecting cell proliferation, invasiveness and chemosensitivity to PTX, and functioning at least in part via inhibition of ZNRF2 signaling. The stability and availability and ease in measurement of circulating hsa-miR-105 make it a valuable diagnostic/prognostic biomarker candidate for chemotherapy of EOC.
Collapse
Affiliation(s)
- Mao Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shun Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yuan Ma
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yang Yang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710082, P.R. China
| | - Ruifang An
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
12
|
Marengo B, Pulliero A, Corrias MV, Leardi R, Farinini E, Fronza G, Menichini P, Monti P, Monteleone L, Valenti GE, Speciale A, Perri P, Madia F, Izzotti A, Domenicotti C. Potential Role of miRNAs in the Acquisition of Chemoresistance in Neuroblastoma. J Pers Med 2021; 11:jpm11020107. [PMID: 33562297 PMCID: PMC7916079 DOI: 10.3390/jpm11020107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma (NB) accounts for about 8–10% of pediatric cancers, and the main causes of death are the presence of metastases and the acquisition of chemoresistance. Metastatic NB is characterized by MYCN amplification that correlates with changes in the expression of miRNAs, which are small non-coding RNA sequences, playing a crucial role in NB development and chemoresistance. In the present study, miRNA expression was analyzed in two human MYCN-amplified NB cell lines, one sensitive (HTLA-230) and one resistant to Etoposide (ER-HTLA), by microarray and RT-qPCR techniques. These analyses showed that miRNA-15a, -16-1, -19b, -218, and -338 were down-regulated in ER-HTLA cells. In order to validate the presence of this down-regulation in vivo, the expression of these miRNAs was analyzed in primary tumors, metastases, and bone marrow of therapy responder and non-responder pediatric patients. Principal component analysis data showed that the expression of miRNA-19b, -218, and -338 influenced metastases, and that the expression levels of all miRNAs analyzed were higher in therapy responders in respect to non-responders. Collectively, these findings suggest that these miRNAs might be involved in the regulation of the drug response, and could be employed for therapeutic purposes.
Collapse
Affiliation(s)
- Barbara Marengo
- Department of Experimental Medicine, University of Genova, 16100 Genova, Italy; (L.M.); (G.E.V.); (A.I.); (C.D.)
- Correspondence: ; Tel.: +39-010-3538831
| | | | - Maria Valeria Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16100 Genova, Italy; (M.V.C.); (P.P.)
| | - Riccardo Leardi
- Department of Pharmacy, University of Genova, 16100 Genova, Italy; (R.L.); (E.F.)
| | - Emanuele Farinini
- Department of Pharmacy, University of Genova, 16100 Genova, Italy; (R.L.); (E.F.)
| | - Gilberto Fronza
- UOC Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16100 Genova, Italy; (G.F.); (P.M.); (P.M.); (A.S.)
| | - Paola Menichini
- UOC Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16100 Genova, Italy; (G.F.); (P.M.); (P.M.); (A.S.)
| | - Paola Monti
- UOC Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16100 Genova, Italy; (G.F.); (P.M.); (P.M.); (A.S.)
| | - Lorenzo Monteleone
- Department of Experimental Medicine, University of Genova, 16100 Genova, Italy; (L.M.); (G.E.V.); (A.I.); (C.D.)
| | - Giulia Elda Valenti
- Department of Experimental Medicine, University of Genova, 16100 Genova, Italy; (L.M.); (G.E.V.); (A.I.); (C.D.)
| | - Andrea Speciale
- UOC Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16100 Genova, Italy; (G.F.); (P.M.); (P.M.); (A.S.)
| | - Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16100 Genova, Italy; (M.V.C.); (P.P.)
| | - Francesca Madia
- Medical Genetics Unit, IRCCS Giannina Gaslini Institute, 16100 Genova, Italy;
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genova, 16100 Genova, Italy; (L.M.); (G.E.V.); (A.I.); (C.D.)
- UOC Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16100 Genova, Italy; (G.F.); (P.M.); (P.M.); (A.S.)
| | - Cinzia Domenicotti
- Department of Experimental Medicine, University of Genova, 16100 Genova, Italy; (L.M.); (G.E.V.); (A.I.); (C.D.)
| |
Collapse
|
13
|
Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, Foster J, Zhou J, Zhang R. Molecular targeting therapies for neuroblastoma: Progress and challenges. Med Res Rev 2020; 41:961-1021. [PMID: 33155698 PMCID: PMC7906923 DOI: 10.1002/med.21750] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023]
Abstract
There is an urgent need to identify novel therapies for childhood cancers. Neuroblastoma is the most common pediatric solid tumor, and accounts for ~15% of childhood cancer‐related mortality. Neuroblastomas exhibit genetic, morphological and clinical heterogeneity, which limits the efficacy of existing treatment modalities. Gaining detailed knowledge of the molecular signatures and genetic variations involved in the pathogenesis of neuroblastoma is necessary to develop safer and more effective treatments for this devastating disease. Recent studies with advanced high‐throughput “omics” techniques have revealed numerous genetic/genomic alterations and dysfunctional pathways that drive the onset, growth, progression, and resistance of neuroblastoma to therapy. A variety of molecular signatures are being evaluated to better understand the disease, with many of them being used as targets to develop new treatments for neuroblastoma patients. In this review, we have summarized the contemporary understanding of the molecular pathways and genetic aberrations, such as those in MYCN, BIRC5, PHOX2B, and LIN28B, involved in the pathogenesis of neuroblastoma, and provide a comprehensive overview of the molecular targeted therapies under preclinical and clinical investigations, particularly those targeting ALK signaling, MDM2, PI3K/Akt/mTOR and RAS‐MAPK pathways, as well as epigenetic regulators. We also give insights on the use of combination therapies involving novel agents that target various pathways. Further, we discuss the future directions that would help identify novel targets and therapeutics and improve the currently available therapies, enhancing the treatment outcomes and survival of patients with neuroblastoma.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| | - Gang Liu
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xinjie Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wa Xian
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Frank McKeon
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Jennifer Foster
- Department of Pediatrics, Texas Children's Hospital, Section of Hematology-Oncology Baylor College of Medicine, Houston, Texas, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| |
Collapse
|