1
|
Shen ZQ, Chiu WT, Kao CH, Chen YC, Chen LH, Teng TW, Hsiung SY, Tzeng TY, Tung CY, Juan CC, Tsai TF. Wolfram syndrome 2 gene (CISD2) deficiency disrupts Ca 2+-mediated insulin secretion in β-cells. Mol Metab 2025; 96:102140. [PMID: 40189101 PMCID: PMC12020879 DOI: 10.1016/j.molmet.2025.102140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
OBJECTIVE Diabetes, characterized by childhood-onset, autoantibody-negativity and insulin-deficiency, is a major manifestation of Wolfram syndrome 2 (WFS2), which is caused by recessive mutations of CISD2. Nevertheless, the mechanism underlying β-cell dysfunction in WFS2 remains elusive. Here we delineate the essential role of CISD2 in β-cells. METHODS We use β-cell specific Cisd2 knockout (Cisd2KO) mice, a CRISPR-mediated Cisd2KO MIN6 β-cell line and transcriptomic analysis. RESULTS Four findings are pinpointed. Firstly, β-cell specific Cisd2KO in mice disrupts systemic glucose homeostasis via impairing β-granules synthesis and insulin secretion; hypertrophy of the β-islets and the presence of a loss of identity that affects certain β-cells. Secondly, Cisd2 deficiency leads to impairment of glucose-induced extracellular Ca2+ influx, which compromises Ca2+-mediated insulin secretory signaling, causing mitochondrial dysfunction and, thereby impairing insulin secretion in the MIN6-Cisd2KO β-cells. Thirdly, transcriptomic analysis of β-islets reveals that Cisd2 modulates proteostasis and ER stress, mitochondrial function, insulin secretion and vesicle transport. Finally, the activated state of two potential upstream regulators, Glis3 and Hnf1a, is significantly suppressed under Cisd2 deficiency; notably, their downstream target genes are deeply involved in β-cell function and identity. CONCLUSIONS These findings provide mechanistic insights and form a basis for developing therapeutics for the effective treatment of diabetes in WFS2 patients.
Collapse
Affiliation(s)
- Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Cheng-Heng Kao
- Center of General Education, Chang Gung University, Taoyuan 333, Taiwan
| | - Yu-Chen Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Li-Hsien Chen
- Department of Pharmacology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Tsai-Wen Teng
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shao-Yu Hsiung
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Tsai-Yu Tzeng
- The National Genomics Center for Clinical and Biotechnological Applications, Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chien-Yi Tung
- The National Genomics Center for Clinical and Biotechnological Applications, Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chi-Chang Juan
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan.
| |
Collapse
|
2
|
Jelleschitz J, Heider S, Kehm R, Baumgarten P, Ott C, Schnell V, Grune T, Höhn A. Insulitis and aging: Immune cell dynamics in Langerhans islets. Redox Biol 2025; 82:103587. [PMID: 40101534 PMCID: PMC11957801 DOI: 10.1016/j.redox.2025.103587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/07/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
With increasing age, the risk for age-related type-2-diabetes also increases due to impaired glucose tolerance and insulin secretion. This disease process may be influenced by various factors, including immune cell triggered inflammation and fibrosis. Although immune cells are a necessary component of islets, little is known about immune cell accumulation, immune cell subtype shifts and subsequent influence on glucose metabolism in healthy aging. However, this is critical for understanding the mechanisms that influence β-cell health. Therefore, we studied young and old male C57BL/6J mice, focusing on immune cell composition, patterns of accumulation, and the presence of fibrosis within the pancreatic islets. Our findings demonstrate that insulitis occurs in healthy aged mice without immediate development of a diabetic phenotype. Aged islets exhibited an increase in leukocytes and a shift in immune cell composition. While insulitis typically involves excessive immune cell accumulation, we observed a moderate increase in macrophages and T-cells during aging, which may support β-cell proliferation via cytokine secretion. In fact, aged mice in our study showed an increase in β-cell mass as well as a partially higher insulin secretory capacity, which compensated for the loss of β-cell functionality in insulitic islets and led to improved glucose tolerance. Furthermore, fibrosis which is normally triggered by immune cells, increased with age but appears to reach a steady state, emphasizing the importance of counter-regulatory mechanisms and immune system regulation. Our results suggest, that immune cell subtypes change with age and that non-pathological accumulation of immune-cells may regulate glucose metabolism through secretion of cytokines.
Collapse
Affiliation(s)
- Julia Jelleschitz
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Sophie Heider
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Richard Kehm
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Patricia Baumgarten
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner site Berlin, Berlin, Germany
| | - Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner site Berlin, Berlin, Germany
| | - Vanessa Schnell
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; DZHK (German Center for Cardiovascular Research), Partner site Berlin, Berlin, Germany
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
3
|
De George DJ, Jhala G, Selck C, Trivedi P, Brodnicki TC, Mackin L, Kay TW, Thomas HE, Krishnamurthy B. Altering β Cell Antigen Exposure to Exhausted CD8+ T Cells Prevents Autoimmune Diabetes in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1658-1669. [PMID: 38587315 DOI: 10.4049/jimmunol.2300785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
Chronic destruction of insulin-producing pancreatic β cells by T cells results in autoimmune diabetes. Similar to other chronic T cell-mediated pathologies, a role for T cell exhaustion has been identified in diabetes in humans and NOD mice. The development and differentiation of exhausted T cells depends on exposure to Ag. In this study, we manipulated β cell Ag presentation to target exhausted autoreactive T cells by inhibiting IFN-γ-mediated MHC class I upregulation or by ectopically expressing the β cell Ag IGRP under the MHC class II promotor in the NOD8.3 model. Islet PD-1+TIM3+CD8+ (terminally exhausted [TEX]) cells were primary producers of islet granzyme B and CD107a, suggestive of cells that have entered the exhaustion program yet maintained cytotoxic capacity. Loss of IFN-γ-mediated β cell MHC class I upregulation correlated with a significant reduction in islet TEX cells and diabetes protection in NOD8.3 mice. In NOD.TII/8.3 mice with IGRP expression induced in APCs, IGRP-reactive T cells remained exposed to high levels of IGRP in the islets and periphery. Consequently, functionally exhausted TEX cells, with reduced granzyme B expression, were significantly increased in these mice and this correlated with diabetes protection. These results indicate that intermediate Ag exposure in wild-type NOD8.3 islets allows T cells to enter the exhaustion program without becoming functionally exhausted. Moreover, Ag exposure can be manipulated to target this key cytotoxic population either by limiting the generation of cytotoxic TIM3+ cells or by driving their functional exhaustion, with both resulting in diabetes protection.
Collapse
Affiliation(s)
- David J De George
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Gaurang Jhala
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Claudia Selck
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Prerak Trivedi
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Thomas C Brodnicki
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Leanne Mackin
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
| | - Thomas W Kay
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Helen E Thomas
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Balasubramanian Krishnamurthy
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
4
|
Hu C, Huang C, Hsu M, Chien H, Wu P, Chen Y, Jeng Y, Tang S, Chung M, Shen C, Chang M, Chang Y, Tien Y, Lee W. Oncogenic KRAS, Mucin 4, and Activin A-Mediated Fibroblast Activation Cooperate for PanIN Initiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301240. [PMID: 37964407 PMCID: PMC10754145 DOI: 10.1002/advs.202301240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/22/2023] [Indexed: 11/16/2023]
Abstract
Over 90% of patients with pancreatic ductal adenocarcinoma (PDAC) have oncogenic KRAS mutations. Nevertheless, mutated KRAS alone is insufficient to initiate pancreatic intraepithelial neoplasia (PanIN), the precursor of PDAC. The identities of the other factors/events required to drive PanIN formation remain elusive. Here, optic-clear 3D histology is used to analyze entire pancreases of 2-week-old Pdx1-Cre; LSL-KrasG12D/+ (KC) mice to detect the earliest emergence of PanIN and observed that the occurrence is independent of physical location. Instead, it is found that the earliest PanINs overexpress Muc4 and associate with αSMA+ fibroblasts in both transgenic mice and human specimens. Mechanistically, KrasG12D/+ pancreatic cells upregulate Muc4 through genetic alterations to increase proliferation and fibroblast recruitments via Activin A secretion and consequently enhance cell transformation for PanIN formation. Inhibition of Activin A signaling using Follistatin (FST) diminishes early PanIN-associated fibroblast recruitment, effectively curtailing PanIN initiation and growth in KC mice. These findings emphasize the vital role of interactions between oncogenic KrasG12D/+ -driven genetic alterations and induced microenvironmental changes in PanIN initiation, suggesting potential avenues for early PDAC diagnostic and management approaches.
Collapse
Affiliation(s)
- Chun‐Mei Hu
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Chien‐Chang Huang
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
- Biomedical Translation Research CenterAcademia SinicaTaipei11529Taiwan
| | - Min‐Fen Hsu
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Hung‐Jen Chien
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Pei‐Jung Wu
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Yi‐Ing Chen
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
| | - Yung‐Ming Jeng
- Department of PathologyNational Taiwan University HospitalTaipei10041Taiwan
- Graduate Institute of Pathology, College of MedicineNational Taiwan UniversityTaipei10041Taiwan
| | - Shiue‐Cheng Tang
- Department of Medical ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Mei‐Hsin Chung
- Department of PathologyNational Taiwan University Hospital−Hsinchu BranchHsinchu30331Taiwan
| | - Chia‐Ning Shen
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
- Biomedical Translation Research CenterAcademia SinicaTaipei11529Taiwan
| | - Ming‐Chu Chang
- Department of Internal MedicineNational Taiwan University HospitalTaipei10041Taiwan
| | - Yu‐Ting Chang
- Department of Internal MedicineNational Taiwan University HospitalTaipei10041Taiwan
| | - Yu‐Wen Tien
- Department of SurgeryNational Taiwan University HospitalTaipei10041Taiwan
| | - Wen‐Hwa Lee
- Genomics Research CenterAcademia SinicaTaipei11529Taiwan
- Drug Development CenterChina Medical UniversityTaichung40402Taiwan
- Department of Biological ChemistryUniversity of CaliforniaIrvineCA92697USA
| |
Collapse
|
5
|
Pöysti S, Silojärvi S, Brodnicki TC, Catterall T, Liu X, Mackin L, Luster AD, Kay TWH, Christen U, Thomas HE, Hänninen A. Gut dysbiosis promotes islet-autoimmunity by increasing T-cell attraction in islets via CXCL10 chemokine. J Autoimmun 2023; 140:103090. [PMID: 37572540 DOI: 10.1016/j.jaut.2023.103090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 08/14/2023]
Abstract
CXCL10 is an IFNγ-inducible chemokine implicated in the pathogenesis of type 1 diabetes. T-cells attracted to pancreatic islets produce IFNγ, but it is unclear what attracts the first IFNγ -producing T-cells in islets. Gut dysbiosis following administration of pathobionts induced CXCL10 expression in pancreatic islets of healthy non-diabetes-prone (C57BL/6) mice and depended on TLR4-signaling, and in non-obese diabetic (NOD) mice, gut dysbiosis induced also CXCR3 chemokine receptor in IGRP-reactive islet-specific T-cells in pancreatic lymph node. In amounts typical to low-grade endotoxemia, bacterial lipopolysaccharide induced CXCL10 production in isolated islets of wild type and RAG1 or IFNG-receptor-deficient but not type-I-IFN-receptor-deficient NOD mice, dissociating lipopolysaccharide-induced CXCL10 production from T-cells and IFNγ. Although mostly myeloid-cell dependent, also β-cells showed activation of innate immune signaling pathways and Cxcl10 expression in response to lipopolysaccharide indicating their independent sensitivity to dysbiosis. Thus, CXCL10 induction in response to low levels of lipopolysaccharide may allow islet-specific T-cells imprinted in pancreatic lymph node to enter in healthy islets independently of IFN-g, and thus link gut dysbiosis to early islet-autoimmunity via dysbiosis-associated low-grade endotoxemia.
Collapse
MESH Headings
- Animals
- Mice
- Autoimmunity
- Chemokine CXCL10/metabolism
- Chemokine CXCL10/immunology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/etiology
- Disease Models, Animal
- Dysbiosis/immunology
- Gastrointestinal Microbiome/immunology
- Interferon-gamma/metabolism
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Lipopolysaccharides/immunology
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Receptors, CXCR3/metabolism
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Toll-Like Receptor 4/metabolism
Collapse
Affiliation(s)
- Sakari Pöysti
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Satu Silojärvi
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Tara Catterall
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Xin Liu
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Leanne Mackin
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas W H Kay
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Urs Christen
- Klinikum der Goethe Universität Frankfurt, Frankfurt Am Main, Germany
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Arno Hänninen
- Institute of Biomedicine, University of Turku, Turku, Finland; Turku University Hospital Laboratory Division, Turku, Finland.
| |
Collapse
|
6
|
Buckels EJ, Hsu HL, Buchanan CM, Matthews BG, Lee KL. Genetic ablation of the preptin-coding portion of Igf2 impairs pancreatic function in female mice. Am J Physiol Endocrinol Metab 2022; 323:E467-E479. [PMID: 36459047 DOI: 10.1152/ajpendo.00401.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preptin is a 34-amino acid peptide derived from the E-peptide of pro-insulin-like growth factor 2 and is co-secreted with insulin from β-cells. Little is understood about the effects of endogenous preptin on whole body glucose metabolism. We developed a novel mouse model in which the preptin portion of Igf2 was genetically ablated in all tissues, hereafter referred to as preptin knockout (KO), and tested the hypothesis that the removal of preptin will lead to a decreased insulin response to a metabolic challenge. Preptin KO and wild-type (WT) mice underwent weekly fasting blood glucose measurements, intraperitoneal insulin tolerance tests (ITT) at 9, 29, and 44 wk of age, and an oral glucose tolerance test (GTT) at 45 wk of age. Preptin KO mice of both sexes had similar Igf2 exon 2-3 mRNA expression in the liver and kidney compared with WT mice, but Igf2 exon 3-4 (preptin) expression was not detectable. Western blot analysis of neonatal serum indicated that processing of pro-IGF2 translated from the KO allele may be altered. Preptin KO mice had similar body weight, body composition, β-cell area, and fasted glucose concentrations compared with WT mice in both sexes up to 47 wk of age. Female KO mice had a diminished ability to mount an insulin response following glucose stimulation in vivo. This effect was absent in male KO mice. Although preptin is not essential for glucose homeostasis, when combined with previous in vitro and ex vivo findings, these data show that preptin positively impacts β-cell function.NEW & NOTEWORTHY This is the first study to describe a model in which the preptin-coding portion of the Igf2 gene has been genetically ablated in mice. The mice do not show reduced size at birth associated with Igf2 knockout suggesting that IGF2 functionality is maintained, yet we demonstrate a change in the processing of mature Igf2. Female knockout mice have diminished glucose-stimulated insulin secretion, whereas the insulin response in males is not different to wild type.
Collapse
Affiliation(s)
- E J Buckels
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, New Zealand
| | - H-L Hsu
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
| | - C M Buchanan
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, New Zealand
| | - B G Matthews
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, New Zealand
| | - K L Lee
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, New Zealand
| |
Collapse
|
7
|
McDonald TS, Kumar V, Fung JN, Woodruff TM, Lee JD. Glucose clearance and uptake is increased in the SOD1 G93A mouse model of amyotrophic lateral sclerosis through an insulin-independent mechanism. FASEB J 2021; 35:e21707. [PMID: 34118098 DOI: 10.1096/fj.202002450r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022]
Abstract
Metabolic disturbances are associated with the progression of the neurodegenerative disorder, amyotrophic lateral sclerosis (ALS). However, the molecular events that drive energy imbalances in ALS are not completely understood. In this study, we aimed to elucidate deficits in energy homeostasis in the SOD1G93A mouse model of ALS. SOD1G93A mice and their wild-type littermates underwent indirect calorimetry and intraperitoneal glucose/insulin tolerance tests at both the onset and mid-symptomatic stages of the disease. Glucose uptake and the plasma glucoregulatory hormone profiles were analyzed. Pancreatic islet cell mass and function were assessed by measuring hormone concentrations and secretion in isolated islets, and pancreatic α- and β-cell immunoreactive areas. Finally, we profiled liver glycogen metabolism by measuring glucagon concentrations and liver metabolic gene expressions. We identified that mid-symptomatic SOD1G93A mice have increased oxygen consumption and faster exogenous glucose uptake, despite presenting with normal insulin tolerance. The capacity for pancreatic islets to secrete insulin appears intact, however, islet cell insulin concentrations and β-cell mass were reduced. Fasting glucose homeostasis was also disturbed, along with increased liver glycogen stores, despite elevated circulating glucagon, suggesting that glucagon signaling is impaired. Metabolic gene expression profiling of livers indicated that glucose cannot be utilized efficiently in SOD1G93A mice. Overall, we demonstrate that glucose homeostasis and uptake are altered in SOD1G93A mice, which is linked to an increase in insulin-independent glucose uptake, and a loss of β-cells, insulin production, and glucagon sensitivity. This suggests that the hormonal regulation of glucose concentrations may contribute to the progression of disease in this ALS mouse model.
Collapse
Affiliation(s)
- Tanya S McDonald
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Vinod Kumar
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Jenny N Fung
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| |
Collapse
|
8
|
A role for PAK1 mediated phosphorylation of β-catenin Ser552 in the regulation of insulin secretion. Biochem J 2021; 478:1605-1615. [PMID: 33605402 DOI: 10.1042/bcj20200862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/27/2022]
Abstract
The presence of adherens junctions and the associated protein β-catenin are requirements for the development of glucose-stimulated insulin secretion (GSIS) in β-cells. Evidence indicates that modulation of β-catenin function in response to changes in glucose levels can modulate the levels of insulin secretion from β-cells but the role of β-catenin phosphorylation in this process has not been established. We find that a Ser552Ala version of β-catenin attenuates glucose-stimulated insulin secretion indicating a functional role for Ser552 phosphorylation of β-catenin in insulin secretion. This is associated with alterations F/G actin ratio but not the transcriptional activity of β-catenin. Both glucose and GLP-1 stimulated phosphorylation of the serine 552 residue on β-catenin. We investigated the possibility that an EPAC-PAK1 pathway might be involved in this phosphorylation event. We find that reduction in PAK1 levels using siRNA attenuates both glucose and GLP-1 stimulated phosphorylation of β-catenin Ser552 and the effects of these on insulin secretion in β-cell models. Furthermore, both the EPAC inhibitor ESI-09 and the PAK1 inhibitor IPA3 do the same in both β-cell models and mouse islets. Together this identifies phosphorylation of β-catenin at Ser552 as part of a cell signalling mechanism linking nutrient and hormonal regulation of β-catenin to modulation of insulin secretory capacity of β-cells and indicates this phosphorylation event is regulated downstream of EPAC and PAK1 in β-cells.
Collapse
|
9
|
Akazawa S, Mackin L, Jhala G, Fynch S, Catterall T, Selck C, Graham KL, Krishnamurthy B, Pappas EG, Kwong CTJ, Sutherland APR, Kay TWH, Brodnicki TC, Thomas HE. Deficiency of the innate immune adaptor STING promotes autoreactive T cell expansion in NOD mice. Diabetologia 2021; 64:878-889. [PMID: 33483762 DOI: 10.1007/s00125-020-05378-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/17/2020] [Indexed: 01/07/2023]
Abstract
AIMS/HYPOTHESIS Stimulator of IFN genes (STING) is a central hub for cytosolic nucleic acid sensing and its activation results in upregulation of type I IFN production in innate immune cells. A type I IFN gene signature seen before the onset of type 1 diabetes has been suggested as a driver of disease initiation both in humans and in the NOD mouse model. A possible source of type I IFN is through activation of the STING pathway. Recent studies suggest that STING also has antiproliferative and proapoptotic functions in T cells that are independent of IFN. To investigate whether STING is involved in autoimmune diabetes, we examined the impact of genetic deletion of STING in NOD mice. METHODS CRISPR/Cas9 gene editing was used to generate STING-deficient NOD mice. Quantitative real-time PCR was used to assess the level of type I IFN-regulated genes in islets from wild-type and STING-deficient NOD mice. The number of islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)206-214-specific CD8+ T cells was determined by magnetic bead-based MHC tetramer enrichment and flow cytometry. The incidence of spontaneous diabetes and diabetes after adoptive transfer of T cells was determined. RESULTS STING deficiency partially attenuated the type I IFN gene signature in islets but did not suppress insulitis. STING-deficient NOD mice accumulated an increased number of IGRP206-214-specific CD8+ T cells (2878 ± 642 cells in NOD.STING-/- mice and 728.8 ± 196 cells in wild-type NOD mice) in peripheral lymphoid tissue, associated with a higher incidence of spontaneous diabetes (95.5% in NOD.STING-/- mice and 86.2% in wild-type NOD mice). Splenocytes from STING-deficient mice rapidly induced diabetes after adoptive transfer into irradiated NOD recipients (median survival 75 days for NOD recipients of NOD.STING-/- mouse splenocytes and 121 days for NOD recipients of NOD mouse splenocytes). CONCLUSIONS/INTERPRETATION Data suggest that sensing of endogenous nucleic acids through the STING pathway may be partially responsible for the type I IFN gene signature but not autoimmunity in NOD mice. Our results show that the STING pathway may play an unexpected intrinsic role in suppressing the number of diabetogenic T cells.
Collapse
Affiliation(s)
- Satoru Akazawa
- St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Endocrinology and Metabolism, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | - Kate L Graham
- St Vincent's Institute, Fitzroy, VIC, Australia
- The University of Melbourne, Department of Medicine, St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Balasubramanian Krishnamurthy
- St Vincent's Institute, Fitzroy, VIC, Australia
- The University of Melbourne, Department of Medicine, St Vincent's Hospital, Fitzroy, VIC, Australia
| | | | - Chun-Ting J Kwong
- St Vincent's Institute, Fitzroy, VIC, Australia
- The University of Melbourne, Department of Medicine, St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Andrew P R Sutherland
- St Vincent's Institute, Fitzroy, VIC, Australia
- The University of Melbourne, Department of Medicine, St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Thomas W H Kay
- St Vincent's Institute, Fitzroy, VIC, Australia
- The University of Melbourne, Department of Medicine, St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Thomas C Brodnicki
- St Vincent's Institute, Fitzroy, VIC, Australia
- The University of Melbourne, Department of Medicine, St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Helen E Thomas
- St Vincent's Institute, Fitzroy, VIC, Australia.
- The University of Melbourne, Department of Medicine, St Vincent's Hospital, Fitzroy, VIC, Australia.
| |
Collapse
|
10
|
Forget A, Rojas D, Waibel M, Pencko D, Gunenthiran S, Ninan N, Loudovaris T, Drogemuller C, Coates PT, Voelcker NH, Blencowe A. Facile preparation of tissue engineering scaffolds with pore size gradients using the muesli effect and their application to cell spheroid encapsulation. J Biomed Mater Res B Appl Biomater 2020; 108:2495-2504. [DOI: 10.1002/jbm.b.34581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/14/2019] [Accepted: 01/25/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Aurelien Forget
- School of Pharmacy and Medical ScienceUniversity of South Australia Adelaide South Australia Australia
- Institute for Macromolecular ChemistryUniversity of Freiburg Freiburg Germany
| | - Darling Rojas
- The Centre for Clinical and Experimental Transplantation (CCET)The Royal Adelaide Hospital Adelaide South Australia Australia
| | - Michaela Waibel
- Immunology and Diabetes UnitSt Vincent's Institute of Medical Research Fitzroy Victoria Australia
| | - Daniella Pencko
- The Centre for Clinical and Experimental Transplantation (CCET)The Royal Adelaide Hospital Adelaide South Australia Australia
- Faculty of Health and Medical Sciences, School of MedicineThe University of Adelaide Adelaide South Australia Australia
| | - Satyathiran Gunenthiran
- School of Pharmacy and Medical ScienceUniversity of South Australia Adelaide South Australia Australia
- Future Industries InstituteUniversity of South Australia Mawson Lakes South Australia Australia
| | - Neethu Ninan
- School of Pharmacy and Medical ScienceUniversity of South Australia Adelaide South Australia Australia
- Future Industries InstituteUniversity of South Australia Mawson Lakes South Australia Australia
| | - Thomas Loudovaris
- Immunology and Diabetes UnitSt Vincent's Institute of Medical Research Fitzroy Victoria Australia
| | - Chris Drogemuller
- The Centre for Clinical and Experimental Transplantation (CCET)The Royal Adelaide Hospital Adelaide South Australia Australia
- Faculty of Health and Medical Sciences, School of MedicineThe University of Adelaide Adelaide South Australia Australia
| | - Patrick T. Coates
- The Centre for Clinical and Experimental Transplantation (CCET)The Royal Adelaide Hospital Adelaide South Australia Australia
- Faculty of Health and Medical Sciences, School of MedicineThe University of Adelaide Adelaide South Australia Australia
| | - Nicolas H. Voelcker
- Future Industries InstituteUniversity of South Australia Mawson Lakes South Australia Australia
- CSIRO Manufacturing Clayton Victoria Australia
- Monash Institute of Pharmaceutical SciencesMonash University Parkville Victoria Australia
| | - Anton Blencowe
- School of Pharmacy and Medical ScienceUniversity of South Australia Adelaide South Australia Australia
- Future Industries InstituteUniversity of South Australia Mawson Lakes South Australia Australia
| |
Collapse
|
11
|
Jofra T, Galvani G, Georgia F, Silvia G, Gagliani N, Battaglia M. Murine Pancreatic Islets Transplantation under the Kidney Capsule. Bio Protoc 2018; 8:e2743. [PMID: 34179271 DOI: 10.21769/bioprotoc.2743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 11/02/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the lack of insulin-producing pancreatic beta cells leading to systemic hyperglycemia. Pancreatic islet transplantation is a valid therapeutic approach to restore insulin loss and to promote adequate glycemic control. Pancreatic islet transplantation in mice is an optimal preclinical model to identify new therapeutic strategies aiming at preventing rejection and optimizing post-transplant immuno-suppressive/-tolerogenic therapies. Islet transplantation in preclinical animal models can be performed in different sites such the kidney capsule, spleen, bone marrow and pancreas. This protocol describes murine islet transplantation under the kidney capsule. This is a widely accepted procedure for research purposes. Stress caused in the animals is minimal and it leads to reliable and reproducible results.
Collapse
Affiliation(s)
- Tatiana Jofra
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Galvani
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fousteri Georgia
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gregori Silvia
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuela Battaglia
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
12
|
Forget A, Waibel M, Rojas-Canales DM, Chen S, Kawazoe N, Harding FJ, Loudovaris T, Coates PTH, Blencowe A, Chen G, Voelcker NH. IGF-2 coated porous collagen microwells for the culture of pancreatic islets. J Mater Chem B 2017; 5:220-225. [DOI: 10.1039/c6tb02748b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A new platform for the culture of pancreatic islets that improves the cell viability and quality. Paving the way for a highly efficient islet clinical transport.
Collapse
|