1
|
He T, Wang J, Hu D, Yang Y, Chae E, Lee C. Epidermal electronic-tattoo for plant immune response monitoring. Nat Commun 2025; 16:3244. [PMID: 40185801 PMCID: PMC11971386 DOI: 10.1038/s41467-025-58584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
Real-time monitoring of plant immune responses is crucial for understanding plant immunity and mitigating economic losses from pathogen and pest attacks. However, current methods relying on molecular-level assessment are destructive and time-consuming. Here, we report an ultrathin, substrate-free, and highly conductive electronic tattoo (e-tattoo) designed for plants, enabling immune response monitoring through non-invasive electrical impedance spectroscopy (EIS). The e-tattoo's biocompatibility, high conductivity, and sub-100 nm thickness allow it to conform to leaf tissue morphology and provide robust impedance data. We demonstrate continuous EIS analysis of live transgenic Arabidopsis thaliana plants for over 24 h, capturing the onset of NLR-mediated acute immune responses within three hours post-induction, prior to visible symptoms. RNA-seq and tissue ion leakage tests validate that EIS data accurately represent the physiological and molecular changes associated with immune activation. This non-invasive tissue-assessment technology has the potential to enhance our comprehension of immune activation mechanisms in plants and paves the way for real-time monitoring for plant health management.
Collapse
Affiliation(s)
- Tianyiyi He
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
- Research Center for Sustainable Urban Farming (SUrF), National University of Singapore, Singapore, 117558, Singapore
- Artificial Intelligence Research Institute, Shenzhen MSU-BIT University, Shenzhen, 518172, China
| | - Jinge Wang
- Research Center for Sustainable Urban Farming (SUrF), National University of Singapore, Singapore, 117558, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Donghui Hu
- Research Center for Sustainable Urban Farming (SUrF), National University of Singapore, Singapore, 117558, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Yanqin Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Eunyoung Chae
- Research Center for Sustainable Urban Farming (SUrF), National University of Singapore, Singapore, 117558, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore.
- Research Center for Sustainable Urban Farming (SUrF), National University of Singapore, Singapore, 117558, Singapore.
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, 119077, Singapore.
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou, 215123, China.
| |
Collapse
|
2
|
Tomar S, Subba A, Chatterjee Y, Singhal NK, Pareek A, Singla-Pareek SL. A cystathionine beta-synthase domain containing protein, OsCBSCBS4, interacts with OsSnRK1A and OsPKG and functions in abiotic stress tolerance in rice. PLANT, CELL & ENVIRONMENT 2025; 48:2630-2646. [PMID: 39073079 DOI: 10.1111/pce.15061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
The Cystathionine-β-Synthase (CBS) domain-containing proteins (CDCPs) constitute a functionally diverse protein superfamily, sharing an evolutionary conserved CBS domain either in pair or quad. Rice genome (Oryza sativa subsp. indica) encodes 42 CDCPs; their functions remain largely unexplored. This study examines OsCBSCBS4, a quadruple CBS domain containing protein towards its role in regulating the abiotic stress tolerance in rice. Gene expression analyses revealed upregulation of OsCBSCBS4 in response to diverse abiotic stresses. Further, the cytoplasm-localised OsCBSCBS4 showed interaction with two different kinases, a cytoplasmic localised cGMP-dependant protein kinase (OsPKG) and the nucleo-cytoplasmic catalytic subunit of sucrose-nonfermentation 1-related protein kinase 1 (OsSnRK1A). The interaction with the latter assisted in trafficking of OsCBSCBS4 to the nucleus as well. Overexpression of OsCBSCBS4 in rice resulted in enhanced tolerance to drought and salinity stress, via maintaining better physiological parameters and antioxidant activity. Additionally, OsCBSCBS4-overexpressing rice plants exhibited reduced yield penalty under stress conditions. The in silico docking and in vitro binding analyses of OsCBSCBS4 with ATP suggest its involvement in cellular energy balance. Overall, this study provides novel insight into the unexplored functions of OsCBSCBS4 and demonstrates it as a new promising target for augmenting crop resilience.
Collapse
Affiliation(s)
- Surabhi Tomar
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashish Subba
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Yajnaseni Chatterjee
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, India
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
3
|
Hlahla JM, Mafa MS, van der Merwe R, Moloi MJ. Tolerance to combined drought and heat stress in edamame is associated with enhanced antioxidative responses and cell wall modifications. PHYSIOLOGIA PLANTARUM 2025; 177:e70187. [PMID: 40148249 PMCID: PMC11949859 DOI: 10.1111/ppl.70187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
Drought and heat stress often co-occur in nature, and their combined effects are a major driver of crop losses, causing more severe damage to plant metabolism than when they occur individually. This study investigates the responses of three edamame cultivars (AGS429, UVE14, and UVE17) to combined drought and heat (DH) stress, with emphasis on the reactive oxygen species (ROS), antioxidative mechanisms and cell wall modifications. Malondialdehyde (MDA), electrolyte leakage (EL), and hydrogen peroxide (H2O2) were used to measure oxidative stress and membrane damage. The non-enzymatic (ascorbic acid, AsA) and enzymatic (superoxide dismutase, ascorbate peroxidase (APX), guaiacol peroxidase, and glutathione reductase) antioxidant responses were determined spectrophotometrically. Cell wall biomass composition (cellulose, hemicellulose, lignin, and phenols) was determined using Fourier transform Infrared Spectroscopy and spectrophotometry. Ascorbate peroxidase activity and AsA content in DH-stressed AGS429 at flowering strongly correlated to reduced lipid peroxidation (r2 = -0.97 and - 0.98). Cultivar UVE14 accumulated high AsA under DH stress at both growth stages, which, in turn, was positively associated with total phenolic content (r2 = 0.97), APX activity, and holocellulose, suggesting enhanced ROS-dependent oxidative polymerisation. On the contrary, poor ROS quenching in UVE17 led to MDA accumulation (p ≤ 0.05), leading to high EL and poor cellulose synthesis at pod-filling (r2 = -0.88). Therefore, at the physio-biochemical level, AGS429 and UVE14 showed DH stress tolerance through enhanced antioxidative responses and cell wall modifications, while UVE17 was susceptible. Identifying the key biochemical traits linked to DH stress tolerance in edamame offers novel insights for breeding more resilient edamame cultivars.
Collapse
Affiliation(s)
- Jeremiah M. Hlahla
- Department of Plant Sciences‐Botany DivisionUniversity of the Free StateBloemfonteinSouth Africa
| | - Mpho S. Mafa
- Carbohydrates and Enzymology Laboratory (CHEM‐LAB), Department of Plant Sciences‐Botany DivisionUniversity of the Free StateBloemfonteinSouth Africa
| | - Rouxléne van der Merwe
- Department of Plant Sciences‐Plant Breeding DivisionUniversity of the Free StateBloemfonteinSouth Africa
| | - Makoena J. Moloi
- Department of Plant Sciences‐Botany DivisionUniversity of the Free StateBloemfonteinSouth Africa
| |
Collapse
|
4
|
Nedo AO, Liang H, Sriram J, Razzak MA, Lee JY, Kambhamettu C, Dinesh-Kumar SP, Caplan JL. CHUP1 restricts chloroplast movement and effector-triggered immunity in epidermal cells. THE NEW PHYTOLOGIST 2024; 244:1864-1881. [PMID: 39415611 PMCID: PMC11583462 DOI: 10.1111/nph.20147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024]
Abstract
Chloroplast Unusual Positioning 1 (CHUP1) plays an important role in the chloroplast avoidance and accumulation responses in mesophyll cells. In epidermal cells, prior research showed silencing CHUP1-induced chloroplast stromules and amplified effector-triggered immunity (ETI); however, the underlying mechanisms remain largely unknown. CHUP1 has a dual function in anchoring chloroplasts and recruiting chloroplast-associated actin (cp-actin) filaments for blue light-induced movement. To determine which function is critical for ETI, we developed an approach to quantify chloroplast anchoring and movement in epidermal cells. Our data show that silencing NbCHUP1 in Nicotiana benthamiana plants increased epidermal chloroplast de-anchoring and basal movement but did not fully disrupt blue light-induced chloroplast movement. Silencing NbCHUP1 auto-activated epidermal chloroplast defense (ECD) responses including stromule formation, perinuclear chloroplast clustering, the epidermal chloroplast response (ECR), and the chloroplast reactive oxygen species (ROS), hydrogen peroxide (H2O2). These findings show chloroplast anchoring restricts a multifaceted ECD response. Our results also show that the accumulated chloroplastic H2O2 in NbCHUP1-silenced plants was not required for the increased basal epidermal chloroplast movement but was essential for increased stromules and enhanced ETI. This finding indicates that chloroplast de-anchoring and H2O2 play separate but essential roles during ETI.
Collapse
Affiliation(s)
- Alexander O Nedo
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19713, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Huining Liang
- Department of Computer & Information Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Jaya Sriram
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19713, USA
| | - Md Abdur Razzak
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19713, USA
| | - Jung-Youn Lee
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19713, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Chandra Kambhamettu
- Department of Computer & Information Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Jeffrey L Caplan
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19713, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
5
|
Wang S, Na X, Pu M, Song Y, Li J, Li K, Cheng Z, He X, Zhang C, Liang C, Wang X, Bi Y. The monokaryotic filamentous fungus Ustilago sp. HFJ311 promotes plant growth and reduces Cd accumulation by enhancing Fe transportation and auxin biosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135423. [PMID: 39106721 DOI: 10.1016/j.jhazmat.2024.135423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
Infection with smut fungus like Ustilago maydis decreases crop yield via inducing gall formation. However, the in vitro impact of Ustilago spp. on plant growth and stress tolerance remains elusive. This study investigated the plant growth promotion and cadmium stress mitigation mechanisms of a filamentous fungus discovered on a cultural medium containing 25 μM CdCl2. ITS sequence alignment revealed 98.7 % similarity with Ustilago bromivora, naming the strain Ustilago sp. HFJ311 (HFJ311). Co-cultivation with HFJ311 significantly enhanced the growth of various plants, including Arabidopsis, tobacco, cabbage, carrot, rice, and maize, and improved Arabidopsis tolerance to abiotic stresses like salt and metal ions. HFJ311 increased chlorophyll and Fe contents in Arabidopsis shoots and enhanced root-to-shoot Fe translocation while decreasing root Fe concentration by approximately 70 %. Concurrently, HFJ311 reduced Cd accumulation in Arabidopsis by about 60 %, indicating its potential for bioremediation in Cd-contaminated soils. Additionally, HFJ311 stimulated IAA concentration by upregulating auxin biosynthesis genes. Overexpression of the Fe transporter IRT1 negated HFJ311's growth-promotion effects under Cd stress. These results suggest that HFJ311 stimulates plant growth and inhibits Cd uptake by enhancing Fe translocation and auxin biosynthesis while disrupting Fe absorption. Our findings offer a promising bioremediation strategy for sustainable agriculture and food security.
Collapse
Affiliation(s)
- Shengwang Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xiaofan Na
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Meiyun Pu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yanfang Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Junjie Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Kaile Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Zhenyu Cheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xiaoqi He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Chuanji Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Cuifang Liang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xiaomin Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yurong Bi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
6
|
Praat M, Jiang Z, Earle J, Smeekens S, van Zanten M. Using a thermal gradient table to study plant temperature signalling and response across a temperature spectrum. PLANT METHODS 2024; 20:114. [PMID: 39075474 PMCID: PMC11285400 DOI: 10.1186/s13007-024-01230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
Plants must cope with ever-changing temperature conditions in their environment. In many plant species, suboptimal high and low temperatures can induce adaptive mechanisms that allow optimal performance. Thermomorphogenesis is the acclimation to high ambient temperature, whereas cold acclimation refers to the acquisition of cold tolerance following a period of low temperatures. The molecular mechanisms underlying thermomorphogenesis and cold acclimation are increasingly well understood but neither signalling components that have an apparent role in acclimation to both cold and warmth, nor factors determining dose-responsiveness, are currently well defined. This can be explained in part by practical limitations, as applying temperature gradients requires the use of multiple growth conditions simultaneously, usually unavailable in research laboratories. Here we demonstrate that commercially available thermal gradient tables can be used to grow and assess plants over a defined and adjustable steep temperature gradient within one experiment. We describe technical and thermodynamic aspects and provide considerations for plant growth and treatment. We show that plants display the expected morphological, physiological, developmental and molecular responses that are typically associated with high temperature and cold acclimation. This includes temperature dose-response effects on seed germination, hypocotyl elongation, leaf development, hyponasty, rosette growth, temperature marker gene expression, stomatal conductance, chlorophyll content, ion leakage and hydrogen peroxide levels. In conclusion, thermal gradient table systems enable standardized and predictable environments to study plant responses to varying temperature regimes and can be swiftly implemented in research on temperature signalling and response.
Collapse
Affiliation(s)
- Myrthe Praat
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Zhang Jiang
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Joe Earle
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
- Present address: Evolutionary Plant Ecophysiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands
| | - Sjef Smeekens
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Martijn van Zanten
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands.
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands.
- Netherlands Plant Eco-Phenotyping Centre, Institute of Environmental Biology, Utrecht University, Padualaan 6, Utrecht, 3584CH, The Netherlands.
| |
Collapse
|
7
|
Im G, Choi D. Molecular and physiological characterization of AIP1, encoding the acetolactate synthase regulatory subunit in rice. Biochem Biophys Res Commun 2024; 718:150087. [PMID: 38735139 DOI: 10.1016/j.bbrc.2024.150087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Flooding deprives plants of oxygen and thereby causes severe stress by interfering with energy production, leading to growth retardation. Enzymes and metabolites may help protect plants from waterlogging and hypoxic environmental conditions. Acetolactate synthase (ALS) is a key enzyme in the biosynthesis of branched-chain amino acids (BCAAs), providing the building blocks for proteins and various secondary metabolites. Additionally, under energy-poor conditions, free BCAAs can be used as an alternative energy source by mitochondria through a catabolic enzyme chain reaction. In this study, we characterized ALS-INTERACTING PROTEIN 1 (OsAIP1), which encodes the regulatory subunit of ALS in rice (Oryza sativa). This gene was expressed in all parts of the rice plant, and its expression level was significantly higher in submerged and low-oxygen environments. Rice transformants overexpressing OsAIP1 showed a higher survival rate under hypoxic stress than did non-transgenic control plants under the same conditions. The OsAIP1-overexpressing plants accumulated increased levels of BCAAs, demonstrating that OsAIP1 is an important factor in the hypoxia resistance mechanism. These results suggest that ALS proteins are part of a defense mechanism that improves the tolerance of plants to low-oxygen environments.
Collapse
Affiliation(s)
- Geunmuk Im
- Department of Biological Science, Kunsan National University, Gunsan-si, 54150, Republic of Korea
| | - Dongsu Choi
- Department of Biological Science, Kunsan National University, Gunsan-si, 54150, Republic of Korea.
| |
Collapse
|
8
|
Chia KS, Kourelis J, Teulet A, Vickers M, Sakai T, Walker JF, Schornack S, Kamoun S, Carella P. The N-terminal domains of NLR immune receptors exhibit structural and functional similarities across divergent plant lineages. THE PLANT CELL 2024; 36:2491-2511. [PMID: 38598645 PMCID: PMC11218826 DOI: 10.1093/plcell/koae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Nucleotide-binding domain and leucine-rich repeat (NLR) proteins are a prominent class of intracellular immune receptors in plants. However, our understanding of plant NLR structure and function is limited to the evolutionarily young flowering plant clade. Here, we describe an extended spectrum of NLR diversity across divergent plant lineages and demonstrate the structural and functional similarities of N-terminal domains that trigger immune responses. We show that the broadly distributed coiled-coil (CC) and toll/interleukin-1 receptor (TIR) domain families of nonflowering plants retain immune-related functions through translineage activation of cell death in the angiosperm Nicotiana benthamiana. We further examined a CC subfamily specific to nonflowering lineages and uncovered an essential N-terminal MAEPL motif that is functionally comparable with motifs in resistosome-forming CC-NLRs. Consistent with a conserved role in immunity, the ectopic activation of CCMAEPL in the nonflowering liverwort Marchantia polymorpha led to profound growth inhibition, defense gene activation, and signatures of cell death. Moreover, comparative transcriptomic analyses of CCMAEPL activity delineated a common CC-mediated immune program shared across evolutionarily divergent nonflowering and flowering plants. Collectively, our findings highlight the ancestral nature of NLR-mediated immunity during plant evolution that dates its origin to at least ∼500 million years ago.
Collapse
Affiliation(s)
- Khong-Sam Chia
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| | - Albin Teulet
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Martin Vickers
- Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Toshiyuki Sakai
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| | - Joseph F Walker
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| | - Philip Carella
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
9
|
Collins ASP, Kurt H, Duggan C, Cotur Y, Coatsworth P, Naik A, Kaisti M, Bozkurt T, Güder F. Parallel, Continuous Monitoring and Quantification of Programmed Cell Death in Plant Tissue. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400225. [PMID: 38531063 PMCID: PMC11187890 DOI: 10.1002/advs.202400225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Accurate quantification of hypersensitive response (HR) programmed cell death is imperative for understanding plant defense mechanisms and developing disease-resistant crop varieties. Here, a phenotyping platform for rapid, continuous-time, and quantitative assessment of HR is demonstrated: Parallel Automated Spectroscopy Tool for Electrolyte Leakage (PASTEL). Compared to traditional HR assays, PASTEL significantly improves temporal resolution and has high sensitivity, facilitating detection of microscopic levels of cell death. Validation is performed by transiently expressing the effector protein AVRblb2 in transgenic Nicotiana benthamiana (expressing the corresponding resistance protein Rpi-blb2) to reliably induce HR. Detection of cell death is achieved at microscopic intensities, where leaf tissue appears healthy to the naked eye one week after infiltration. PASTEL produces large amounts of frequency domain impedance data captured continuously. This data is used to develop supervised machine-learning (ML) models for classification of HR. Input data (inclusive of the entire tested concentration range) is classified as HR-positive or negative with 84.1% mean accuracy (F1 score = 0.75) at 1 h and with 87.8% mean accuracy (F1 score = 0.81) at 22 h. With PASTEL and the ML models produced in this work, it is possible to phenotype disease resistance in plants in hours instead of days to weeks.
Collapse
Affiliation(s)
| | - Hasan Kurt
- Department of BioengineeringRoyal School of MinesImperial College LondonLondonSW7 2AZUK
| | - Cian Duggan
- Department of Life SciencesRoyal School of MinesImperial College LondonLondonSW7 2AZUK
| | - Yasin Cotur
- Department of BioengineeringRoyal School of MinesImperial College LondonLondonSW7 2AZUK
| | - Philip Coatsworth
- Department of BioengineeringRoyal School of MinesImperial College LondonLondonSW7 2AZUK
| | - Atharv Naik
- Department of BioengineeringRoyal School of MinesImperial College LondonLondonSW7 2AZUK
| | - Matti Kaisti
- Department of BioengineeringRoyal School of MinesImperial College LondonLondonSW7 2AZUK
- Department of ComputingUniversity of TurkuVesilinnantie 5Turku20500Finland
| | - Tolga Bozkurt
- Department of Life SciencesRoyal School of MinesImperial College LondonLondonSW7 2AZUK
| | - Firat Güder
- Department of BioengineeringRoyal School of MinesImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
10
|
Pandey SS, Li J, Oswalt C, Wang N. Dynamics of ' Candidatus Liberibacter asiaticus' Growth, Concentrations of Reactive Oxygen Species, and Ion Leakage in Huanglongbing-Positive Sweet Orange. PHYTOPATHOLOGY 2024; 114:961-970. [PMID: 38478730 DOI: 10.1094/phyto-08-23-0294-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Citrus Huanglongbing (HLB) caused by 'Candidatus Liberibacter asiaticus' (CLas) is the most devastating citrus disease worldwide. CLas induces systemic and chronic reactive oxygen species (ROS) production, which has been suggested to be a primary cause of cell death in phloem tissues and subsequent HLB symptoms. Mitigating oxidative stress caused by CLas using horticultural approaches has been suggested as a useful strategy to reduce HLB damages. To provide information regarding the application timing to mitigate ROS, we investigated monthly dynamics of CLas concentration, CLas-triggered ROS, and phloem cell death in the bark tissues of asymptomatic and symptomatic branches of HLB-positive Hamlin and Valencia sweet orange trees in the field. Healthy branches in the screenhouse were used as controls. CLas concentration exhibited significant variations over the course of the year, with two distinct peaks observed in Florida citrus groves-late spring/early summer and late fall. Within both Hamlin and Valencia asymptomatic tissues, CLas concentration demonstrated a negative correlation with the deviation between the monthly average mean temperature and the optimal temperature for CLas colonization in plants (25.7°C). However, such a correlation was not evident in symptomatic tissues of Hamlin or Valencia sweet oranges. ROS levels were consistently higher in symptomatic or asymptomatic branches than in healthy branches in most months. ROS concentrations were higher in symptomatic branches than in asymptomatic branches in most months. CLas triggered significant increases in ion leakage in most months for asymptomatic and symptomatic branches compared with healthy controls. In asymptomatic branches of Hamlin, a positive correlation was observed between CLas concentration and ROS concentrations, CLas concentration and ion leakage levels, as well as ROS and ion leakage. Intriguingly, such a relationship was not observed in Valencia asymptomatic branches or in the symptomatic branches of Hamlin and Valencia. This study sheds light on the pathogenicity of CLas by providing useful information on the temporal dynamics of ROS production, phloem cell death, and CLas growth, as well as provides useful information in determining the timing for application of antioxidants and antimicrobial agents to control HLB.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
- Current affiliation: Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, India
| | - Jinyun Li
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Chris Oswalt
- Institute of Food and Agricultural Sciences, University of Florida, Bartow, FL 33830, U.S.A
| | - Nian Wang
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
11
|
Cui Y, Wang K, Zhang C. Carbon Nanomaterials for Plant Priming through Mechanostimulation: Emphasizing the Role of Shape. ACS NANO 2024; 18:10829-10839. [PMID: 38607639 DOI: 10.1021/acsnano.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The use of nanomaterials to improve plant immunity for sustainable agriculture is gaining increasing attention; yet, the mechanisms involved remain unclear. In contrast to metal-based counterparts, carbon-based nanomaterials do not release components. Determining how these carbon-based nanomaterials strengthen the resistance of plants to diseases is essential as well as whether shape influences this process. Our study compared single-walled carbon nanotubes (SWNTs) and graphene oxide (GO) infiltration against the phytopathogen Pseudomonas syringae pv tomato DC3000. Compared with plants treated with GO, plants primed with SWNTs showed a 29% improvement in the pathogen resistance. Upon nanopriming, the plant displayed wound signaling with transcriptional regulation similar to that observed under brushing-induced mechanostimulation. Compared with GO, SWNTs penetrated more greatly into the leaf and improved transport, resulting in a heightened wound response; this effect resulted from the tubular structure of SWNTs, which differed from the planar form of GO. The shape effect was further demonstrated by wrapping SWNTs with bovine serum albumin, which masked the sharp edges of SWNTs and resulted in a significant decrease in the overall plant wound response. Finally, we clarified how the local wound response led to systemic immunity through increased calcium ion signaling in distant plant areas, which increased the antimicrobial efficacy. In summary, our systematic investigation established connections among carbon nanomaterial priming, mechanostimulation, and wound response, revealing recognition patterns in plant immunity. These findings promise to advance nanotechnology in sustainable agriculture by strengthening plant defenses, enhancing resilience, and reducing reliance on traditional chemicals.
Collapse
Affiliation(s)
- Yueting Cui
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Kean Wang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Chengdong Zhang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| |
Collapse
|
12
|
Coatsworth P, Cotur Y, Naik A, Asfour T, Collins ASP, Olenik S, Zhou Z, Gonzalez-Macia L, Chao DY, Bozkurt T, Güder F. Time-resolved chemical monitoring of whole plant roots with printed electrochemical sensors and machine learning. SCIENCE ADVANCES 2024; 10:eadj6315. [PMID: 38295162 PMCID: PMC10830104 DOI: 10.1126/sciadv.adj6315] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Traditional single-point measurements fail to capture dynamic chemical responses of plants, which are complex, nonequilibrium biological systems. We report TETRIS (time-resolved electrochemical technology for plant root environment in situ chemical sensing), a real-time chemical phenotyping system for continuously monitoring chemical signals in the often-neglected plant root environment. TETRIS consisted of low-cost, highly scalable screen-printed electrochemical sensors for monitoring concentrations of salt, pH, and H2O2 in the root environment of whole plants, where multiplexing allowed for parallel sensing operation. TETRIS was used to measure ion uptake in tomato, kale, and rice and detected differences between nutrient and heavy metal ion uptake. Modulation of ion uptake with ion channel blocker LaCl3 was monitored by TETRIS and machine learning used to predict ion uptake. TETRIS has the potential to overcome the urgent "bottleneck" in high-throughput screening in producing high-yielding plant varieties with improved resistance against stress.
Collapse
Affiliation(s)
- Philip Coatsworth
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Yasin Cotur
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Atharv Naik
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Tarek Asfour
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Alex Silva-Pinto Collins
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Selin Olenik
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Zihao Zhou
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Laura Gonzalez-Macia
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Dai-Yin Chao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tolga Bozkurt
- Imperial College London, Department of Life Sciences, Royal School of Mines, SW7 2AZ London, UK
| | - Firat Güder
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| |
Collapse
|
13
|
Opoku VA, Adu MO, Asare PA, Asante J, Hygienus G, Andersen MN. Rapid and low-cost screening for single and combined effects of drought and heat stress on the morpho-physiological traits of African eggplant (Solanum aethiopicum) germplasm. PLoS One 2024; 19:e0295512. [PMID: 38289974 PMCID: PMC10826938 DOI: 10.1371/journal.pone.0295512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 11/24/2023] [Indexed: 02/01/2024] Open
Abstract
Drought and heat are two stresses that often occur together and may pose significant risks to crops in future climates. However, the combined effects of these two stressors have received less attention than single-stressor investigations. This study used a rapid and straightforward phenotyping method to quantify the variation in 128 African eggplant genotype responses to drought, heat, and the combined effects of heat and drought at the seedling stage. The study found that the morphophysiological traits varied significantly among the 128 eggplants, highlighting variation in response to abiotic stresses. Broad-sense heritability was high (> 0.60) for chlorophyll content, plant biomass and performance index, electrolyte leakage, and total leaf area. Positive and significant relationships existed between biomass and photosynthetic parameters, but a negative association existed between electrolyte leakage and morpho-physiological traits. The plants underwent more significant stress when drought and heat stress were imposed concurrently than under single stresses, with the impact of drought on the plants being more detrimental than heat. There were antagonistic effects on the morphophysiology of the eggplants when heat and drought stress were applied together. Resilient genotypes such as RV100503, RV100501, JAMBA, LOC3, RV100164, RV100169, LOC 3, RV100483, GH5155, RV100430, GH1087, GH1087*, RV100388, RV100387, RV100391 maintained high relative water content, low electrolyte leakage, high Fv/Fm ratio and performance index, and increased biomass production under abiotic stress conditions. The antagonistic interactions between heat and drought observed here may be retained or enhanced during several stress combinations typical of plants' environments and must be factored into efforts to develop climate change-resilient crops. This paper demonstrates improvised climate chambers for high throughput, reliable, rapid, and cost-effective screening for heat and drought and combined stress tolerance in plants.
Collapse
Affiliation(s)
- Vincent A. Opoku
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Michael O. Adu
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Paul A. Asare
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Justice Asante
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Godswill Hygienus
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Mathias N. Andersen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| |
Collapse
|
14
|
Karimian P, Trusov Y, Botella JR. Conserved Role of Heterotrimeric G Proteins in Plant Defense and Cell Death Progression. Genes (Basel) 2024; 15:115. [PMID: 38255003 PMCID: PMC10815853 DOI: 10.3390/genes15010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Programmed cell death (PCD) is a critical process in plant immunity, enabling the targeted elimination of infected cells to prevent the spread of pathogens. The tight regulation of PCD within plant cells is well-documented; however, specific mechanisms remain elusive or controversial. Heterotrimeric G proteins are multifunctional signaling elements consisting of three distinct subunits, Gα, Gβ, and Gγ. In Arabidopsis, the Gβγ dimer serves as a positive regulator of plant defense. Conversely, in species such as rice, maize, cotton, and tomato, mutants deficient in Gβ exhibit constitutively active defense responses, suggesting a contrasting negative role for Gβ in defense mechanisms within these plants. Using a transient overexpression approach in addition to knockout mutants, we observed that Gβγ enhanced cell death progression and elevated the accumulation of reactive oxygen species in a similar manner across Arabidopsis, tomato, and Nicotiana benthamiana, suggesting a conserved G protein role in PCD regulation among diverse plant species. The enhancement of PCD progression was cooperatively regulated by Gβγ and one Gα, XLG2. We hypothesize that G proteins participate in two distinct mechanisms regulating the initiation and progression of PCD in plants. We speculate that G proteins may act as guardees, the absence of which triggers PCD. However, in Arabidopsis, this G protein guarding mechanism appears to have been lost in the course of evolution.
Collapse
Affiliation(s)
| | | | - Jose Ramon Botella
- School of Agriculture and Food Sciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (P.K.); (Y.T.)
| |
Collapse
|
15
|
Trivellini A, Carmassi G, Scatena G, Vernieri P, Ferrante A. Molecular and physiological responses to salt stress in salinity-sensitive and tolerant Hibiscus rosa-sinensis cultivars. MOLECULAR HORTICULTURE 2023; 3:28. [PMID: 38115113 PMCID: PMC10731769 DOI: 10.1186/s43897-023-00075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Ornamental plants are used to decorate urban and peri-urban areas, and during their cultivation or utilisation, they can be exposed to abiotic stress. Salinity is an abiotic stress factor that limits plant growth and reduces the ornamental value of sensitive species. In this study, transcriptomic analysis was conducted to identify genes associated with tolerance or sensitivity to salinity in two hibiscus (Hibiscus rosa-sinensis L.) cultivars, 'Porto' and 'Sunny wind'. The physiological and biochemical parameters of plants exposed to 50, 100, or 200 mM NaCl and water (control) were monitored. Salinity treatments were applied for six weeks. After four weeks, differences between cultivars were clearly evident and 'Porto' was more tolerant than 'Sunny wind'. The tolerant cultivar showed lower electrolyte leakage and ABA concentrations, and higher proline content in the leaves. Accumulation of Na in different organs was lower in the flower organs of 'Porto'. At the molecular level, several differential expressed genes were observed between the cultivars and flower organs. Among the highly expressed DEGs, coat protein, alcohol dehydrogenase, and AP2/EREBP transcription factor ERF-1. Among the downregulated genes, GH3 and NCED were the most interesting. The differential expression of these genes may explain the salt stress tolerance of 'Porto'.
Collapse
Affiliation(s)
- Alice Trivellini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.
| | - Giulia Carmassi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Guido Scatena
- Italian Institute for Environmental Protection and Research - ISPRA, Via del Cedro 38, 57122, Leghorn, Italy
| | - Paolo Vernieri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università Degli Studi Di Milano, Via Celoria 2, 20133, Milan, Italy
| |
Collapse
|
16
|
Meier ND, Seward K, Caplan JL, Dinesh-Kumar SP. Calponin homology domain containing kinesin, KIS1, regulates chloroplast stromule formation and immunity. SCIENCE ADVANCES 2023; 9:eadi7407. [PMID: 37878708 PMCID: PMC10599616 DOI: 10.1126/sciadv.adi7407] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Chloroplast morphology changes during immunity, giving rise to tubule-like structures known as stromules. Stromules extend along microtubules and anchor to actin filaments along nuclei to promote perinuclear chloroplast clustering. This facilitates the transport of defense molecules/proteins from chloroplasts to the nucleus. Evidence for a direct role for stromules in immunity is lacking since, currently, there are no known genes that regulate stromule biogenesis. We show that a calponin homology (CH) domain containing kinesin, KIS1 (kinesin required for inducing stromules 1), is required for stromule formation during TNL [TIR (Toll/Interleukin-1 receptor)-type nucleotide-binding leucine-rich repeat]-immune receptor-mediated immunity. Furthermore, KIS1 is required for TNL-mediated immunity to bacterial and viral pathogens. The microtubule-binding motor domain of KIS1 is required for stromule formation while the actin-binding, CH domain is required for perinuclear chloroplast clustering. We show that KIS1 functions through early immune signaling components, EDS1 and PAD4, with salicylic acid-induced stromules requiring KIS1. Thus, KIS1 represents a player in stromule biogenesis.
Collapse
Affiliation(s)
- Nathan D. Meier
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Kody Seward
- Department of Biological Sciences, College of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19713, USA
| | - Jeffrey L. Caplan
- Department of Biological Sciences, College of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19713, USA
- Department of Plant and Soil Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE 19716, USA
| | - Savithramma P. Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
17
|
Kong L, Wen H, Luo Y, Chen X, Sheng X, Liu Y, Chen P. Dual-Conductive and Stiffness-Morphing Microneedle Patch Enables Continuous In Planta Monitoring of Electrophysiological Signal and Ion Fluctuation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43515-43523. [PMID: 37677088 DOI: 10.1021/acsami.3c08783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The use of conductive microneedles presents a promising solution for achieving high-fidelity electrophysiological recordings with minimal impact on the interfaced tissue. However, a conventional metal-based microneedle suffers from high electrochemical impedance and mechanical mismatch. In this paper, we report a dual-conductive (i.e., both ionic and electronic conductive) and stiffness-morphing microneedle patch (DSMNP) for high-fidelity electrophysiological recordings with reduced tissue damage. The polymeric network of the DSMNP facilitates electrolyte absorption and therefore allows the transition of stiffness from 6.82 to 0.5139 N m-1. Furthermore, the nanoporous conductive polymer increases the specific electrochemical surface area after tissue penetration, resulting in an ultralow specific impedance of 893.13 Ω mm2 at 100 Hz. DSMNPs detect variation potential and action potential in real time and cation fluctuations in plants in response to environmental stimuli. After swelling, DSMNPs mechanically "lock" into biological tissues and prevent motion artifact by providing a stable interface. These results demonstrate the potential of DSMNPs for various applications in the field of plant physiology research and smart agriculture.
Collapse
Affiliation(s)
- Lingxuan Kong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Hanqi Wen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang 314000, China
| | - Yifei Luo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, Singapore 636921, Singapore
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yuxin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, 4 Engineering Drive 3, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation & TechnologyiHealthtech, National University of Singapore, Singapore 117599, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
18
|
Fincheira P, Espinoza J, Vera J, Berrios D, Nahuelcura J, Ruiz A, Quiroz A, Bustamante L, Cornejo P, Tortella G, Diez MC, Benavides-Mendoza A, Rubilar O. The Impact of 2-Ketones Released from Solid Lipid Nanoparticles on Growth Modulation and Antioxidant System of Lactuca sativa. PLANTS (BASEL, SWITZERLAND) 2023; 12:3094. [PMID: 37687341 PMCID: PMC10490278 DOI: 10.3390/plants12173094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023]
Abstract
2-Ketones are signal molecules reported as plant growth stimulators, but their applications in vegetables have yet to be achieved. Solid lipid nanoparticles (SLNs) emerge as a relevant nanocarrier to develop formulations for the controlled release of 2-ketones. In this sense, seedlings of Lactuca sativa exposed to 125, 375, and 500 µL L-1 of encapsulated 2-nonanone and 2-tridecanone into SLNs were evaluated under controlled conditions. SLNs evidenced a spherical shape with a size of 230 nm. A controlled release of encapsulated doses of 2-nonanone and 2-tridecanone was observed, where a greater release was observed as the encapsulated dose of the compound increased. Root development was strongly stimulated mainly by 2-tridecanone and leaf area (25-32%) by 2-nonanone. Chlorophyll content increased by 15.8% with exposure to 500 µL L-1 of 2-nonanone, and carotenoid concentration was maintained with 2-nonanone. Antioxidant capacity decreased (13-62.7%) in L. sativa treated with 2-ketones, but the total phenol concentration strongly increased in seedlings exposed to some doses of 2-ketones. 2-Tridecanone strongly modulates the enzymatic activities associated with the scavenging of H2O2 at intra- and extracellular levels. In conclusion, 2-ketones released from SLNs modulated the growth and the antioxidant system of L. sativa, depending on the dose released.
Collapse
Affiliation(s)
- Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (J.E.); (J.V.); (A.Q.); (G.T.); (M.C.D.); (O.R.)
| | - Javier Espinoza
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (J.E.); (J.V.); (A.Q.); (G.T.); (M.C.D.); (O.R.)
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (D.B.); (J.N.); (A.R.)
| | - Joelis Vera
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (J.E.); (J.V.); (A.Q.); (G.T.); (M.C.D.); (O.R.)
| | - Daniela Berrios
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (D.B.); (J.N.); (A.R.)
| | - Javiera Nahuelcura
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (D.B.); (J.N.); (A.R.)
| | - Antonieta Ruiz
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (D.B.); (J.N.); (A.R.)
| | - Andrés Quiroz
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (J.E.); (J.V.); (A.Q.); (G.T.); (M.C.D.); (O.R.)
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (D.B.); (J.N.); (A.R.)
| | - Luis Bustamante
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile;
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Calle San Francisco s/n, La Palma, Quillota 2260000, Chile;
| | - Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (J.E.); (J.V.); (A.Q.); (G.T.); (M.C.D.); (O.R.)
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile
| | - María Cristina Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (J.E.); (J.V.); (A.Q.); (G.T.); (M.C.D.); (O.R.)
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile
| | | | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile; (J.E.); (J.V.); (A.Q.); (G.T.); (M.C.D.); (O.R.)
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, P.O. Box 54-D, Temuco 4811230, Chile
| |
Collapse
|
19
|
Malakar M, Paiva PDDO, Beruto M, da Cunha Neto AR. Review of recent advances in post-harvest techniques for tropical cut flowers and future prospects: Heliconia as a case-study. FRONTIERS IN PLANT SCIENCE 2023; 14:1221346. [PMID: 37575938 PMCID: PMC10419226 DOI: 10.3389/fpls.2023.1221346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/30/2023] [Indexed: 08/15/2023]
Abstract
Aesthetic attributes and easy-to-grow nature of tropical cut flowers (TCFs) have contributedto their potential for increased production. The dearth of information regarding agronomic practices and lack of planting materials are the key hindrances against their fast expansion. Unconventional high-temperature storage requirements and the anatomy of the peduncle contribute topoor vase life performance, while troublesome packaging and transport due to unusual size and structureprimarily cause post-harvest quality deterioration. Nonetheless, the exotic floral structuresconsequently increase market demand, particularly in temperate countries. This boosts studies aimed at overcoming post-harvest hindrances. While a few TCFs (Anthurium, Strelitzia, Alpinia, and a few orchids) are under the spotlight, many others remain behind the veil. Heliconia, an emerging specialty TCF (False Bird-of-Paradise, family Heliconiaceae), is one of them. The structural uniquenessand dazzling hues of Heliconia genotypes facilitate shifting its position from the back to the forefrontof the world floriculture trade. The unsatisfactory state-of-the-art of Heliconia research and the absence of any review exclusively on it are the key impetus for structuring this review. In addition to the aforementioned setbacks, impaired water uptake capacity after harvest, high chilling sensitivity, and the proneness of xylem ducts to microbial occlusion may be counted as a few additional factors that hinder its commercialization. This review demonstrates the state-of-the-art of post-harvest research while also conceptualizing the implementation of advanced biotechnological aid to alleviate the challenges, primarily focusing on Heliconia (the model crop here) along with some relevant literature on its other allied members. Standard harvesting indices, grading, and packaging are also part of the entire post-harvest operational chain, but since these phases are barely considered in Heliconia and the majority of tropical ornamentals except a few, a comprehensive account of these aspects has also been given. The hypothesized cues to nip chilling injury, resorting to different bio-chemical treatments, nano-based technology, and advanced packaging techniques, may help overcome preservation difficulties and propel its transition from niche to the commercial flower market. In a nutshell, readers will gain a comprehensive overview of how optimum post-harvest handling practices can rewardingly characterize this unique group of TCFs as the most remunerative component.
Collapse
Affiliation(s)
- Moumita Malakar
- Department of Horticulture & Floriculture, Central University of Tamil Nadu, Thiruvarur, India
| | | | - Margherita Beruto
- International Society for Horticultural Science (ISHS), Ornamental Plant Division, San Remo, Italy
| | | |
Collapse
|
20
|
Guo Y, Chen Q, Qu Y, Deng X, Zheng K, Wang N, Shi J, Zhang Y, Chen Q, Yan G. Development and identification of molecular markers of GhHSP70-26 related to heat tolerance in cotton. Gene 2023; 874:147486. [PMID: 37196889 DOI: 10.1016/j.gene.2023.147486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/09/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Heat stress significantly affect plant growth and development, which is an important factor contributing to crop yield loss. However, heat shock proteins (HSPs) in plants can effectively alleviate cell damage caused by heat stress. In order to rapidly and accurately cultivate heat-tolerant cotton varieties, this study conducted correlation analysis between heat tolerance index and insertion/deletion (In/Del) sites of GhHSP70-26 promoter in 39 cotton materials, so as to find markers related to heat tolerance function of cotton, which can be used in molecular marker-assisted breeding. The results showed the natural variation allele (Del22 bp) type at -1590 bp upstream of GhHSP70-26 promoter (haplotype2, Hap2) in cotton (Gossypium spp.) promoted GhHSP70-26 expression under heat stress. The relative expression level of GhHSP70-26 of M-1590-Del22 cotton materials were significantly higher than that of M-1590-In type cotton materials under heat stress (40 ℃). Also, M-1590-Del22 material had lower conductivity and less cell damage after heat stress, indicating that it is a heat resistant cotton material. The Hap1 (M-1590-In) promoter was mutated into Hap1del22, and Hap1 and Hap1del22 were fused with GUS to transform Arabidopsis thaliana. Furthermore, Hap1del22 promoter had higher induction activity than Hap1 under heat stress and abscisic acid (ABA) treatment in transgenic Arabidopsis thaliana. Further analysis confirmed that M-1590-Del22 was the dominant heat-resistant allele. In summary, these results identify a key and previously unknown natural variation in GhHSP70-26 with respect to heat tolerance, providing a valuable functional molecular marker for genetic breeding of cotton and other crops with heat tolerance.
Collapse
Affiliation(s)
- Yaping Guo
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China; College of Agronomy, Xinjiang Agricultural University, Ürümqi, China
| | - Qin Chen
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, China
| | - Yanying Qu
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, China
| | - Xiaojuan Deng
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, China
| | - Kai Zheng
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, China
| | - Ning Wang
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianbin Shi
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yinbin Zhang
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Quanjia Chen
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, China
| | - Gentu Yan
- State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
21
|
Manna I, Bandyopadhyay M. The impact of engineered nickel oxide nanoparticles on ascorbate glutathione cycle in Allium cepa L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:663-678. [PMID: 37363417 PMCID: PMC10284763 DOI: 10.1007/s12298-023-01314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 06/28/2023]
Abstract
Engineered nickel oxide nanoparticle (NiO-NP) can inflict significant damages on exposed plants, even though very little is known about the modus operandi. The present study investigated effects of NiO-NP on the crucial stress alleviation mechanism Ascorbate-Glutathione Cycle (Asa-GSH cycle) in the model plant Allium cepa. Cellular contents of reduced glutathione (GSH) and oxidised glutathione (GSSG), was disturbed upon NiO-NP exposure. The ratio of GSH to GSSG changed from 20:1 in NC to 4:1 in roots exposed to 125 mg L-1 NiO-NP. Even the lowest treatments of NiO-NP (10 mg L-1) increased ascorbic acid (2.9-folds) and cysteine contents (1.6-folds). Enzymes like glutathione reductase, ascorbate peroxidase, glutathione peroxidase and glutathione-S-transferase also showed altered activities in the affected tissues. Further, intracellular methylglyoxal, a harbinger of ROS (Reactive oxygen species), increased significantly (~ 26 to 65-fold) across different concentrations NiO-NP. Intracellular H2O2 (hydrogen peroxide) and ROS levels increased with NiO-NP doses, as did electrolytic leakage from damaged cells. The present work indicated that multiple pathways were compromised in NiO-NP affected plants and this information can bolster our general understanding of the actual mechanism of its toxicity on living cells, and help formulate strategies to thwart ecological pollution. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01314-8.
Collapse
Affiliation(s)
- Indrani Manna
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019 India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019 India
| |
Collapse
|
22
|
Wang Z, Yang L, Hua J. The intracellular immune receptor like gene SNC1 is an enhancer of effector-triggered immunity in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:874-884. [PMID: 36449532 PMCID: PMC9922396 DOI: 10.1093/plphys/kiac543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Plants contain many nucleotide-binding leucine-rich repeat (NLR) proteins that are postulated to function as intracellular immune receptors but do not yet have an identified function during plant-pathogen interactions. SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1) is one such NLR protein of the Toll-interleukin 1 receptor (TIR) type, despite its well-characterized gain-of-function activity and its involvement in autoimmunity in Arabidopsis (Arabidopsis thaliana). Here, we investigated the role of SNC1 in natural plant-pathogen interactions and genetically tested the importance of the enzymatic activities of its TIR domain for its function. The SNC1 loss-of-function mutants were more susceptible to avirulent bacterial pathogen strains of Pseudomonas syringae containing specific effectors, especially under constant light growth condition. The mutants also had reduced defense gene expression induction and hypersensitive responses upon infection by avirulent pathogens under constant light growth condition. In addition, genetic and biochemical studies supported that the TIR enzymatic activity of SNC1 is required for its gain-of-function activity. In sum, our study uncovers the role of SNC1 as an amplifier of plant defense responses during natural plant-pathogen interactions and indicates its use of enzymatic activity and intermolecular interactions for triggering autoimmune responses.
Collapse
Affiliation(s)
- Zhixue Wang
- Plant Biology section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Leiyun Yang
- Plant Biology section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jian Hua
- Plant Biology section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
23
|
The V2 Protein from the Geminivirus Tomato Yellow Leaf Curl Virus Largely Associates to the Endoplasmic Reticulum and Promotes the Accumulation of the Viral C4 Protein in a Silencing Suppression-Independent Manner. Viruses 2022; 14:v14122804. [PMID: 36560808 PMCID: PMC9784378 DOI: 10.3390/v14122804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Viruses are strict intracellular parasites that rely on the proteins encoded in their genomes for the effective manipulation of the infected cell that ultimately enables a successful infection. Viral proteins have to be produced during the cell invasion and takeover in sufficient amounts and in a timely manner. Silencing suppressor proteins evolved by plant viruses can boost the production of viral proteins; although, additional mechanisms for the regulation of viral protein production likely exist. The strongest silencing suppressor encoded by the geminivirus tomato yellow leaf curl virus (TYLCV) is V2: V2 suppresses both post-transcriptional and transcriptional gene silencing (PTGS and TGS), activities that are associated with its localization in punctate cytoplasmic structures and in the nucleus, respectively. However, V2 has been previously described to largely localize in the endoplasmic reticulum (ER), although the biological relevance of this distribution remains mysterious. Here, we confirm the association of V2 to the ER in Nicotiana benthamiana and assess the silencing suppression activity-independent impact of V2 on protein accumulation. Our results indicate that V2 has no obvious influence on the localization of ER-synthesized receptor-like kinases (RLKs) or ER quality control (ERQC)/ER-associated degradation (ERAD), but dramatically enhances the accumulation of the viral C4 protein, which is co-translationally myristoylated, possibly in proximity to the ER. By using the previously described V2C84S/86S mutant, in which the silencing suppression activity is abolished, we uncouple RNA silencing from the observed effect. Therefore, this work uncovers a novel function of V2, independent of its capacity to suppress silencing, in the promotion of the accumulation of another crucial viral protein.
Collapse
|
24
|
Wang N, Yin Z, Zhao Y, Wang J, Pei Y, Ji P, Daly P, Li Z, Dou D, Wei L. An F-box protein attenuates fungal xylanase-triggered immunity by destabilizing LRR-RLP NbEIX2 in a SOBIR1-dependent manner. THE NEW PHYTOLOGIST 2022; 236:2202-2215. [PMID: 36151918 DOI: 10.1111/nph.18509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Receptor-like proteins (RLPs) lacking the cytoplasmic kinase domain play crucial roles in plant growth, development and immunity. However, what remains largely elusive is whether RLP protein levels are fine-tuned by E3 ubiquitin ligases, which are employed by receptor-like kinases for signaling attenuation. Nicotiana benthamiana NbEIX2 is a leucine-rich repeat RLP (LRR-RLP) that mediates fungal xylanase-triggered immunity. Here we show that NbEIX2 associates with an F-box protein NbPFB1, which promotes NbEIX2 degradation likely by forming an SCF E3 ubiquitin ligase complex, and negatively regulates NbEIX2-mediated immune responses. NbEIX2 undergoes ubiquitination and proteasomal degradation in planta. Interestingly, NbEIX2 without its cytoplasmic tail is still associated with and destabilized by NbPFB1. In addition, NbPFB1 also associates with and destabilizes NbSOBIR1, a co-receptor of LRR-RLPs, and fails to promote NbEIX2 degradation in the sobir1 mutant. Our findings reveal a distinct model of NbEIX2 degradation, in which an F-box protein destabilizes NbEIX2 indirectly in a SOBIR1-dependent manner.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Zhiyuan Yin
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yaning Zhao
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jinghao Wang
- College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Yong Pei
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Peiyun Ji
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Paul Daly
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Zhengpeng Li
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, 223300, Huaian, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| |
Collapse
|
25
|
Banerjee A, Roychoudhury A. Rhizofiltration of combined arsenic-fluoride or lead-fluoride polluted water using common aquatic plants and use of the 'clean' water for alleviating combined xenobiotic toxicity in a sensitive rice variety. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119128. [PMID: 35301030 DOI: 10.1016/j.envpol.2022.119128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Groundwater co-contamination with toxic pollutants like arsenic-fluoride or lead-fluoride is a serious threat for safe rice cultivation, since major stretches of land, involved in cultivation of this staple food crop are presently experiencing severe endemic pollution from these xenobiotic combinations. Preliminary investigations established that the combined pollutants together exerted more phytotoxicity in the widely cultivated indica rice variety Khitish, compared with that exerted by the individual contaminants. Thus, an ecologically sustainable and economically viable phytoremediative strategy was designed where three aquatic plants, viz., Azolla (water fern), Pistia (water lettuce) and Eichhornia (water hyacinth) (commonly located across the co-polluted regions) were tested for their ability to rhizofiltrate the water samples that had been polluted with arsenic-fluoride or lead-fluoride. Water lettuce exhibited the highest ability to 'clean' both arsenic-fluoride and lead-fluoride polluted water due to its capacity of efficient phytoextraction and phytostabilization. Irrigation of Khitish seedlings with this de-polluted water appreciably reduced malondialdehyde formation, electrolyte leakage and irreversible protein carbonylation due to suppression in NADPH oxidase activity and reactive oxygen species production, compared with those in sets grown with non-treated, arsenic-fluoride or lead-fluoride contaminated water. Oxidative injuries, cytotoxic methylglyoxal synthesis and inhibition of biomass growth were ameliorated, and chlorophyll synthesis and Hill activity were increased due to reduced bioaccumulation of xenobiotics, along with the improved uptake of vital micronutrients like iron, copper and nickel. Overall, the current investigation illustrated a cheap, farmer-friendly blueprint which could be easily promulgated to ensure safe rice cultivation even across territories that are severely co-polluted with the mixed contaminants.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India.
| |
Collapse
|
26
|
Maki Y, Soejima H, Sugiyama T, Sato T, Yamaguchi J, Watahiki MK. Conjugates of 3-phenyllactic acid and tryptophan enhance root-promoting activity without adverse effects in Vigna angularis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:173-177. [PMID: 35937525 PMCID: PMC9300432 DOI: 10.5511/plantbiotechnology.21.1217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 06/15/2023]
Abstract
3-Phenyllactic acid (PLA) is a common secondary product of Lactobacillus sp. and promotes adventitious-root formation in Azuki beans (Vigna angularis). Root promotion activity of PLA is synergistically enhanced by tryptophan (Trp). In this study, stereoisomers of PLA and Trp amide conjugates and their alkyl esters were synthesized to investigate the structure-activity relationships on root-promotion activity. The rooting activity of D-PLA-L-Trp conjugate shows more than 40 times higher than that of the mixture of D-PLA and L-Trp. Modification of PLA-Trp with ethyl ester showed the highest activity at 3,400 times of a mixture of D-PLA and L-Trp. However, L-or D-PLA-D-Trp conjugate and the isopropyl ester of PLA-Trp conjugates, both lost the root promotion activity and implicated that a requirement for steric structure for PLA related root promotion mechanism. Unlike auxin substances, which are commonly used as rooting agents that displayed high activity in low concentrations, PLA-Trp ethyl ester exhibited far less phytotoxicity at high concentration of 1 mM, despite its high rooting activity. Innovation of PLA-Trp ethyl ester may be expected for agricultural aspects with low environmental impact.
Collapse
Affiliation(s)
- Yuko Maki
- Snow Brand Seed Co. Ltd., Horonai 1066-5, Naganuma, Hokkaido 069-1464, Japan
| | - Hiroshi Soejima
- Snow Brand Seed Co. Ltd., Horonai 1066-5, Naganuma, Hokkaido 069-1464, Japan
| | - Tamizi Sugiyama
- Department of Agricultural Chemistry, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Takeo Sato
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo, Hokkaido 060-0810, Japan
| | - Junji Yamaguchi
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo, Hokkaido 060-0810, Japan
| | - Masaaki K. Watahiki
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
27
|
Yao Y, Zhang B, Zhou L, Wang Y, Fu H, Chen X, Wang Y. Steam-assisted Radio Frequency Blanching to Improve Heating Uniformity and Quality Characteristics of Stem Lettuce Cuboids. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Perennials have evolved a greater resistance to exogenous H2O2 than annuals, consistent with the oxidative stress theory of aging. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Gao Y, Li Z, Yang C, Li G, Zeng H, Li Z, Zhang Y, Yang X. Pseudomonas syringae activates ZAT18 to inhibit salicylic acid accumulation by repressing EDS1 transcription for bacterial infection. THE NEW PHYTOLOGIST 2022; 233:1274-1288. [PMID: 34797591 DOI: 10.1111/nph.17870] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Phytopathogens can manipulate plant hormone signaling to counteract immune responses; however, the underlying mechanism is mostly unclear. Here, we report that Pseudomonas syringae pv tomato (Pst) DC3000 induces expression of C2H2 zinc finger transcription factor ZAT18 in a jasmonic acid (JA)-signaling-dependent manner. Biochemical assays further confirmed that ZAT18 is a direct target of MYC2, which is a very important regulator in JA signaling. CRISPR/Cas9-generated zat18-cr mutants exhibited enhanced resistance to Pst DC3000, while overexpression of ZAT18 resulted in impaired disease resistance. Genetic characterization of ZAT18 mutants demonstrated that ZAT18 represses defense responses by inhibiting the accumulation of the key plant immune signaling molecule salicylic acid (SA), which is dependent on its EAR motif. ZAT18 exerted this inhibitory effect by directly repressing the transcription of Enhanced Disease Susceptibility 1 (EDS1), which is the key signaling component of pathogen-induced SA accumulation. Overexpression of ZAT18 resulted in decreased SA content, while loss of function of ZAT18 showed enhanced SA accumulation upon pathogen infection. Furthermore, enhanced resistance and SA content in zat18-cr mutants was abolished by the mutation in EDS1. Our data indicate that pathogens induce ZAT18 expression to repress the transcription of EDS1, further antagonising SA accumulation for bacterial infection.
Collapse
Affiliation(s)
- Yuhan Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ze Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chenyu Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guangyue Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongmei Zeng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhonghai Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yi Zhang
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Xiufen Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
30
|
Salguero-Linares J, Lema-Asqui S, Salas-Gómez M, Froilán-Soares A, Coll NS. Detection and Quantification of the Hypersensitive Response Cell Death in Arabidopsis thaliana. Methods Mol Biol 2022; 2447:193-204. [PMID: 35583783 DOI: 10.1007/978-1-0716-2079-3_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In plants, the hypersensitive response (HR) is a programmed cell death modality that occurs upon recognition of harmful non-self. It occurs at the site of pathogen infection, thus preventing pathogens to live off plant tissue and proliferate. Shedding light on the molecular constituents underlying this process requires robust and quantitative methods that can determine whether plants lacking functional genes are defective in HR execution compared to wild-type controls. In this chapter, we provide two quantitative protocols in which we measure cell death from Arabidopsis thaliana leaves infected with avirulent HR-causing bacterial strains. Firstly, we use trypan blue staining to quantify the stained area of leaves upon bacterial infection using a personalized macro in the Image J (Fiji) software. Alternately, we incorporate an electrolyte leakage protocol in order to measure HR caused by different avirulent bacterial strains at different bacterial titers. We encourage users to perform a combination of both methods when assessing HR in different plant genotypes.
Collapse
Affiliation(s)
- Jose Salguero-Linares
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain, 08193
| | - Saul Lema-Asqui
- Facultad de Medicina, Universidad de las Américas, Quito, Ecuador, 170513
| | - Marta Salas-Gómez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain, 08193
| | - Andrea Froilán-Soares
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain, 08193
| | - Núria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain, 08193.
| |
Collapse
|
31
|
Yuan M, Xin XF. Bacterial Infection and Hypersensitive Response Assays in Arabidopsis-Pseudomonas syringae Pathosystem. Bio Protoc 2021; 11:e4268. [PMID: 35087927 DOI: 10.21769/bioprotoc.4268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/02/2022] Open
Abstract
Arabidopsis thaliana-Pseudomonas syringae pathosystem has been used as an important model system for studying plant-microbe interactions, leading to many milestones and breakthroughs in the understanding of plant immune system and pathogenesis mechanisms. Bacterial infection and plant disease assessment are key experiments in the studies of plant-pathogen interactions. The hypersensitive response (HR), which is characterized by rapid cell death and tissue collapse after inoculation with a high dose of bacteria, is a hallmark response of plant effector-triggered immunity (ETI), one layer of plant immunity triggered by recognition of pathogen-derived effector proteins. Here, we present a detailed protocol for bacterial disease and hypersensitive response assays applicable to studies of Pseudomonas syringae interaction with various plant species such as Arabidopsis, Nicotiana benthamiana, and tomato.
Collapse
Affiliation(s)
- Minhang Yuan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
32
|
Xi Y, Chochois V, Kroj T, Cesari S. A novel robust and high-throughput method to measure cell death in Nicotiana benthamiana leaves by fluorescence imaging. MOLECULAR PLANT PATHOLOGY 2021; 22:1688-1696. [PMID: 34427040 PMCID: PMC8578831 DOI: 10.1111/mpp.13129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/08/2021] [Accepted: 08/05/2021] [Indexed: 05/31/2023]
Abstract
Assessing immune responses and cell death in Nicotiana benthamiana leaf agro-infiltration assays is a powerful and widely used experimental approach in molecular plant pathology. Here, we describe a reliable high-throughput protocol to quantify strong, macroscopically visible cell death responses in N. benthamiana agro-infiltration assays. The method relies on measuring the reduction of leaf autofluorescence in the red spectrum upon cell death induction and provides quantitative data suitable for straightforward statistical analysis. Two different well-established model nucleotide-binding and leucine-rich repeat domain proteins (NLRs) were used to ensure the genericity of the approach. Its accuracy and versatility were compared to visual scoring of the cell death response and standard methods commonly used to characterize NLR activities in N. benthamiana. A discussion of the advantages and limitations of our method compared to other protocols demonstrates its robustness and versatility and provides an effective means to select the best-suited protocol for a defined experiment.
Collapse
Affiliation(s)
- Yuxuan Xi
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Vincent Chochois
- CIRADUMR QualisudMontpellierFrance
- Qualisud, Univ MontpellierAvignon UniversitéCIRADInstitut AgroUniversité de La RéunionMontpellierFrance
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Stella Cesari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| |
Collapse
|
33
|
AIP1, Encoding the Small Subunit of Acetolactate Synthase, Is Partially Responsible for Resistance to Hypoxic Stress in Arabidopsis thaliana. PLANTS 2021; 10:plants10112251. [PMID: 34834615 PMCID: PMC8621687 DOI: 10.3390/plants10112251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
Flooding is a significant stress to land plants, depriving them of essential oxygen. Plants have evolved diverse strategies with variable success to survive flooding. Similar strategies have been described in organisms from other kingdoms. Several fungal species can successfully survive a low-oxygen environment by increasing their branched-chain amino acid (BCAA) contents. BCAAs may act as alternative electron acceptors in the respiratory chain under an oxygen-limited environment. The key and first enzyme for BCAA biosynthesis is acetolactate synthase (ALS). We identified two homologous genes encoding the small subunit of ALS in Arabidopsis (Arabidopsis thaliana). We determined that ALS INTERACTING PROTEIN1 (AIP1), which encodes the small subunit of ALS, is strongly expressed in all organs and highly expressed under submergence and low-oxygen stresses. We also showed that the overexpression of AIP1 confers tolerance to low-oxygen stress. These results indicate that ALS may play an essential role under prolonged flooding or oxygen deficiency in Arabidopsis.
Collapse
|
34
|
Ponce-Pineda IG, Carmona-Salazar L, Saucedo-García M, Cano-Ramírez D, Morales-Cedillo F, Peña-Moral A, Guevara-García ÁA, Sánchez-Nieto S, Gavilanes-Ruíz M. MPK6 Kinase Regulates Plasma Membrane H +-ATPase Activity in Cold Acclimation. Int J Mol Sci 2021; 22:6338. [PMID: 34199294 PMCID: PMC8232009 DOI: 10.3390/ijms22126338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Cold and freezing stresses severely affect plant growth, development, and survival rate. Some plant species have evolved a process known as cold acclimation, in which plants exposed to temperatures above 0 °C trigger biochemical and physiological changes to survive freezing. During this response, several signaling events are mediated by transducers, such as mitogen activated protein kinase (MAPK) cascades. Plasma membrane H+-ATPase is a key enzyme for the plant cell life under regular and stress conditions. Using wild type and mpk3 and mpk6 knock out mutants in Arabidopsis thaliana, we explored the transcriptional, translational, and 14-3-3 protein regulation of the plasma membrane H+-ATPase activity under the acclimation process. The kinetic analysis revealed a differential profiling of the H+-ATPase activity depending on the presence or absence of MPK3 or MPK6 under non-acclimated or acclimated conditions. Negative regulation of the plasma membrane H+-ATPase activity was found to be exerted by MPK3 in non-acclimated conditions and by MPK6 in acclimated conditions, describing a novel form of regulation of this master ATPase. The MPK6 regulation involved changes in plasma membrane fluidity. Moreover, our results indicated that MPK6 is a critical regulator in the process of cold acclimation that leads to freezing tolerance and further survival.
Collapse
Affiliation(s)
- Ilian Giordano Ponce-Pineda
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.G.P.-P.); (L.C.-S.); (D.C.-R.); (F.M.-C.); (A.P.-M.); (S.S.-N.)
| | - Laura Carmona-Salazar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.G.P.-P.); (L.C.-S.); (D.C.-R.); (F.M.-C.); (A.P.-M.); (S.S.-N.)
| | - Mariana Saucedo-García
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Avenida Universidad Km. 1, Rancho Universitario, Tulancingo-Santiago Tulantepec, Tulancingo, Hidalgo 43600, Mexico;
| | - Dora Cano-Ramírez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.G.P.-P.); (L.C.-S.); (D.C.-R.); (F.M.-C.); (A.P.-M.); (S.S.-N.)
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Francisco Morales-Cedillo
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.G.P.-P.); (L.C.-S.); (D.C.-R.); (F.M.-C.); (A.P.-M.); (S.S.-N.)
| | - Araceli Peña-Moral
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.G.P.-P.); (L.C.-S.); (D.C.-R.); (F.M.-C.); (A.P.-M.); (S.S.-N.)
| | - Ángel Arturo Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico;
| | - Sobeida Sánchez-Nieto
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.G.P.-P.); (L.C.-S.); (D.C.-R.); (F.M.-C.); (A.P.-M.); (S.S.-N.)
| | - Marina Gavilanes-Ruíz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (I.G.P.-P.); (L.C.-S.); (D.C.-R.); (F.M.-C.); (A.P.-M.); (S.S.-N.)
| |
Collapse
|
35
|
Ramakrishna G, Kaur P, Singh A, Yadav SS, Sharma S, Singh NK, Gaikwad K. Comparative transcriptome analyses revealed different heat stress responses in pigeonpea (Cajanus cajan) and its crop wild relatives. PLANT CELL REPORTS 2021; 40:881-898. [PMID: 33837822 DOI: 10.1007/s00299-021-02686-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Comparative transcriptome analyses accompanied by biochemical assays revealed high variability in heat stress response in Cajanus species. Among the studied species, C. scarabaeoides was the most thermotolerant followed by C. cajanifolius, C. cajan, and C. acutifolius. Pigeonpea is one of the climate-resilient grain legumes. Though the optimum temperature for cultivated pigeonpea is ~ 25-35 °C, its wild relatives grow in temperatures ranging between 18 and 45 °C. To gain insight into molecular mechanisms responsible for the heat stress tolerance in pigeonpea, we conducted time-series transcriptome analysis of one pigeonpea cultivar (Cajanus cajan) and two wild relatives, Cajanus acutifolius, and Cajanus scarabaeoides subjected to heat stress at 42 ± 2 ºC for 30 min and 3 h. A total of 9521, 12,447, and 5282 identified transcripts were differentially expressed in C. cajan, C. acutifolius, and C. scarabaeoides, respectively. In this study, we observed that a significant number of genes undergo alternative splicing in a species-specific pattern during heat stress. Gene expression profiling analysis, histochemical assay, chlorophyll content, and electrolyte leakage assay showed that C. scarabaeoides has adaptive features for heat stress tolerance. The gene set enrichment analyses of differentially expressed genes in these Cajanus species during heat stress revealed that oxidoreductase activity, transcription factor activity, oxygen-evolving complex, photosystem-II, thylakoid, phenylpropanoid biosynthetic process, secondary metabolic process, and flavonoid biosynthetic process were highly affected. The histochemical assay showed more lipid peroxidation in C. acutifolius compared to other Cajanus species inferring the presence of higher quantities of polyunsaturated fatty acids in the plasma membrane which might have led to severe damage of membrane-bound organelles like chloroplast, and high electrolyte leakage during heat stress. This study paves the way for the identification of candidate genes, which can be useful for the development of thermo-tolerant pigeonpea cultivars.
Collapse
Affiliation(s)
- G Ramakrishna
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Parampreet Kaur
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- School of Organic Farming, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Anupam Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Sunishtha S Yadav
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - N K Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|
36
|
Shamloo-Dashtpagerdi R, Lindlöf A, Aliakbari M, Pirasteh-Anosheh H. Plausible association between drought stress tolerance of barley (Hordeum vulgare L.) and programmed cell death via MC1 and TSN1 genes. PHYSIOLOGIA PLANTARUM 2020; 170:46-59. [PMID: 32246464 DOI: 10.1111/ppl.13102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Studying the drought-responsive transcriptome is of high interest as it can serve as a blueprint for stress adaptation strategies. Despite extensive studies in this area, there are still many details to be uncovered, such as the importance of each gene involved in the stress response as well as the relationship between these genes and the physiochemical processes governing stress tolerance. This study was designed to address such important details and to gain insights into molecular responses of barley (Hordeum vulgare L.) to drought stress. To that, we combined RNA-seq data analysis with field and greenhouse drought experiments in a systems biology approach. RNA-sequence analysis identified a total of 665 differentially expressed genes (DEGs) belonging to diverse functional categories. A gene network was derived from the DEGs, which comprised of a total of 131 nodes and 257 edges. Gene network topology analysis highlighted two programmed cell death (PCD) modulating genes, MC1 (metacaspase 1) and TSN1 (Tudor-SN 1), as important (hub) genes in the predicted network. Based on the field trial, a drought-tolerant and a drought-susceptible barley genotype was identified from eight tested cultivars. Identified genotypes exhibited different physiochemical characteristics, including proline content, chlorophyll concentration, percentage of electrolyte leakage and malondialdehyde content as well as expression profiles of MC1 and TSN1 genes. Machine learning and correspondence analysis revealed a significant relationship between drought tolerance and measured characteristics in the context of PCD. Our study provides new insights which bridge barley drought tolerance to PCD through MC1 and TSN1 pathway.
Collapse
Affiliation(s)
| | | | - Massume Aliakbari
- Department of Crop Production and Plant Breeding, Shiraz University, Shiraz, Iran
| | - Hadi Pirasteh-Anosheh
- National Salinity Research Center, Agricultural Research, Education and Extension Organization, Yazd, Iran
| |
Collapse
|
37
|
Montanha GS, Rodrigues ES, Marques JPR, de Almeida E, Dos Reis AR, Pereira de Carvalho HW. X-ray fluorescence spectroscopy (XRF) applied to plant science: challenges towards in vivo analysis of plants. Metallomics 2020; 12:183-192. [PMID: 31793600 DOI: 10.1039/c9mt00237e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
X-ray fluorescence spectroscopy (XRF) is an analytical tool used to determine the elemental composition in a myriad of sample matrices. Due to the XRF non-destructive feature, this technique may allow time-resolved plant tissue analyses under in vivo conditions, and additionally, the combination with other non-destructive techniques. In this study, we employed handheld and benchtop XRF to evaluate the elemental distribution changes in living plant tissues exposed to X-rays, as well as real-time uptake kinetics of Zn(aq) and Mn(aq) in soybean (Glycine max (L.) Merrill) stem and leaves, for 48 hours, combined with transpiration rate assessment on leaves by an infrared gas analyzer (IRGA). We found higher Zn content than Mn in stems. The latter micronutrient, in turn, presented higher concentration in leaf veins. Besides, both micronutrients were more concentrated in the first trifolium (i.e., youngest leaf) of soybean plants. Moreover, the transpiration rate was more influenced by circadian cycles than Zn and Mn uptake. Thus, XRF represents a convenient tool for in vivo nutritional studies in plants, and it can be coupled successfully to other analytical techniques.
Collapse
Affiliation(s)
- Gabriel Sgarbiero Montanha
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Avenida Centenário, 303, Piracicaba, SP 13416000, Brazil.
| | - Eduardo Santos Rodrigues
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Avenida Centenário, 303, Piracicaba, SP 13416000, Brazil.
| | - João Paulo Rodrigues Marques
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Avenida Centenário, 303, Piracicaba, SP 13416000, Brazil.
| | - Eduardo de Almeida
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Avenida Centenário, 303, Piracicaba, SP 13416000, Brazil.
| | | | - Hudson Wallace Pereira de Carvalho
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Avenida Centenário, 303, Piracicaba, SP 13416000, Brazil.
| |
Collapse
|
38
|
Manoharan B, Qi SS, Dhandapani V, Chen Q, Rutherford S, Wan JS, Jegadeesan S, Yang HY, Li Q, Li J, Dai ZC, Du DL. Gene Expression Profiling Reveals Enhanced Defense Responses in an Invasive Weed Compared to Its Native Congener During Pathogenesis. Int J Mol Sci 2019; 20:E4916. [PMID: 31623404 PMCID: PMC6801458 DOI: 10.3390/ijms20194916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 11/16/2022] Open
Abstract
Invasive plants are a huge burden on the environment, and modify local ecosystems by affecting the indigenous biodiversity. Invasive plants are generally less affected by pathogens, although the underlying molecular mechanisms responsible for their enhanced resistance are unknown. We investigated expression profiles of three defense hormones (salicylic acid, jasmonic acid, and ethylene) and their associated genes in the invasive weed, Alternanthera philoxeroides, and its native congener, A. sessilis, after inoculation with Rhizoctonia solani. Pathogenicity tests showed significantly slower disease progression in A. philoxeroides compared to A. sessilis. Expression analyses revealed jasmonic acid (JA) and ethylene (ET) expressions were differentially regulated between A. philoxeroides and A. sessilis, with the former having prominent antagonistic cross-talk between salicylic acid (SA) and JA, and the latter showing weak or no cross-talk during disease development. We also found that JA levels decreased and SA levels increased during disease development in A. philoxeroides. Variations in hormonal gene expression between the invasive and native species (including interspecific differences in the strength of antagonistic cross-talk) were identified during R. solani pathogenesis. Thus, plant hormones and their cross-talk signaling may improve the resistance of invasive A. philoxeroides to pathogens, which has implications for other invasive species during the invasion process.
Collapse
Affiliation(s)
- Bharani Manoharan
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Shan-Shan Qi
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Vignesh Dhandapani
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Qi Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Susan Rutherford
- The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia.
| | - Justin Sh Wan
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
- The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia.
| | - Sridharan Jegadeesan
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel.
| | - Hong-Yu Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Qin Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jian Li
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhi-Cong Dai
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
- Institute of Agricultural Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China..
| | - Dao-Lin Du
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
39
|
Xiao M, Liu R, Ruan Y, Liu C. Sodium chloride primes JA-independent defense against Spodoptera litura (Fabricius) larvae in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2019; 14:1607466. [PMID: 31021696 PMCID: PMC6619998 DOI: 10.1080/15592324.2019.1607466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Priming for better defense performance is an important strategy in acclimation to the ever-changing environment. In the present study, defense priming induced by sodium chloride at the seedling stage significantly increased the expression of defense gene VSP2, the content of total glucosinolates and the level of the reactive oxygen species in mature Arabidopsis thaliana plants after transferred into the stress-free environment. The previously primed plants could effectively resist the feeding of Spodoptera litura (Fabricius) larvae. Salt-priming enhanced defense of Arabidopsis plants in the absence of either MYC2 or AOS, which encodes a critical transcription factor in JA-signaling and an important enzyme in JA biosynthesis, respectively. Our results supported the JA-independent defense primed by sodium chloride, as well as the elevated ROS and glucosinolate level in primed plants. In addition, the feasibility of using mild salt-priming to improve crop performance in field was proposed.
Collapse
Affiliation(s)
- Mu Xiao
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha, China
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Rong Liu
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha, China
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Ying Ruan
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha, China
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chunlin Liu
- Key Laboratory of Hunan Provincial on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha, China
- College of Agronomy, Hunan Agricultural University, Changsha, China
| |
Collapse
|
40
|
Mwimba M, Dong X. Quantification of the humidity effect on HR by Ion leakage assay. Bio Protoc 2019; 9:e3203. [PMID: 33654999 PMCID: PMC7854056 DOI: 10.21769/bioprotoc.3203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/24/2019] [Accepted: 03/18/2019] [Indexed: 11/02/2022] Open
Abstract
We describe a protocol to measure the contribution of humidity on cell death during the effector-triggered immunity (ETI), the plant immune response triggered by the recognition of pathogen effectors by plant resistance genes. This protocol quantifies tissue cell death by measuring ion leakage due to loss of membrane integrity during the hypersensitive response (HR), the ETI-associated cell death. The method is simple and short enough to handle many biological replicates, which improves the power of test of statistical significance. The protocol is easily applicable to other environmental cues, such as light and temperature, or treatment with chemicals.
Collapse
Affiliation(s)
- Musoki Mwimba
- Department of Biology, PO Box 90338, Duke University, Durham, North Carolina 27708, USA
| | - Xinnian Dong
- Department of Biology, PO Box 90338, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|