1
|
Wang K, Yu Y, Xu Y, Yue Y, Zhao F, Feng W, Duan Y, Duan W, Yue J, Liao Z, Fei P, Sun H, Xiong B. TSA-PACT: a method for tissue clearing and immunofluorescence staining on zebrafish brain with improved sensitivity, specificity and stability. Cell Biosci 2023; 13:97. [PMID: 37237300 DOI: 10.1186/s13578-023-01043-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
For comprehensive studies of the brain structure and function, fluorescence imaging of the whole brain is essential. It requires large-scale volumetric imaging in cellular or molecular resolution, which could be quite challenging. Recent advances in tissue clearing technology (e.g. CLARITY, PACT) provide new solutions by homogenizing the refractive index of the samples to create transparency. However, it has been difficult to acquire high quality results through immunofluorescence (IF) staining on the cleared samples. To address this issue, we developed TSA-PACT, a method combining tyramide signal amplification (TSA) and PACT, to transform samples into hydrogel polymerization frameworks with covalent fluorescent biomarkers assembled. We show that TSA-PACT is able to reduce the opacity of the zebrafish brain by more than 90% with well-preserved structure. Compared to traditional method, TSA-PACT achieves approximately tenfold signal amplification and twofold improvement in signal-to-noise ratio (SNR). Moreover, both the structure and the fluorescent signal persist for at least 16 months with excellent signal retention ratio. Overall, this method improves immunofluorescence signal sensitivity, specificity and stability in the whole brain of juvenile and adult zebrafish, which is applicable for fine structural analysis, neural circuit mapping and three-dimensional cell counting.
Collapse
Affiliation(s)
- Kang Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yuxin Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yinhui Xu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yingzi Yue
- Key Laboratory of Environment and Health (HUST), Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang Zhao
- School of Optical and Electronic Information- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenyang Feng
- School of Optical and Electronic Information- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yijie Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weicheng Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingjing Yue
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiyun Liao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Fei
- School of Optical and Electronic Information- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Sun
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Gu Q, Sarkar S, Raymick B, Kanungo J. Combining tissue clearing and Fluoro-Jade C labeling for neurotoxicity assessments. Exp Biol Med (Maywood) 2023; 248:605-611. [PMID: 37208909 PMCID: PMC10350804 DOI: 10.1177/15353702231165009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 05/21/2023] Open
Abstract
Tissue clearing refers to laboratory methods that make tissue transparent by chemical means. This approach allows the labeling, visualization, and analysis of specific targets without cutting the tissue into sections, thereby maintaining three-dimensional architecture. More than two dozen tissue-clearing methods have been developed by different research teams to date. While tissue clearing has been successfully applied in several studies concerning basic science or diseases, little is known about the utilization of tissue clearing for neurotoxicity evaluation. In this study, several tissue-clearing methods were combined with Fluoro-Jade C (FJ-C), a standard marker of neurodegeneration. The results suggest that some but not all tissue-clearing media are compatible with the FJ-C fluorophore. By utilizing a neurotoxicity animal model, the results further suggest that FJ-C labeling can be combined with tissue clearing for neurotoxicity assessments. This approach has the potential to be expanded further by combining multicolor labeling of molecular targets involved in the development and/or mechanisms of neurotoxicity and neurodegeneration.
Collapse
Affiliation(s)
- Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Bryan Raymick
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
3
|
Yang T, Liu Y, Ning Z. Comparative Mitogenomic Analysis of Two Snake Eels Reveals Irregular Gene Rearrangement and Phylogenetic Implications of Ophichthidae. Animals (Basel) 2023; 13:362. [PMID: 36766251 PMCID: PMC9913227 DOI: 10.3390/ani13030362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The family Ophichthidae has the largest number and the most various species (about 359 valid species) in the order Anguilliformes worldwide. Both morphological and molecular characteristics have been used to assess their taxonomic status. However, due to the ambiguous morphological features, molecular data such as mitochondrial DNA sequences have been implemented for the correct identification and classification of these fishes. In this study, the gene arrangement and structure characteristics of two Ophichthidae mitochondrial genomes were investigated for the first time. The total mitogenome lengths of O. evermanni and O. erabo were 17,759 bp and 17,856 bp, respectively. Comparing with the ancestral mitochondrial gene order, the irregular gene rearrangement happened between ND6 and tRNA-Pro (P) genes with another similar control region emerging between tRNA-Thr (T) and ND6 genes, which could be explained by the tandem duplication and random loss (TDRL) model appropriately. ML phylogenetic tree demonstrated that the family Ophichthidae was monophyletic origin, but genus Ophichthus might be polyphyletic because of the confused cluster relationships among different species.
Collapse
Affiliation(s)
- Tianyan Yang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | | | | |
Collapse
|
4
|
Tang Q, Lombardi AF, Le N, Wong JH, Williams JL, Du J, Chang EY. Novel fluorescent staining protocol for thick sections of human osteochondral tissues to facilitate correlation with MRI and CT. Skeletal Radiol 2021; 50:2281-2288. [PMID: 33638655 PMCID: PMC8390588 DOI: 10.1007/s00256-021-03746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To describe a novel fluorescent histochemical protocol to visualize osteoclasts, vasculature, and nerves in thick sections of human osteochondral tissues and to demonstrate its feasibility for use in radiologic-pathologic research correlation studies. MATERIALS AND METHODS Consecutive patients scheduled for total knee arthroplasty surgeries underwent pre-operative MRI. CT imaging was performed after tissue collection, and abnormal osteochondral regions were sectioned to 1-2 mm in thickness and decalcified. Fluorescent labeling of osteoclasts was performed by staining for tartrate-resistant alkaline phosphatase activity with a fluorescent substrate. Vascular structure was visualized with fluorescently labeled lectin Ulex europaeus Agglutinin I (UEA-I). Immunostaining was performed for proteins including smooth muscle actin expressed in smooth muscle cells surrounding arterioles and fibrotic myofibroblasts, as well as for neuropeptide Y expressed in sympathetic nerves. Sections were then recut at 5 μm and stained with hematoxylin and eosin (H&E). RESULTS Edema-like and cyst-like regions identified with MRI and CT were easily located in fluorescent images and appeared to have increased osteoclast activity. Fibrotic regions were identified with thickened arterioles and increased myofibroblasts. Sympathetic nerve fibers traveled alongside arborizing blood vessels. Stained sections became transparent in a water-based refractive index-matched medium, permitting deep 3D visualization of the elaborate neurovascular network in bone. Sequential staining procedures were successfully performed with the same sections, demonstrating the potential to compare multiple cellular markers from the same locations. Routine H&E staining could be performed after the fluorescent staining protocol. CONCLUSION We have developed a multimodal framework to facilitate comparisons between histology and clinical MRI and CT.
Collapse
Affiliation(s)
- Qingbo Tang
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, CA, USA
| | - Alecio F Lombardi
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, CA, USA
| | - Nicole Le
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, CA, USA
| | - Jonathan H Wong
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, CA, USA
| | - Judith L Williams
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jiang Du
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, CA, USA
| | - Eric Y Chang
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
- Department of Radiology, University of California, San Diego, CA, USA.
| |
Collapse
|
5
|
Aryal SP, Neupane KR, Masud AA, Richards CI. Characterization of Astrocyte Morphology and Function Using a Fast and Reliable Tissue Clearing Technique. Curr Protoc 2021; 1:e279. [PMID: 34694747 PMCID: PMC8550103 DOI: 10.1002/cpz1.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Astrocytic processes interact with synapses throughout the brain modulating neurotransmitter signaling and synaptic communication. During conditions such as exposure to drugs of abuse and neurological diseases, astrocytes respond by altering their morphological and functional properties. Reactive astrocyte phenotypes exhibit a bushy morphology with altered soma volume and an increased number of processes compared to resting astrocytes. The reactive astrocytic phenotype also overexpresses proteins one of which can be glial fibrillary acidic protein (GFAP). Fluorescence microscopy on thin tissue sections (<20 µm) requires reconstruction, often through multiple sections, to delineate the full astrocytic morphology. In contrast, tissue clearing methods have been developed that enable imaging of larger sections including the whole brain, providing an opportunity to see in-depth changes in single cell structure. In this article, a detailed protocol for studying astrocyte morphology using tissue clearing and subsequent imaging of whole brains as well as region-specific slices is provided. This method is ideal for understanding the effect of different physiological conditions on astrocyte morphology. A standard biochemistry laboratory has the resources to accomplish tissue clearing using this protocol and most universities have the required imaging facilities. Protocols to study brains from both genetically modified mice that contain an astrocyte-specific marker and from wild-type mice using antibody labeling steps after tissue clearing are provided. We also describe general protocols to conduct fluorescence imaging of astrocytes in cleared tissue to characterize their morphology. This protocol could be useful for researchers working in the rapidly growing field of astrocyte biology. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Brain perfusion, fixation, and tissue clearing Alternate Protocol: Clearing brain tissue with passive clarity Basic Protocol 2: Antibody labeling and refractive index matching Basic Protocol 3: Fluorescence imaging and characterization of astrocyte morphology.
Collapse
Affiliation(s)
- Surya P Aryal
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Khaga R Neupane
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Abdullah A Masud
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
6
|
Vanni S, Hokkanen H, Werner F, Angelucci A. Anatomy and Physiology of Macaque Visual Cortical Areas V1, V2, and V5/MT: Bases for Biologically Realistic Models. Cereb Cortex 2020; 30:3483-3517. [PMID: 31897474 PMCID: PMC7233004 DOI: 10.1093/cercor/bhz322] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
The cerebral cortex of primates encompasses multiple anatomically and physiologically distinct areas processing visual information. Areas V1, V2, and V5/MT are conserved across mammals and are central for visual behavior. To facilitate the generation of biologically accurate computational models of primate early visual processing, here we provide an overview of over 350 published studies of these three areas in the genus Macaca, whose visual system provides the closest model for human vision. The literature reports 14 anatomical connection types from the lateral geniculate nucleus of the thalamus to V1 having distinct layers of origin or termination, and 194 connection types between V1, V2, and V5, forming multiple parallel and interacting visual processing streams. Moreover, within V1, there are reports of 286 and 120 types of intrinsic excitatory and inhibitory connections, respectively. Physiologically, tuning of neuronal responses to 11 types of visual stimulus parameters has been consistently reported. Overall, the optimal spatial frequency (SF) of constituent neurons decreases with cortical hierarchy. Moreover, V5 neurons are distinct from neurons in other areas for their higher direction selectivity, higher contrast sensitivity, higher temporal frequency tuning, and wider SF bandwidth. We also discuss currently unavailable data that could be useful for biologically accurate models.
Collapse
Affiliation(s)
- Simo Vanni
- HUS Neurocenter, Department of Neurology, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Neurosciences, University of Helsinki, 00100 Helsinki, Finland
| | - Henri Hokkanen
- HUS Neurocenter, Department of Neurology, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Neurosciences, University of Helsinki, 00100 Helsinki, Finland
| | - Francesca Werner
- HUS Neurocenter, Department of Neurology, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Neurosciences, University of Helsinki, 00100 Helsinki, Finland
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alessandra Angelucci
- Department of Ophthalmology and Visual Sciences, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|