1
|
Zhang W, Shi Y, Oyang L, Cui S, Li S, Li J, Liu L, Li Y, Peng M, Tan S, Xia L, Lin J, Xu X, Wu N, Peng Q, Tang Y, Luo X, Liao Q, Jiang X, Zhou Y. Endoplasmic reticulum stress-a key guardian in cancer. Cell Death Discov 2024; 10:343. [PMID: 39080273 PMCID: PMC11289465 DOI: 10.1038/s41420-024-02110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Endoplasmic reticulum stress (ERS) is a cellular stress response characterized by excessive contraction of the endoplasmic reticulum (ER). It is a pathological hallmark of many diseases, such as diabetes, obesity, and neurodegenerative diseases. In the unique growth characteristic and varied microenvironment of cancer, high levels of stress are necessary to maintain the rapid proliferation and metastasis of tumor cells. This process is closely related to ERS, which enhances the ability of tumor cells to adapt to unfavorable environments and promotes the malignant progression of cancer. In this paper, we review the roles and mechanisms of ERS in tumor cell proliferation, apoptosis, metastasis, angiogenesis, drug resistance, cellular metabolism, and immune response. We found that ERS can modulate tumor progression via the unfolded protein response (UPR) signaling of IRE1, PERK, and ATF6. Targeting the ERS may be a new strategy to attenuate the protective effects of ERS on cancer. This manuscript explores the potential of ERS-targeted therapies, detailing the mechanisms through which ERS influences cancer progression and highlighting experimental and clinical evidence supporting these strategies. Through this review, we aim to deepen our understanding of the role of ER stress in cancer development and provide new insights for cancer therapy.
Collapse
Grants
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- he Research Project of Health Commission of Hunan Province (202203034978, 202202055318, 202203231032, 202109031837, 202109032010, 20201020), Science and Technology Innovation Program of Hunan Province(2023ZJ1122, 2023RC3199, 2023RC1073), Hunan Provincial Science and Technology Department (2020TP1018), the Changsha Science and Technology Board (kh2201054), Ascend Foundation of National cancer center (NCC201909B06) and by Hunan Cancer Hospital Climb Plan (ZX2020001-3, YF2020002)
- the Research Project of Health Commission of Hunan Province (202203034978, 202202055318, 202203231032, 202109031837, 202109032010, 20201020), Science and Technology Innovation Program of Hunan Province(2023ZJ1122, 2023RC3199, 2023RC1073), Hunan Provincial Science and Technology Department (2020TP1018), the Changsha Science and Technology Board (kh2201054), Ascend Foundation of National cancer center (NCC201909B06) and by Hunan Cancer Hospital Climb Plan (ZX2020001-3, YF2020002)
Collapse
Affiliation(s)
- Wenlong Zhang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yidan Shi
- The High School Attached to Hunan Normal University, Changsha, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Shiwen Cui
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shizhen Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinyun Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Lin Liu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Yun Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
- Department of Oncology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, Hunan, China.
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China.
| |
Collapse
|
2
|
Naveed M, Javed K, Aziz T, Abid A, Rehman HM, Alharbi M, Alshammari A, Alasmari AF. Optimizing the resveratrol fragments for novel in silico hepatocellular carcinoma de novo drug design. Sci Rep 2024; 14:17336. [PMID: 39068301 PMCID: PMC11283494 DOI: 10.1038/s41598-024-68403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) incidence varies widely around the world and is impacted by factors such as the prevalence of chronic hepatitis B and C infections, alcohol intake, and access to healthcare. The proteins (BRAF_human, VGFR3_human, EGFR_human and UFO_human) play a vital role in hepatocellular carcinoma prognosis, which involves cell proliferation, cell growth, transmission of extracellular signals to the cell nucleus and consequently regulating many other cellular processes. Fostamatinib has been studied for its possible use in the treatment of hepatocellular cancer because it is a more convenient therapy choice for patients and has minor side effects on the human body. However, resveratrol phytochemical has been investigated for its potential use in the prevention and treatment of a wide range of disorders, including cancer, cardiovascular disease, diabetes, and neurological problems due to its frequently antioxidant, anti-inflammatory, and immune-modulating characteristics, which can aid in the prevention of chronic illnesses. This study developed de novo-based fragment-optimized resveratrol (FOR), enhancing therapeutic potential and lowering toxicity. The docking study was performed with four target proteins, and the findings reveal that the vascular endothelial growth factor receptor 3 protein possessed the highest binding energy values of -7.6 kcal/mol with FOR. Additionally, it completely fulfills the criteria of drug-likeliness rules. Thus, FOR proves to be an efficient drug candidate for future in-vivo studies against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Punjab, Pakistan.
| | - Khushbakht Javed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Punjab, Pakistan
| | - Tariq Aziz
- Laboratory of Animal Health Hygiene and Quality, University of Ioannina, 47132, Arta, Greece.
| | - Amina Abid
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Punjab, Pakistan
| | - Hafiz Muzzammel Rehman
- Department of Biological Sciences, Faculty of Sciences, Superior University, Lahore, 54590, Punjab, Pakistan
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, PO Box 11451, Riyadh, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, PO Box 11451, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, PO Box 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Yoon H, Lee J, Kwon S, Seo SY, Cho S. (S)-3-(3-Fluoro-4-Methoxybenzyl)-5,6,7-Trimethoxychroman-4-One Suppresses the Proliferation of Huh7 Cells by Up-regulating P21 and Inducing G 2/M Phase Arrest. Cancer Genomics Proteomics 2023; 20:754-762. [PMID: 38035711 PMCID: PMC10687728 DOI: 10.21873/cgp.20422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND/AIM Hepatocellular carcinoma (HCC) is a prevalent type of cancer worldwide. Although sorafenib is the only chemotherapy agent used for HCC, there is a need to discover a more potent anticancer agent with reduced side-effects. The compound, (S)-3-(3-fluoro-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-one (FMTC), was designed to inhibit tubulin assembly but its specific mechanisms of action have not been previously investigated. Herein, we investigated the regulation mechanisms by which FMTC affects the proliferation of the HCC cell line, Huh7. MATERIALS AND METHODS The effects of FMTC on cell viability and growth were analyzed in the HCC cell line, Huh7. Cell cycle and apoptosis regulated by FMTC were analyzed using flow cytometry. To verify the regulation of mRNA and protein expression of cell proliferation-related factors by FMTC in Huh7 cells, RT-qPCR and western blot analyses were employed. RESULTS FMTC suppressed cell division dose-dependently by triggering cell cycle arrest at the G2/M phase via p21 up-regulation. The increased phosphorylation of histone H3 on Ser-10 and the condensation of chromatin in FMTC-treated cells indicated mitotic arrest. Prolonged FMTC-induced cell cycle arrest triggered apoptosis. CONCLUSION FMTC inhibits the proliferation of human liver cancer cells by up-regulating p21, thereby inducing cell cycle arrest at the G2/M phase. These findings highlight FMTC as a novel agent for HCC treatment.
Collapse
Affiliation(s)
- Haelim Yoon
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Junho Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sangil Kwon
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Seung-Yong Seo
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea;
| |
Collapse
|
4
|
Du H, Wu H, Kang Q, Liao M, Qin M, Chen N, Huang H, Huang D, Wang P, Tong G. Polyphyllin I attenuates the invasion and metastasis via downregulating GRP78 in drug-resistant hepatocellular carcinoma cells. Aging (Albany NY) 2023; 15:12251-12263. [PMID: 37934581 PMCID: PMC10683619 DOI: 10.18632/aging.205176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/03/2023] [Indexed: 11/08/2023]
Abstract
Drug resistance to chemotherapy agents presents a major obstacle to the effective treatment of hepatocellular carcinoma (HCC), a common type of liver cancer. Increasing evidence indicates a link between drug resistance and the recurrence of HCC. Polyphyllin I (PPI), a promising pharmaceutical candidate, has shown potential therapeutic advantages in the treatment of sorafenib-resistant hepatocellular carcinoma (SR-HCC cells). In this study, we sought to investigate the mechanism underlying the inhibitory effect of PPI on the invasion and metastasis of SR-HCC cells. Our in vitro studies included scratch wound-healing migration assays and transwell assays to examine PPI's effect on HCC cell migration and invasion. Flow cytometry was employed to analyze the accumulation or efflux of chemotherapy drugs. The results of these experiments demonstrated that PPI increased the susceptibility of HCC to sorafenib while inhibiting SR-HCC cell growth, migration, and invasion. Molecular docking analysis revealed that PPI exhibited a higher binding affinity with GRP78. Western blot analysis and immunofluorescence experiments showed that PPI reduced the expression of GRP78, E-cadherin, N-cadherin, Vimentin, and ABCG2 in SR-HCC cells. Interference with and overproduction of GRP78 in vitro impacted the proliferation, migration, invasion, and metastasis of HCC cells. Further examination revealed that PPI hindered the expression of GRP78 protein, resulting in a suppressive effect on SR-HCC cell migration and invasion. Histological examination of tumor tissue substantiated that administering PPI via gavage to HepG2/S xenograft nude mice inhibited tumor growth and significantly reduced tumor size, as evidenced by xenograft experiments involving nude mice. Hematoxylin and eosin (HE) staining of tumor tissue specimens, along with immunohistochemistry (IHC), were conducted to evaluate the expression levels of Ki67, GRP78, N-cadherin, Vimentin, and ABCG2. The results indicated that PPI administration decreased the levels of proteins associated with metastasis and markers of drug resistance in tumor tissues, impeding tumor growth and spread. Overall, our findings demonstrated that PPI effectively suppressed the viability, proliferation, invasion, and metastasis of SR-HCC cells both in vitro and in vivo by modulating GRP78 activity. These findings provide new insights into the mechanism of PPI inhibition of SR-HCC cell invasion and metastasis, highlighting PPI as a potential treatment option for sorafenib-resistant HCC.
Collapse
Affiliation(s)
- Haiyan Du
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518000, Guangdong, China
| | - Haochen Wu
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518000, Guangdong, China
| | - Qinyang Kang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518000, Guangdong, China
| | - Mianmian Liao
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518000, Guangdong, China
| | - Meirong Qin
- Shenzhen Institute for Drug Control, Shenzhen 518000, Guangdong, China
| | - Ning Chen
- Shenzhen Institute for Drug Control, Shenzhen 518000, Guangdong, China
| | - Houshuang Huang
- Shenzhen Institute for Drug Control, Shenzhen 518000, Guangdong, China
| | - Danping Huang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518000, Guangdong, China
- Department of Integrated Traditional Chinese and Western Medicine, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Ping Wang
- Shenzhen Institute for Drug Control, Shenzhen 518000, Guangdong, China
| | - Guangdong Tong
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518000, Guangdong, China
| |
Collapse
|
5
|
Dos Santos NS, Gonçalves DR, Balbinot B, Visioli F. Is GRP78 (Glucose-regulated protein 78) a prognostic biomarker in differents types of cancer? A systematic review and meta-analysis. Pathol Res Pract 2023; 242:154301. [PMID: 36610326 DOI: 10.1016/j.prp.2023.154301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
GRP78 is a chaperone with anti-apoptotic function associated with aggressive tumors. This systematic review aimed to evaluate GRP78 expression in cancer and its relation to prognosis outcomes. This review was conducted in different databases searching for human cancer studies assessing GRP78 immunohistochemical levels on tissue samples. A total of 98 manuscripts were included. In 62% of the studies, GRP78 was associated with a worse prognosis. A meta-analysis included 29 studies that detected a significantly higher expression of GRP78 in cancer tissues (RR= 2.35, 95% CI 1.75-3.15) compared to control. A meta-analysis of 3 and 5-years Overall Survival revealed an increased risk of death for tumors with high expression of GRP78 (RR=1.36, 95%CI 1.16-1,59, I2 = 57%) and (RR=1.65, 95%CI 1.22-2.21, I2 =64%), respectively. GRP78 is an important prognostic biomarker for different types of cancer and a promising therapeutic target.
Collapse
Affiliation(s)
- Natália Souza Dos Santos
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil
| | - Douglas Rodrigues Gonçalves
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil; Oral Medicine Unit, Otorhinolaryngology Service, Hospital de Clínicas de Porto Alegre, Brazil
| | - Bianca Balbinot
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil
| | - Fernanda Visioli
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil; Experimental Center Research, Hospital de Clínicas de Porto Alegre, Brazil.
| |
Collapse
|
6
|
Kumar R, Haider S. Protein network analysis to prioritize key genes in amyotrophic lateral sclerosis. IBRO Neurosci Rep 2021; 12:25-44. [PMID: 34918006 PMCID: PMC8669318 DOI: 10.1016/j.ibneur.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal disease, progressive nature characterizes by loss of both upper and lower motor neuron functions. One of the major challenge is to understand the mechanism of ALS multifactorial nature. We aimed to explore some key genes related to ALS through bioinformatics methods for its therapeutic intervention. Here, we applied a systems biology approach involving experimentally validated 148 ALS-associated proteins and construct ALS protein-protein interaction network (ALS-PPIN). The network was further statistically analysed and identified bottleneck-hubs. The network is also subjected to identify modules which could have similar functions. The interaction between the modules and bottleneck-hubs provides the functional regulatory role of the ALS mechanism. The ALS-PPIN demonstrated a hierarchical scale-free nature. We identified 17 bottleneck-hubs, in which CDC5L, SNW1, TP53, SOD1, and VCP were the high degree nodes (hubs) in ALS-PPIN. CDC5L was found to control highly cluster modules and play a vital role in the stability of the overall network followed by SNW1, TP53, SOD1, and VCP. HSPA5 and HSPA8 acting as a common connector for CDC5L and TP53 bottleneck-hubs. The functional and disease association analysis showed ALS has a strong correlation with mRNA processing, protein deubiquitination, and neoplasms, nervous system, immune system disease classes. In the future, biochemical investigation of the observed bottleneck-hubs and their interacting partners could provide a further understanding of their role in the pathophysiology of ALS. Amyotrophic Lateral Sclerosis protein-protein interaction network (ALS-PPIN) followed a hierarchical scale-free nature. We identified 17 bottleneck-hubs in the ALS-PPIN. Among bottleneck-hubs we found CDC5L, SNW1, TP53, SOD1, and VCP were the high degree nodes (hubs) in the ALS-PPIN. CDC5L is the effective communicator with all five modules in the ALS-PPIN and followed by SNW1 and TP53. Modules are highly associated with various disease classes like neoplasms, nervous systems and others.
Collapse
Key Words
- ALS
- ALS, Amyotrophic Lateral Sclerosis
- ALS-PPIN
- ALS-PPIN, Amyotrophic Lateral Sclerosis Protein-Protein Interaction Network
- ALSoD, Amyotrophic Lateral Sclerosis online database
- BC, Betweenness centrality
- Bn-H, Bottleneck-hub
- Bottleneck-hubs
- CDC5L
- CDC5L, Cell division cycle5-likeprotein
- FUS, Fused in sarcoma
- MCODE, Molecular Complex Detection
- MND, Motor neuron disease
- SMA, Spinal muscular atrophy
- SMN, Survival of motor neuron
- SNW1
- SNW1, SNW domain-containing protein 1
- SOD1
- SOD1, Superoxide dismutase
- TP53
- TP53, Tumor protein p53
- VCP
- VCP, Valosin containing protein
Collapse
Affiliation(s)
- Rupesh Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Sec-62, Uttar Pradesh, India
| | - Shazia Haider
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Sec-62, Uttar Pradesh, India
| |
Collapse
|
7
|
Moldogazieva NT, Zavadskiy SP, Sologova SS, Mokhosoev IM, Terentiev AA. Predictive biomarkers for systemic therapy of hepatocellular carcinoma. Expert Rev Mol Diagn 2021; 21:1147-1164. [PMID: 34582293 DOI: 10.1080/14737159.2021.1987217] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the third cancer-related cause of death worldwide. In recent years, several systemic therapy drugs including sorafenib, lenvatinib, regorafenib, cabozantinib, ramucicurab, nivilumab, and pembrolizumab have been approved by FDA for advanced HCC. However, their insufficient efficacy, toxicity, and drug resistance require clinically applicable and validated predictive biomarkers.Areas covered: Our review covers the recent advancements in the identification of proteomic/genomic/epigenomic/transcriptomic biomarkers for predicting HCC treatment efficacy with the use of multi-kinase inhibitors (MKIs), CDK4/6 inhibitors, and immune checkpoint inhibitors (ICIs). Alpha-fetoprotein, des-carboxyprothrombin, vascular endothelial growth factor, angiopoietin-2, and dysregulated MTOR, VEGFR2, c-KIT, RAF1, PDGFRβ have the potential of proteomic/genomic biomarkers for sorafenib treatment. Alanine aminotransferase, aspartate aminotransferase, and albumin-bilirubin grade can predict the efficacy of other MKIs. Rb, p16, and Ki-67, and genes involved in cell cycle regulation, CDK1-4, CCND1, CDKN1A, and CDKN2A have been proposed for CD4/6 inhibitors, while dysregulated TERT, CTNNB1, TP53 FGF19, and TP53 are found to be predictors for ICI efficacy.Expert opinion: There are still limited clinically applicable and validated predictive biomarkers to identify HCC patients who benefit from systemic therapy. Further prospective biomarker validation studies for HCC personalized systemic therapy are required.
Collapse
Affiliation(s)
- Nurbubu T Moldogazieva
- Laboratory of Bioinformatics, Institute of Translational Medicine and Biotechnology, I.m. Sechenov First Moscow State Medical University (Sechenov University);, Moscow, Russia
| | - Sergey P Zavadskiy
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.m. Sechenov First Moscow State Medical University (Sechenov University), Russia, Russia
| | - Susanna S Sologova
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.m. Sechenov First Moscow State Medical University (Sechenov University), Russia, Russia
| | - Innokenty M Mokhosoev
- Department of Biochemistry and Molecular Biology, N.i. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.i. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
8
|
Karan D. CCL23 in Balancing the Act of Endoplasmic Reticulum Stress and Antitumor Immunity in Hepatocellular Carcinoma. Front Oncol 2021; 11:727583. [PMID: 34671553 PMCID: PMC8522494 DOI: 10.3389/fonc.2021.727583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/17/2021] [Indexed: 11/15/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a cellular process in response to stress stimuli in protecting functional activities. However, sustained hyperactive ER stress influences tumor growth and development. Hepatocytes are enriched with ER and highly susceptible to ER perturbations and stress, which contribute to immunosuppression and the development of aggressive and drug-resistant hepatocellular carcinoma (HCC). ER stress-induced inflammation and tumor-derived chemokines influence the immune cell composition at the tumor site. Consequently, a decrease in the CCL23 chemokine in hepatic tumors is associated with poor survival of HCC patients and could be a mechanism hepatic tumor cells use to evade the immune system. This article describes the prospective role of CCL23 in alleviating ER stress and its impact on the HCC tumor microenvironment in promoting antitumor immunity. Moreover, approaches to reactivate CCL23 combined with immune checkpoint blockade or chemotherapy drugs may provide novel opportunities to target hepatocellular carcinoma.
Collapse
Affiliation(s)
- Dev Karan
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
9
|
Are cachexia-associated tumors transmitTERS of ER stress? Biochem Soc Trans 2021; 49:1841-1853. [PMID: 34338294 DOI: 10.1042/bst20210496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022]
Abstract
Cancer cachexia is associated with deficient response to chemotherapy. On the other hand, the tumors of cachectic patients remarkably express more chemokines and have higher immune infiltration. For immunogenicity, a strong induction of the unfolded protein response (UPR) is necessary. UPR followed by cell surface exposure of calreticulin on the dying tumor cell is essential for its engulfment by macrophages and dendritic cells. However, some tumor cells upon endoplasmic reticulum (ER) stress can release factors that induce ER stress to other cells, in the so-called transmissible ER stress (TERS). The cells that received TERS produce more interleukin 6 (IL-6) and chemokines and acquire resistance to subsequent ER stress, nutrient deprivation, and genotoxic stress. Since ER stress enhances the release of extracellular vesicles (EVs), we suggest they can mediate TERS. It was found that ER stressed cachexia-inducing tumor cells transmit factors that trigger ER stress in other cells. Therefore, considering the role of EVs in cancer cachexia, the release of exosomes can possibly play a role in the process of blunting the immunogenicity of the cachexia-associated tumors. We propose that TERS can cause an inflammatory and immunosuppressive phenotype in cachexia-inducing tumors.
Collapse
|
10
|
Chopra M, Sgro A, Norret M, Blancafort P, Iyer KS, Evans CW. SP94-Targeted Nanoparticles Enhance the Efficacy of Sorafenib and Improve Liver Cancer Cell Discrimination. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Meenu Chopra
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Agustin Sgro
- The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, Western Australia 6009, Australia
| | - Marck Norret
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Pilar Blancafort
- The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, Western Australia 6009, Australia
| | - K. Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Cameron W. Evans
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
11
|
Guney Eskiler G, Yanar S, Akpinar G, Kasap M. Proteomic analysis of talazoparib resistance in triple-negative breast cancer cells. J Biochem Mol Toxicol 2020; 35:e22678. [PMID: 33325624 DOI: 10.1002/jbt.22678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/18/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022]
Abstract
Talazoparib (TAL) has been effectively used for the treatment of gBRCA1/2-mutated HER2-negative metastatic breast cancer. However, acquired resistance to TAL remains a major challenge that impedes the clinical success of TAL treatment. Therefore, elucidation of proteins and pathways that contribute to or are affected by the TAL resistance is urgently needed to improve the treatment response and provide novel treatment strategies for advanced metastatic breast cancers. Herein, we aimed to investigate the altered protein signatures in TAL-resistant triple-negative breast cancer (TNBC) cells by comparing with the TNBC parental cell line via proteomic analysis. After validation of TAL-resistance by WST-1 and Annexin V analysis, two-dimensional gel electrophoresis (2DE)-based proteomic analysis coupled to matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF) mass spectrometry was performed to identify differentially regulated proteins. The findings revealed the identities of 10 differentially regulated proteins in TAL-resistant TNBC cells whose bioinformatic analysis predicted changes in EGF/FGF signaling pathways as well as in the AMPK signaling pathway. In addition, phosphorylation/dephosphorylation dynamics were predicted to be altered in TAL-resistant cells. The proteins identified in this study might be the targets to overcome TAL resistance for the treatment of TNBC.
Collapse
Affiliation(s)
- Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Sevinc Yanar
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Gurler Akpinar
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Murat Kasap
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
12
|
Poulsen TBG, Karamehmedovic A, Aboo C, Jørgensen MM, Yu X, Fang X, Blackburn JM, Nielsen CH, Kragstrup TW, Stensballe A. Protein array-based companion diagnostics in precision medicine. Expert Rev Mol Diagn 2020; 20:1183-1198. [PMID: 33315478 DOI: 10.1080/14737159.2020.1857734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The development of companion diagnostics (CDx) will increase efficacy and cost-benefit markedly, compared to the currently prevailing trial-and-error approach for treatment. Recent improvements in high-throughput protein technology have resulted in large amounts of predictive biomarkers that are potentially useful components of future CDx assays. Current high multiplex protein arrays are suitable for discovery-based approaches, while low-density and more simple arrays are suitable for use in point-of-care facilities. AREA COVERED This review discusses the technical platforms available for protein array focused CDx, explains the technical details of the platforms and provide examples of clinical use, ranging from multiplex arrays to low-density clinically applicable arrays. We thereafter highlight recent predictive biomarkers within different disease areas, such as oncology and autoimmune diseases. Lastly, we discuss some of the challenges connected to the implementation of CDx assays as point-of-care tests. EXPERT OPINION Recent advances in the field of protein arrays have enabled high-density arrays permitting large biomarker discovery studies, which are beneficial for future CDx assays. The density of protein arrays range from a single protein to proteome-wide arrays, allowing the discovery of protein signatures that may correlate with drug response. Protein arrays will undoubtedly play a key role in future CDx assays.
Collapse
Affiliation(s)
- Thomas B G Poulsen
- Department of Health Science and Technology, Aalborg University , Aalborg, Denmark.,Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences , China
| | - Azra Karamehmedovic
- Department of Health Science and Technology, Aalborg University , Aalborg, Denmark.,Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences , China
| | - Christopher Aboo
- Department of Health Science and Technology, Aalborg University , Aalborg, Denmark.,Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences , China
| | - Malene Møller Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital , Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University , Aalborg, Denmark
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics , Beijing, China
| | - Xiangdong Fang
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences , China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , China
| | - Jonathan M Blackburn
- Department of Integrative Biomedical Sciences & Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa.,Sengenics Corporation Pte Ltd , Singapore
| | - Claus H Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet , Copenhagen, Denmark
| | - Tue W Kragstrup
- Department of Biomedicine, Aarhus University , Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital , Aarhus, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University , Aalborg, Denmark
| |
Collapse
|
13
|
Gross genetic alterations and genetic heterogeneity in a periductal stromal tumor of the breast. Mol Cytogenet 2020; 13:49. [PMID: 33292379 PMCID: PMC7686689 DOI: 10.1186/s13039-020-00516-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/02/2020] [Indexed: 12/05/2022] Open
Abstract
Background Periductal stromal tumors of the breast are exceedingly rare biphasic breast tumors with close morphological relationship to phyllodes tumors. So far, results of genetic analyses on these tumors have not been reported. Case presentation A 50 year old female patient was admitted to the hospital because of a palpable lump in her right breast with a diameter of approximately 5–6 cm which was surgically removed by lumpectomy. Histologic examination revealed a biphasic breast tumor classified as periductal stromal tumor. Array analysis showed a pseudotetraploid tumor with a copy number of 4 for most of the chromosomes. In addition, further changes of chromosomes 1, 5, and 6 were noted but there were no mutations of MED12 as those frequently seen in fibroadenomas or phyllodes tumors. Conclusions The genetic alterations observed indicate karyotypic evolution leading to marked heterogeneity which fits with the tumor´s histologic and cytologic appearance as well as with its malignant behavior. Because of the absence of genetic similarities with phyllodes tumors, the case does not offer evidence for a common entity but rather suggests the existence of two independent entities.
Collapse
|
14
|
Choi C, Cho Y, Son A, Shin SW, Lee YJ, Park HC. Therapeutic Potential of (-)-Agelamide D, a Diterpene Alkaloid from the Marine Sponge Agelas sp., as a Natural Radiosensitizer in Hepatocellular Carcinoma Models. Mar Drugs 2020; 18:md18100500. [PMID: 33003597 PMCID: PMC7600430 DOI: 10.3390/md18100500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy (RT) is an effective local treatment for unresectable hepatocellular carcinoma (HCC), but there are currently no predictive biomarkers to guide treatment decision for RT or adjuvant systemic drugs to be combined with RT for HCC patients. Previously, we reported that extracts of the marine sponge Agelas sp. may contain a natural radiosensitizer for HCC treatment. In this study, we isolated (−)-agelamide D from Agelas extract and investigated the mechanism underlying its radiosensitization. (−)-Agelamide D enhanced radiation sensitivity of Hep3B cells with decreased clonogenic survival and increased apoptotic cell death. Furthermore, (−)-agelamide D increased the expression of protein kinase RNA-like endoplasmic reticulum kinase/inositol-requiring enzyme 1α/activating transcription factor 4 (PERK/eIF2α/ATF4), a key pathway of the unfolded protein response (UPR) in multiple HCC cell lines, and augmented radiation-induced UPR signaling. In vivo xenograft experiments confirmed that (−)-agelamide D enhanced tumor growth inhibition by radiation without systemic toxicity. Immunohistochemistry results showed that (−)-agelamide D further increased radiation-induced ATF4 expression and apoptotic cell death, which was consistent with our in vitro finding. Collectively, our results provide preclinical evidence that the use of UPR inducers such as (−)-agelamide D may enhance the efficacy of RT in HCC management.
Collapse
Affiliation(s)
- Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (C.C.); (A.S.); (S.-W.S.)
| | - Yeonwoo Cho
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyangro, Busan 49111, Korea;
- Department of Applied Ocean Science, University of Science and Technology, Daejeon 34113, Korea
| | - Arang Son
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (C.C.); (A.S.); (S.-W.S.)
| | - Sung-Won Shin
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (C.C.); (A.S.); (S.-W.S.)
- Department of Radiation Oncology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Yeon-Ju Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyangro, Busan 49111, Korea;
- Department of Applied Ocean Science, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (Y.-J.L.); (H.C.P.)
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (C.C.); (A.S.); (S.-W.S.)
- Department of Radiation Oncology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (Y.-J.L.); (H.C.P.)
| |
Collapse
|
15
|
Omega-3 Fatty Acid-Enriched Fish Oil and Selenium Combination Modulates Endoplasmic Reticulum Stress Response Elements and Reverses Acquired Gefitinib Resistance in HCC827 Lung Adenocarcinoma Cells. Mar Drugs 2020; 18:md18080399. [PMID: 32751169 PMCID: PMC7460277 DOI: 10.3390/md18080399] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC)-carrying specific epidermal growth factor receptor (EGFR) mutations can be effectively treated by a tyrosine kinase inhibitor such as gefitinib. However, the inevitable development of acquired resistance leads to the eventual failure of therapy. In this study, we show the combination effect of omega-3 fatty acid-enriched fish oil (FO) and selenium (Se) on reversing the acquired gefitinib-resistance of HCC827 NSCLC cells. The gefitinib-resistant subline HCC827GR possesses lowered proapoptotic CHOP (CCAAT/enhancer-binding protein homologous protein) and elevated cytoprotective GRP78 (glucose regulated protein of a 78 kDa molecular weight) endoplasmic reticulum (ER) stress response elements, and it has elevated β-catenin and cyclooxygenase-2 (COX-2) levels. Combining FO and Se counteracts the above features of HCC827GR cells, accompanied by the suppression of their raised epithelial-to-mesenchymal transition (EMT) and cancer stem markers, such as vimentin, AXL, N-cadherin, CD133, CD44, and ABCG2. Accordingly, an FO and Se combination augments the gefitinib-mediated growth inhibition and apoptosis of HCC827GR cells, along with the enhanced activation of caspase -3, -9, and ER stress-related caspase-4. Intriguingly, gefitinib further increases the elevated ABCG2 and cancer stem-like side population in HCC827GR cells, which can also be diminished by the FO and Se combination. The results suggest the potential of combining FO and Se in relieving the acquired resistance of NSCLC patients to targeted therapy.
Collapse
|