1
|
Sukkho T, Khanongnuch C, Lumyong S, Ruangsuriya J, Apichai S, Surh YJ, Pattananandecha T, Saenjum C. Osteoprotective Activity of Sambucus javanica Reinw Ex Blume subsp. javanica Leaf Extracts by Suppressing ROS Production. Antioxidants (Basel) 2025; 14:252. [PMID: 40227226 PMCID: PMC11939775 DOI: 10.3390/antiox14030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 04/15/2025] Open
Abstract
Sambucus javanica subsp. javanica (SJ) has been used in traditional medicine in the northern region of Thailand for healing bone fractures; however, studies on how this plant stimulates bone formation are still scarce. The present study aimed to investigate the potential of crude extracts and fractions obtained from SJ leaves for osteoporotic protection. All samples were investigated in murine preosteoblast MC3T3-E1 cells for bone formation and resorption biomarkers, namely alkaline phosphatase (ALP), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor-κB ligand (RANKL), and the OPG/RANKL ratio. Additionally, calcium deposits were determined using the alizarin red S staining technique. The results indicated that the crude water and the crude ethanol extracts contained gallic acid, rutin, and chlorogenic acid as major compounds. The extracts stimulated osteoblastic cell differentiation and enhanced osteoprotective activity, as measured by a significant increase in ALP activity, OC, OPG, the OPG/RANKL ratio, and the degree of calcification. Additionally, they exhibited a negative impact on bone resorption by significantly reducing RANKL and reactive oxygen species (ROS) production. Therefore, our findings add novel evidence indicating that the SJ crude extracts from water and ethanol extraction could be further utilized as a natural active pharmaceutical ingredient (NAPI) for the development of bone health products.
Collapse
Affiliation(s)
- Treethip Sukkho
- Department of Biotechnology, Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand; (C.K.); (J.R.); (S.A.)
| | - Chartchai Khanongnuch
- Research Center for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand; (C.K.); (J.R.); (S.A.)
- Research Center for Multidisciplinary Approaches to Miang, Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jetsada Ruangsuriya
- Research Center for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand; (C.K.); (J.R.); (S.A.)
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sutasinee Apichai
- Research Center for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand; (C.K.); (J.R.); (S.A.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Young-Joon Surh
- College of Pharmacy, Seoul National University, Seoul 08828, Republic of Korea;
| | - Thanawat Pattananandecha
- Research Center for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand; (C.K.); (J.R.); (S.A.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chalermpong Saenjum
- Research Center for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand; (C.K.); (J.R.); (S.A.)
- Research Center for Multidisciplinary Approaches to Miang, Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Abraham TJ, Roy A, Singha J, Rajisha R, Nadella RK, Patil PK. Muscle biochemistry and residue accretion in male Oreochromis niloticus fries administered therapeutic, subtherapeutic and overdoses of dietary oxytetracycline. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:35. [PMID: 39827248 DOI: 10.1007/s10695-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025]
Abstract
Oxytetracycline (OTC), an approved antibiotic for aquaculture, is under strict control and regulatory endeavour. This study compared the effects of oral administration of graded doses of OTC comprising the therapeutic (80 mg/kg biomass/day), subtherapeutic (40 mg) and overdoses (240, 400 and 800 mg) in male Nile tilapia Oreochromis niloticus fries (0.64 ± 0.02 g) when fed for 10 consecutive days and observed for 22 days post-OTC-dosing (POD) period. A dose-dependent reduction in food intake, survival and muscle calcium, chloride, malondialdehyde and superoxide dismutase was observed, while the muscle glucose significantly increased. However, the changes were reversible with dose cessation. The fries of the therapeutic dose group recorded the maximum biomass, while the overdosed groups recorded a significant decline in weight gain. On day 10 of dosing, all groups' muscle OTC residues peaked. The residues in the subtherapeutic and therapeutic dose groups were lowered below the maximum residue limit (MRL) of 100 ng/g on day 10 POD. The residues were further reduced close to the MRL in the overdosed groups on day 22 POD. The fries tolerated the therapeutic dose well and showed effective adaptive responses. Considering muscle residue accretion and physiological responses, OTC can be endorsed as a safe drug for in-feed administration to tilapia fries. However, the sensible use of this approved drug is essential for sustainable aquaculture.
Collapse
Affiliation(s)
- Thangapalam Jawahar Abraham
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata, 700094, West Bengal, India.
| | - Anwesha Roy
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata, 700094, West Bengal, India
| | - Jasmine Singha
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata, 700094, West Bengal, India
| | - Ravindran Rajisha
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology, Willington Island, Cochin, 682029, India
| | - Ranjit Kumar Nadella
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology, Willington Island, Cochin, 682029, India
| | - Prasanna Kumar Patil
- Aquatic Animal Health and Environment Division, ICAR-Central Institute of Brackishwater Aquaculture, Raja Annamalai Puram, Chennai, 600028, Tamil Nadu, India
| |
Collapse
|
3
|
Lv W, Hu S, Yang F, Lin D, Zou H, Zhang W, Yang Q, Li L, Chen X, Wu Y. Heme oxygenase-1: potential therapeutic targets for periodontitis. PeerJ 2024; 12:e18237. [PMID: 39430558 PMCID: PMC11488498 DOI: 10.7717/peerj.18237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
Periodontitis is one of the most prevalent inflammatory disease worldwide, which affects 11% of the global population and is a major cause of tooth loss. Recently, oxidative stress (OS) has been found to be the pivital pathophysiological mechanism of periodontitis, and overactivated OS will lead to inflammation, apoptosis, pyroptosis and alveolar bone resorption. Interestingly, heme oxygenase-1 (HO-1), a rate-limiting enzyme in heme degradation, can exert antioxidant activites through its products-carbon monoxide (CO), Fe2+, biliverdin and bilirubin in the inflammatory microenvironment, thus exhibiting anti-inflammatory, anti-apoptotic, anti-pyroptosis and bone homeostasis-regulating properties. In this review, particular focus is given to the role of HO-1 in periodontitis, including the spatial-temporal expression in periodental tissues and pathophysiological mechanisms of HO-1 in periodontitis, as well as the current therapeutic applications of HO-1 targeted drugs for periodontitis. This review aims to elucidate the potential applications of various HO-1 targeted drug therapy in the management of periodontitis, investigate the influence of diverse functional groups on HO-1 and periodontitis, and pave the way for the development of a new generation of therapeutics that will benefit patients suffering from periodontitis.
Collapse
Affiliation(s)
- Weiwei Lv
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shichen Hu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Fei Yang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Dong Lin
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Haodong Zou
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Wanyan Zhang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qin Yang
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lihua Li
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaowen Chen
- School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yan Wu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
4
|
Qiu Y, Yan F, Yu H, Li H, Xia S, Zhang J, Zhu J. The protective effects of Kefir extract (KE) on intestinal damage in larval zebrafish induced by Oxytetracycline: Insights into intestinal function, morphology, and molecular mechanisms. Food Res Int 2024; 190:114642. [PMID: 38945628 DOI: 10.1016/j.foodres.2024.114642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
The antibiotic oxytetracycline (OTC) can be detected in contemporary natural aquatic environments and has been implicated in causing intestinal damage in humans exposed to OTC-contaminated food or water. The irreversible damage caused by high concentrations of OTC to the intestine suggests that treatment through dietary means could still be necessary. This study proved the effectiveness of kefir extract (KE) in reversing intestinal damage caused by oxytetracycline (OTC) exposure. Following a 24-hour KE treatment subsequent to OTC exposure from 3 to 8 days post-fertilization of zebrafish larvae, molecular-level and microbiomic assessments revealed significant improvements. These included reduced expression of proinflammatory factors (IL-8 and IL-1β), increased antioxidant levels, and reversed unhealthy distribution of intestinal microbiota. Furthermore, KE supplementation showed potential in enhancing intestinal motility in the experiment of Nile red staining and fluorescent microbead transit. However, histological analysis showed that this short-term treatment with KE only partially reversed the intestinal morphological changes induced by OTC, suggesting that a longer treatment period might be necessary for complete restoration.
Collapse
Affiliation(s)
- Yang Qiu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fujie Yan
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Huilin Yu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Honghao Li
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shengyao Xia
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiajin Zhu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
5
|
Cardioprotective effects of minocycline against doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2023; 158:114055. [PMID: 36495663 DOI: 10.1016/j.biopha.2022.114055] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Doxorubicin (Dox)-induced cardiotoxicity has limited its use. Inflammation, oxidative stress, and apoptosis have important roles in Dox-induced cardiotoxicity. Minocycline (Min) is an antibiotic with anti-inflammatory, anti-oxidant and anti-apoptotic properties. Here, the cardioprotective effects of Min against Dox-induced cardiotoxicity in adult male rats were evaluated. METHODS Forty-two adult male rats were divided into six groups including control group (normal saline), Dox group, Min groups (Min 45 mg/kg and Min 90 mg/kg), and treatment groups (Dox + Min 45 mg/kg and Dox + Min 90 mg/kg). Dox (2.5 mg/kg) was administered three times a week for two weeks, and Min once a day for three weeks via intraperitoneal route. Cardiac tissue sections were stained with hematoxylin and eosin for histological examination. The activities of lactate dehydrogenase (LDH) and creatine kinase MB (CK-MB) in serum as well as the activity of catalase and superoxide dismutase (SOD) in cardiac tissue were measured. Cardiac tissue levels of malondialdehyde (MDA), TNF-α, and IL-1β were also measured using ELISA. RESULTS Compared with the Dox group, treatment with Min significantly decreased the activity of LDH and CK-MB. Min also increased the activity of catalase and SOD in the tissue samples. The results showed that the levels of MDA, TNF-α, and IL-1β in cardiac tissue samples were significantly lower in the Min groups compared with the Dox group. In addition, histopathological results showed that Min reduced the tissue damage caused by Dox. CONCLUSION Min reduced Dox-induced cardiotoxicity. The anti-oxidant and anti-inflammatory properties of Min may contribute to its protective effects.
Collapse
|
6
|
Minocycline-Derived Silver Nanoparticles for Assessment of Their Antidiabetic Potential against Alloxan-Induced Diabetic Mice. Pharmaceutics 2021; 13:pharmaceutics13101678. [PMID: 34683970 PMCID: PMC8541160 DOI: 10.3390/pharmaceutics13101678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/10/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
Diabetes is a life-threatening disease, and chronic diabetes affects parts of the body including the liver, kidney, and pancreas. The root cause of diabetes is mainly associated with oxidative stress produced by reactive oxygen species. Minocycline is a drug with a multi-substituted phenol ring and has shown excellent antioxidant activities. The objective of the present study was to investigate the antidiabetic potential of minocycline-modified silver nanoparticles (mino/AgNPs) against alloxan-induced diabetic mice. The mino/AgNPs were synthesized using minocycline as reducing and stabilizing agents. UV-visible, FT-IR, X-ray diffraction (XRD), and transmission electron microscopy (TEM) were applied for the characterization of mino/AgNPs. A 2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay was conducted to determine the antioxidant potential of newly synthesized mino/AgNPs. The results revealed that the mino/AgNPs showed higher radical scavenging activity (IC50 = 19.7 µg/mL) compared to the minocycline (IC50 = 26.0 µg/mL) and ascorbic acid (IC50 = 25.2 µg/mL). Further, mino/AgNPs were successfully employed to examine their antidiabetic potential against alloxan-induced diabetic mice. Hematological results showed that the mice treated with mino/AgNPs demonstrated a significant decrease in fasting blood glucose level and lipid profile compared to the untreated diabetic group. A histopathological examination confirmed that the diabetic mice treated with mino/AgNPs showed significant recovery and revival of the histo-morphology of the kidney, central vein of the liver, and islet cells of the pancreas compared to the untreated diabetic mice. Hence, mino/AgNPs have good antidiabetic potential and could be an appropriate nanomedicine to prevent the development of diabetes.
Collapse
|
7
|
Abraham TJ, Julinta RB, Roy A, Singha J, Patil PK, Kumar KA, Paria P, Behera BK. Dietary therapeutic dose of oxytetracycline negatively influences the antioxidant capacity and immune-related genes expression in Nile tilapia Oreochromis niloticus (L.). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103685. [PMID: 34058379 DOI: 10.1016/j.etap.2021.103685] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Effects of the dietary therapeutic dose of oxytetracycline (OTC) at 80 mg/kg biomass/day for consecutive 10 days on the behaviour, feed intake, mortality, residue accumulation and depletion, antioxidant capacity and immune-related genes expression in juvenile Nile tilapia Oreochromis niloticus were evaluated. OTC-dosing caused mortalities, reduced feed intake, and biomass reduction at 24.5-28.5 °C. OTC residues recorded on day 10 (161.40 ± 11.10 ng/g) were within the maximum residue limits of the Codex Alimentarius. The withdrawal period was 7 days as per the European Commission's regulation. Traces of residues were present even on day 42 post-OTC-dosing. Dietary OTC reduced the antioxidant capacity of the liver and muscle tissues and down-regulated the expression of tumour necrosis factor-α, interleukin-1β, and heat shock protein-70 genes in the liver significantly during the dosing period. The data generated on the biosafety of OTC-dosing may offer inputs for the development of management strategies in maintaining fish health and food safety.
Collapse
Affiliation(s)
- Thangapalam Jawahar Abraham
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata, West Bengal, 700094, India.
| | - Roy Beryl Julinta
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata, West Bengal, 700094, India
| | - Anwesha Roy
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata, West Bengal, 700094, India
| | - Jasmine Singha
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata, West Bengal, 700094, India
| | - Prasanna Kumar Patil
- Aquatic Animal Health and Environment Division, ICAR-Central Institute of Brackishwater Aquaculture, Raja Annamalai Puram, Chennai, Tamil Nadu, 600028, India
| | - Kesavan Ashok Kumar
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology, Willington Island, Cochin, Kerala, 682029, India
| | - Prasenjit Paria
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Bijay Kumar Behera
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| |
Collapse
|
8
|
Orabi MAA, Zidan SAH, Sakagami H, Murakami Y, Ali AA, Alyami HS, Alshabi AM, Matsunami K. Antileishmanial and lung adenocarcinoma cell toxicity of Withania somnifera (Linn.) dunal root and fruit extracts. Nat Prod Res 2021; 36:4231-4237. [PMID: 34520289 DOI: 10.1080/14786419.2021.1973462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study aims to evaluate the anti-Leishmania major and the lung adenocarcinoma (A549) cytotoxicity of Withania somnifera root and fruit. The total extracts were obtained by homogenisation in aqueous MeOH, and the sub-extracts [n-hexane, ethyl acetate (EtOAc), n-butanol (n-BuOH), and methanol (MeOH)] were obtained by flash chromatography. The activity evaluation showed that n-BuOH sub-extracts from root and fruit exhibited noticeable antileishmanial promastigote properties. The n-hexane and EtOAc sub-extracts from both organs, and the MeOH sub-extract from the fruit exerted mild to moderate effects on the promastigotes. In-vitro growth-inhibitory test results on axenic amastigote and cytotoxicity testing on macrophages (RAW264.7), the parasite-host at the amastigote stage, revealed that the activity was mainly concentrated in the root EtOAc and n-BuOH sub-extracts and to a lesser extent the fruit MeOH and EtOAc, and the root n-hexane sub-extracts. Only the roots' EtOAc and n-BuOH sub-extracts demonstrated low cytotoxicity on the A549 cell line.
Collapse
Affiliation(s)
- Mohamed A A Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-branch, Assiut, Egypt
| | - Sabry A H Zidan
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-branch, Assiut, Egypt.,Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), Sakado, Saitama, Japan
| | - Yukio Murakami
- Division of Oral Diagnosis and General Dentistry, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Sakado, Japan
| | - Ashraf A Ali
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Hamad S Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Ali Mohamed Alshabi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| |
Collapse
|
9
|
Huang YK, Tseng KF, Tsai PH, Wang JS, Lee CY, Shen MY. IL-8 as a Potential Therapeutic Target for Periodontitis and Its Inhibition by Caffeic Acid Phenethyl Ester In Vitro. Int J Mol Sci 2021; 22:ijms22073641. [PMID: 33807391 PMCID: PMC8037988 DOI: 10.3390/ijms22073641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 01/04/2023] Open
Abstract
Salivary levels of interleukin-8 (IL-8) are elevated in patients with periodontitis. Caffeic acid phenethyl ester (CAPE) improves the periodontal status in subjects. However, whether CAPE can reduce IL-8 expression is unclear. We collected saliva to determine proinflammatory cytokine levels and used subgingival calculus and surrounding tissues from patients with periodontitis for oral microbiota analysis via 16s ribosomal RNA gene sequencing. THP-1 cells were stimulated with sterile-filtered saliva from patients, and target gene/protein expression was assessed. IL-8 mRNA expression was analyzed in saliva-stimulated THP-1 cells treated with CAPE and the heme oxygenase-1 (HO-1) inhibitor tin-protoporphyrin (SnPP). In 72 symptomatic individuals, IL-8 was correlated with periodontal inflammation (bleeding on probing, r = 0.45; p < 0.001) and disease severity (bleeding on probing, r = 0.45; p < 0.001) but not with the four oral microbiota species tested. Reduced salivary IL-8 secretion was correlated with effective periodontitis treatment (r = 0.37, p = 0.0013). In THP-1 cells, saliva treatment induced high IL-8 expression and IKK2 and nuclear factor-κB (NF-κB) phosphorylation. However, the IKK inhibitor BMS-345541, NF-κB inhibitor BAY 11-7082, and CAPE attenuated saliva-induced IL-8 expression. CAPE induced HO-1 expression and inhibited IKK2, IκBα, and NF-κB phosphorylation. Blocking HO-1 decreased the anti-inflammatory activity of CAPE. The targeted suppression of IL-8 production using CAPE reduces inflammation and periodontitis.
Collapse
Affiliation(s)
- Yung-Kai Huang
- Department of Oral Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Kuo-Feng Tseng
- Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan;
| | - Ping-Hsuan Tsai
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan; (P.-H.T.); (J.-S.W.)
| | - Jie-Sian Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan; (P.-H.T.); (J.-S.W.)
- Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chang-Yu Lee
- Department of Dentistry, Taipei Medical University Hospital, Taipei 110301, Taiwan;
| | - Ming-Yi Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan; (P.-H.T.); (J.-S.W.)
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Nursing, Asia University, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-(4)-2205-3366 (ext. 5809)
| |
Collapse
|