1
|
Küng AJ, Dykun I, Totzeck M, Mincu R, Michel L, Kill C, Witzke O, Buer J, Rassaf T, Mahabadi AA. Epicardial adipose tissue in patients with and without COVID-19 infection. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2025; 54:100548. [PMID: 40322277 PMCID: PMC12049814 DOI: 10.1016/j.ahjo.2025.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/09/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025]
Abstract
Background Acute COVID-19 infection frequently affects the cardiovascular system and causes acute myocardial injury. Epicardial Adipose Tissue (EAT), a visceral adipose tissue surrounding the myocardium and coronary arteries, has unique paracrine and endocrine effects, modulating the heart's inflammatory environment. Systemic inflammation stimulates TNF-α and Interleukin-6 secretion from EAT, contributing to cytokine storms and intensifying systemic responses. We aimed to determine whether EAT amount differs in patients with and without acute COVID-19 infection and myocardial injury. Methods This study analyzed the CoV-COR registry cohort, conducted at the University Hospital Essen, including patients with symptoms suggestive of COVID-19 infection. The infection was confirmed by PCR. EAT thickness was measured by two-dimensional TTE. Results A total of 296 patients (mean age 63.6 ± 17.26 years, 55.4 % male) were included. Patients with confirmed COVID-19 infection were younger, more frequently treated with antihypertensive medication, and had higher BMI and systolic blood pressures. Univariate logistic regression showed no association between EAT and myocardial injury 0.97 (0.74; 1.28, p = 0.82). A trend towards an association was observed between increasing EAT thickness and COVID-19 infection 1.25 (0.99; 1.59, p = 0.060). Adjusting for age and gender strengthened the association, with a 48 % (1.14; 1.93, p = 0.004) increased odds of COVID-19 infection per increase in EAT thickness. Multivariable regression yielded consistent effect sizes 1.47 (1.01; 2.16, p = 0.047). Conclusion EAT thickness is associated with the presence of an acute COVID-19 infection but not with a myocardial injury. Further research is needed to assess if systemic viral infection induces dynamic changes in EAT.
Collapse
Affiliation(s)
- Alexander J. Küng
- West German Heart and Vascular Center Essen, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstr, 55, 45147 Essen, Germany
| | - Iryna Dykun
- West German Heart and Vascular Center Essen, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstr, 55, 45147 Essen, Germany
| | - Matthias Totzeck
- West German Heart and Vascular Center Essen, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstr, 55, 45147 Essen, Germany
| | - Raluca Mincu
- West German Heart and Vascular Center Essen, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstr, 55, 45147 Essen, Germany
| | - Lars Michel
- West German Heart and Vascular Center Essen, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstr, 55, 45147 Essen, Germany
| | - Clemens Kill
- Center for Emergency Medicine, University Hospital Essen, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, Germany
| | - Tienush Rassaf
- West German Heart and Vascular Center Essen, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstr, 55, 45147 Essen, Germany
| | - Amir A. Mahabadi
- West German Heart and Vascular Center Essen, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstr, 55, 45147 Essen, Germany
| |
Collapse
|
2
|
Oda JM, den Hartigh AB, Jackson SM, Tronco AR, Fink SL. The unfolded protein response components IRE1α and XBP1 promote human coronavirus infection. mBio 2023; 14:e0054023. [PMID: 37306512 PMCID: PMC10470493 DOI: 10.1128/mbio.00540-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/20/2023] [Indexed: 06/13/2023] Open
Abstract
The cellular processes that support human coronavirus replication and contribute to the pathogenesis of severe disease remain incompletely understood. Many viruses, including coronaviruses, cause endoplasmic reticulum (ER) stress during infection. IRE1α is a component of the cellular response to ER stress that initiates non-conventional splicing of XBP1 mRNA. Spliced XBP1 encodes a transcription factor that induces the expression of ER-related targets. Activation of the IRE1α-XBP1 pathway occurs in association with risk factors for severe human coronavirus infection. In this study, we found that the human coronaviruses HCoV-OC43 (human coronavirus OC43) and SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) both robustly activate the IRE1α-XBP1 branch of the unfolded protein response in cultured cells. Using IRE1α nuclease inhibitors and genetic knockdown of IRE1α and XBP1, we found that these host factors are required for optimal replication of both viruses. Our data suggest that IRE1α supports infection downstream of initial viral attachment and entry. In addition, we found that ER stress-inducing conditions are sufficient to enhance human coronavirus replication. Furthermore, we found markedly increased XBP1 in circulation in human patients with severe coronavirus disease 2019 (COVID-19). Together, these results demonstrate the importance of IRE1α and XBP1 for human coronavirus infection. IMPORTANCE There is a critical need to understand the cellular processes co-opted during human coronavirus replication, with an emphasis on identifying mechanisms underlying severe disease and potential therapeutic targets. Here, we demonstrate that the host proteins IRE1α and XBP1 are required for robust infection by the human coronaviruses, SARS-CoV-2 and HCoV-OC43. IRE1α and XBP1 participate in the cellular response to ER stress and are activated during conditions that predispose to severe COVID-19. We found enhanced viral replication with exogenous IRE1α activation, and evidence that this pathway is activated in humans during severe COVID-19. Together, these results demonstrate the importance of IRE1α and XBP1 for human coronavirus infection.
Collapse
Affiliation(s)
- Jessica M. Oda
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Andreas B. den Hartigh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Shoen M. Jackson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Ana R. Tronco
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Susan L. Fink
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Alipour S, Mahmoudi L, Ahmadi F. Pulmonary drug delivery: an effective and convenient delivery route to combat COVID-19. Drug Deliv Transl Res 2023; 13:705-715. [PMID: 36260223 PMCID: PMC9580423 DOI: 10.1007/s13346-022-01251-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 02/05/2023]
Abstract
The recent outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China has spread rapidly around the world, leading to a widespread and urgent effort to develop and use comprehensive approaches in the treatment of COVID-19. While oral therapy is accepted as an effective and simple method, since the primary site of infection and disease progression of COVID-19 is mainly through the lungs, inhaled drug delivery directly to the lungs may be the most appropriate route of administration. To prevent or treat primary SARS-CoV-2 infections, it is essential to target the virus port of entry in the respiratory tract and airway epithelium, which requires rapid and high-intensity inhibition or control of viral entry or replication. To achieve success in this field, inhalation therapy is the most attractive treatment approach due to efficacy/safety profiles. In this review article, pulmonary drug delivery as a unique treatment option in lung diseases will be briefly reviewed. Then, possible inhalation therapies for the treatment of symptoms of COVID-19 will be discussed and the results of clinical trials will be presented. By pulmonary delivery of the currently approved drugs for COVID-19, efficacy of the treatment would be improved along with reducing systemic side effects.
Collapse
Affiliation(s)
- Shohreh Alipour
- Pharmaceutical Sciences Research Center and Department of Food & Drug Quality Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Laleh Mahmoudi
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ahmadi
- Center for Nanotechnology in Drug Delivery and Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Kole E, Jadhav K, Sirsath N, Dudhe P, Verma RK, Chatterjee A, Naik J. Nanotherapeutics for pulmonary drug delivery: An emerging approach to overcome respiratory diseases. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
5
|
Sheta NM, Boshra SA, Mamdouh MA, Abdel-Haleem KM. Design and optimization of silymarin loaded in lyophilized fast melt tablets to attenuate lung toxicity induced via HgCl 2 in rats. Drug Deliv 2022; 29:1299-1311. [PMID: 35470762 PMCID: PMC9045763 DOI: 10.1080/10717544.2022.2068696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
The present study aimed to develop fast melting tablets (FMTs) using silymarin (SM) owing to FMTs rapid disintegration and dissolution. FMTs represent a pathway to help patients to increase their compliance level of treatment via facile administration without water or chewing beside reduction cost. One of the methods for FMTs formulation is lyophilization. Optimization of SM-FMTs was developed via a 32 factorial design. All prepared SM-FMTs were evaluated for weight variation, thickness, breaking force, friability, content uniformity, disintegration time (DT), and % SM released. The optimized FMT formula was selected based on the criteria of scoring the fastest DT and highest % SM released after 10 min (Q10). Optimized FMT was subjected to Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) besides investigating its lung-protective efficacy. All SM-FMT tablets showed acceptable properties within the pharmacopeial standards. Optimized FMT (F7) scored a DT of 12.5 ± 0.64 Sec and % SM released at Q10 of 82.69 ± 2.88%. No incompatibilities were found between SM and excipients, it showed a porous structure under SEM. The optimized formula decreased cytokines, up-regulated miRNA133a, and down-regulated miRNA-155 and COX-2 involved in the protection against lung toxicity prompted by HgCl2 in a manner comparable to free SM at the same dosage.
Collapse
Affiliation(s)
- Nermin M. Sheta
- Pharmaceutics Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Sylvia A. Boshra
- Biochemistry Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Mohamed A. Mamdouh
- Pharmaceutics Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | | |
Collapse
|
6
|
Intermediate monocytes expansion and homing markers expression in COVID-19 patients associate with kidney dysfunction. Clin Exp Med 2022:10.1007/s10238-022-00927-9. [PMID: 36372857 PMCID: PMC9660192 DOI: 10.1007/s10238-022-00927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/14/2022] [Indexed: 11/14/2022]
Abstract
Patients with severe SARS-CoV-2 infection have an overwhelming inflammatory response characterized by remarkable organs monocyte infiltration. We performed an immunophenotypic analysis on circulating monocytes in 19 COVID-19 patients in comparison with 11 naïve HIV-1 patients and 10 healthy subjects. Reduced frequency of classical monocytes and increased frequency of intermediate monocytes characterized COVID-19 patients with respect to both HIV naïve patients and healthy subjects. Intensity of C-C motif chemokine receptor 2 (CCR2) monocyte expression highly correlated with parameters of kidney dysfunction. Our data indicate that highly activated monocytes of COVID-19 patients may be pathogenically associated with the development of renal disease.
Collapse
|
7
|
Gál P, Brábek J, Holub M, Jakubek M, Šedo A, Lacina L, Strnadová K, Dubový P, Hornychová H, Ryška A, Smetana K. Autoimmunity, cancer and COVID-19 abnormally activate wound healing pathways: critical role of inflammation. Histochem Cell Biol 2022; 158:415-434. [PMID: 35867145 PMCID: PMC9305064 DOI: 10.1007/s00418-022-02140-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Recent evidence indicates that targeting IL-6 provides broad therapeutic approaches to several diseases. In patients with cancer, autoimmune diseases, severe respiratory infections [e.g. coronavirus disease 2019 (COVID-19)] and wound healing, IL-6 plays a critical role in modulating the systemic and local microenvironment. Elevated serum levels of IL-6 interfere with the systemic immune response and are associated with disease progression and prognosis. As already noted, monoclonal antibodies blocking either IL-6 or binding of IL-6 to receptors have been used/tested successfully in the treatment of rheumatoid arthritis, many cancer types, and COVID-19. Therefore, in the present review, we compare the impact of IL-6 and anti-IL-6 therapy to demonstrate common (pathological) features of the studied diseases such as formation of granulation tissue with the presence of myofibroblasts and deposition of new extracellular matrix. We also discuss abnormal activation of other wound-healing-related pathways that have been implicated in autoimmune disorders, cancer or COVID-19.
Collapse
Affiliation(s)
- Peter Gál
- Department of Pharmacology, Pavol Jozef Šafárik University, Košice, Slovak Republic
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
- Prague Burn Centre, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague 2, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Michal Holub
- Department of Infectious Diseases, First Faculty of Medicine, Military University Hospital Prague and Charles University, 160 00 Prague, Czech Republic
| | - Milan Jakubek
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Aleksi Šedo
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, 120 00 Praha 2, Czech Republic
| | - Lukáš Lacina
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
| | - Karolína Strnadová
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
| | - Petr Dubový
- Institute of Anatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Helena Hornychová
- The Fingerland Department of Pathology, Faculty of Medicine Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Aleš Ryška
- The Fingerland Department of Pathology, Faculty of Medicine Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Karel Smetana
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
| |
Collapse
|
8
|
Chang KW, Lin TY, Fu SL, Ping YH, Chen FP, Kung YY. A Houttuynia cordata-based Chinese herbal formula improved symptoms of allergic rhinitis during the COVID-19 pandemic. J Chin Med Assoc 2022; 85:717-722. [PMID: 35421875 DOI: 10.1097/jcma.0000000000000732] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The symptoms of coronavirus disease 2019 (COVID-19) such as hyposmia, rhinorrhea, nasal obstruction, and cough are similar to those of chronic allergic rhinitis (AR). Such symptoms can easily lead AR patients to unnecessary anxiety, misdiagnosis, and invasive diagnostic tests in the COVID-19 pandemic. Interleukin-6 (IL-6) is an important mediator for chronic AR and plays a crucial role in the inflammation of COVID-19. Houttuynia cordata (HC) has been shown to reduce nasal congestion and swelling by suppressing the activation of IL-6 and is used to fight COVID-19. A novel HC-based Chinese herbal formula, Zheng-Yi-Fang (ZYF), was developed to test effects on nasal symptoms of patients with AR in the COVID-19 pandemic. METHODS Participants aged between 20 and 60 years with at least a 2-year history of moderate to severe perennial AR were enrolled. Eligible participants were randomly allocated to either the intervention group (taking ZYF) or the control group (using regular western medicine) for 4 weeks. The Chinese version of the Rhinosinusitis Outcome Measures was used to evaluate impacts on quality of life and nasal symptoms of participants with AR. In addition, the effect of ZYF on lipopolysaccharide (LPS)-induced IL-6 was investigated. RESULTS Participants with AR taking ZYF improved their symptoms of nasal obstruction, nasal secretion, hyposmia, and postnasal drip in comparison with those of the control group. Meanwhile, ZYF exhibited inhibition of IL-6 secretion in the LPS-induced inflammatory model. CONCLUSION ZYF has potential effects to relieve nasal symptoms for AR during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Kai-Wei Chang
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Tung-Yi Lin
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shu-Ling Fu
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yueh-Hsin Ping
- Department of Pharmacology, School of Medicine and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Fang-Pey Chen
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yen-Ying Kung
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
9
|
Mohseni Afshar Z, Barary M, Babazadeh A, Tavakoli Pirzaman A, Hosseinzadeh R, Alijanpour A, Allahgholipour A, Miri SR, Sio TT, Sullman MJM, Carson‐Chahhoud K, Ebrahimpour S. The role of cytokines and their antagonists in the treatment of COVID-19 patients. Rev Med Virol 2022; 33:e2372. [PMID: 35621229 PMCID: PMC9347599 DOI: 10.1002/rmv.2372] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 01/28/2023]
Abstract
The coronavirus disease 2019 (COVID-19) has various presentations, of which immune dysregulation or the so-called cytokine storm syndrome (COVID-CSS) is prominent. Even though cytokines are vital regulators of body immunoinflammatory responses, their exaggerated release can be harmful. This hyperinflammatory response is more commonly observed during severe COVID-19 infections, caused by the excessive release of pro-inflammatory cytokines, such as interleukin-1 (IL-1), IL-6, IL-8, tumour necrosis factor, granulocyte-macrophage colony-stimulating factor, and interferon-gamma, making their blockers and antagonists of great interest as therapeutic options in this condition. Thus, the pathophysiology of excessive cytokine secretion is outlined, and their most important blockers and antagonists are discussed, mainly focussing on tocilizumab, an interleukin-6 receptor blocker approved to treat severe COVID-19 infections.
Collapse
Affiliation(s)
- Zeinab Mohseni Afshar
- Clinical Research Development CenterImam Reza HospitalKermanshah University of Medical SciencesKermanshahIran
| | - Mohammad Barary
- Student Research CommitteeVirtual School of Medical Education and ManagementShahid Beheshti University of Medical SciencesTehranIran,Students' Scientific Research Center (SSRC)Tehran University of Medical SciencesTehranIran
| | - Arefeh Babazadeh
- Infectious Diseases and Tropical Medicine Research CenterHealth Research InstituteBabol University of Medical SciencesBabolIran
| | | | | | | | - Amirreza Allahgholipour
- Student Research CommitteeSchool of Nursing and MidwiferyShahid Beheshti University of Medical SciencesTehranIran
| | - Seyed Rouhollah Miri
- Cancer Research CenterCancer Institute of IranTehran University of Medical ScienceTehranIran
| | - Terence T. Sio
- Department of Radiation OncologyMayo ClinicPhoenixArizonaUSA
| | - Mark J. M. Sullman
- Department of Social SciencesUniversity of NicosiaNicosiaCyprus,Department of Life and Health SciencesUniversity of NicosiaNicosiaCyprus
| | | | - Soheil Ebrahimpour
- Infectious Diseases and Tropical Medicine Research CenterHealth Research InstituteBabol University of Medical SciencesBabolIran
| |
Collapse
|
10
|
IL-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms222011027. [PMID: 34681685 PMCID: PMC8540903 DOI: 10.3390/ijms222011027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Interleukin-6 (IL-6) is a highly potent cytokine involved in multiple biological processes. It was previously reported to play a distinct role in inflammation, autoimmune and psychiatric disorders, ageing and various types of cancer. Furthermore, it is understood that IL-6 and its signaling pathways are substantial players in orchestrating the cancer microenvironment. Thus, they appear to be potential targets in anti-tumor therapy. The aim of this article is to elucidate the role of IL-6 in the tumor ecosystem and to review the possible therapeutic approaches in head and neck cancer.
Collapse
|
11
|
Kitagawa T, Kobayashi M, Ohta T, Terasaki M, Tsukamoto Y, Takai R, Ishizumi R, Uehara O, Nakagawa K, Akino K, Asaka M, Kuramitsu Y. Nine Cases of SARS-CoV-2-PCR-positive Samples Showed No Increase of Antibodies Against SARS-CoV-2. In Vivo 2021; 35:2947-2949. [PMID: 34410992 DOI: 10.21873/invivo.12587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/09/2021] [Accepted: 06/23/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been affecting Hokkaido, Japan since late February 2020 until present. The aim of this study was to report the relationship between anti-SARS-CoV-2 antibody-positive and SARS-CoV-2 PCR-positive cases by analyzing anti-SARS-CoV-2 antibodies (IgG and total-Ig). PATIENTS AND METHODS Serum samples were collected from care workers and nurses in two nursing homes and two hospitals which underwent virus outbreak. All people were confirmed to be SARS-CoV-2-positive by RT-qPCR and their sera was analyzed for anti-SARS-CoV-2 antibodies (IgG and total-Ig). RESULTS Although 34 out of 43 samples (79.1%) showed enough amount of anti-SARS-CoV-2 antibodies, 9 RT-qPCR -positive samples (20.9%) showed absence of anti-SARS-CoV-2 antibodies in their sera. CONCLUSION The results that 20.9% of RT-qPCR-positive samples with SARS-CoV-2 showed absence of anti-SARS-CoV-2 antibodies provides a possibility that the innate immune reaction could eliminate the virus without activating adaptive immune reaction.
Collapse
Affiliation(s)
- Takao Kitagawa
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Masanobu Kobayashi
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Tohru Ohta
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Masaru Terasaki
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Yoko Tsukamoto
- School of Nursing and Social Services, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Rie Takai
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Reika Ishizumi
- School of Nursing and Social Services, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Osamu Uehara
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Koji Nakagawa
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Kozo Akino
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Masahiro Asaka
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Yasuhiro Kuramitsu
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan;
| |
Collapse
|
12
|
Abramenko N, Vellieux F, Tesařová P, Kejík Z, Kaplánek R, Lacina L, Dvořánková B, Rösel D, Brábek J, Tesař A, Jakubek M, Smetana K. Estrogen Receptor Modulators in Viral Infections Such as SARS-CoV-2: Therapeutic Consequences. Int J Mol Sci 2021; 22:6551. [PMID: 34207220 PMCID: PMC8233910 DOI: 10.3390/ijms22126551] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
COVID-19 is a pandemic respiratory disease caused by the SARS-CoV-2 coronavirus. The worldwide epidemiologic data showed higher mortality in males compared to females, suggesting a hypothesis about the protective effect of estrogens against severe disease progression with the ultimate end being patient's death. This article summarizes the current knowledge regarding the potential effect of estrogens and other modulators of estrogen receptors on COVID-19. While estrogen receptor activation shows complex effects on the patient's organism, such as an influence on the cardiovascular/pulmonary/immune system which includes lower production of cytokines responsible for the cytokine storm, the receptor-independent effects directly inhibits viral replication. Furthermore, it inhibits the interaction of IL-6 with its receptor complex. Interestingly, in addition to natural hormones, phytestrogens and even synthetic molecules are able to interact with the estrogen receptor and exhibit some anti-COVID-19 activity. From this point of view, estrogen receptor modulators have the potential to be included in the anti-COVID-19 therapeutic arsenal.
Collapse
Affiliation(s)
- Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Fréderic Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
| | - Petra Tesařová
- Department of Oncology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic;
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Lukáš Lacina
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Barbora Dvořánková
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| | - Daniel Rösel
- BIOCEV, Faculty of Sciences, Charles University, 252 50 Vestec, Czech Republic; (D.R.); (J.B.)
| | - Jan Brábek
- BIOCEV, Faculty of Sciences, Charles University, 252 50 Vestec, Czech Republic; (D.R.); (J.B.)
| | - Adam Tesař
- Department of Neurology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic;
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Karel Smetana
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (N.A.); (F.V.); (Z.K.); (R.K.); (L.L.); (B.D.); (M.J.)
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| |
Collapse
|
13
|
Park YJ, Farooq J, Cho J, Sadanandan N, Cozene B, Gonzales-Portillo B, Saft M, Borlongan MC, Borlongan MC, Shytle RD, Willing AE, Garbuzova-Davis S, Sanberg PR, Borlongan CV. Fighting the War Against COVID-19 via Cell-Based Regenerative Medicine: Lessons Learned from 1918 Spanish Flu and Other Previous Pandemics. Stem Cell Rev Rep 2021; 17:9-32. [PMID: 32789802 PMCID: PMC7423503 DOI: 10.1007/s12015-020-10026-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human population is in the midst of battling a rapidly-spreading virus- Severe Acute Respiratory Syndrome Coronavirus 2, responsible for Coronavirus disease 2019 or COVID-19. Despite the resurgences in positive cases after reopening businesses in May, the country is seeing a shift in mindset surrounding the pandemic as people have been eagerly trickling out from federally-mandated quarantine into restaurants, bars, and gyms across America. History can teach us about the past, and today's pandemic is no exception. Without a vaccine available, three lessons from the 1918 Spanish flu pandemic may arm us in our fight against COVID-19. First, those who survived the first wave developed immunity to the second wave, highlighting the potential of passive immunity-based treatments like convalescent plasma and cell-based therapy. Second, the long-term consequences of COVID-19 are unknown. Slow-progressive cases of the Spanish flu have been linked to bacterial pneumonia and neurological disorders later in life, emphasizing the need to reduce COVID-19 transmission. Third, the Spanish flu killed approximately 17 to 50 million people, and the lack of human response, overcrowding, and poor hygiene were key in promoting the spread and high mortality. Human behavior is the most important strategy for preventing the virus spread and we must adhere to proper precautions. This review will cover our current understanding of the pathology and treatment for COVID-19 and highlight similarities between past pandemics. By revisiting history, we hope to emphasize the importance of human behavior and innovative therapies as we wait for the development of a vaccine. Graphical Abstract.
Collapse
Affiliation(s)
- You Jeong Park
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Jeffrey Farooq
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Justin Cho
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | | | - Blaise Cozene
- Tulane University, 6823 St. Charles Ave, 70118, New Orleans, LA, USA
| | | | - Madeline Saft
- University of Michigan, 500 S State St, 48109, Ann Arbor, MI, USA
| | | | | | - R Douglas Shytle
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Alison E Willing
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Svitlana Garbuzova-Davis
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Paul R Sanberg
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
14
|
George JA, Mayne ES. The Novel Coronavirus and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1321:127-138. [PMID: 33656719 DOI: 10.1007/978-3-030-59261-5_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The SARS-CoV-2 virus which causes COVID-19 disease was initially described in the Hubei Province of China and has since spread to more than 200 countries and territories of the world. Severe cases of the disease are characterised by release of high levels of pro-inflammatory cytokines and other inflammatory mediators in a process characterised as a cytokine storm. These inflammatory mediators are associated with pathological leukocyte activation states with tissue damage. Here, we review these effects with a focus on their potential use in diagnosis, patient stratification and prognosis, as well as new drug targets.
Collapse
Affiliation(s)
- J A George
- Department of Chemical Pathology, National Health Laboratory Services and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - E S Mayne
- Department of Immunology, National Health Laboratory Services and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
15
|
Tsai KC, Huang YC, Liaw CC, Tsai CI, Chiou CT, Lin CJ, Wei WC, Lin SJS, Tseng YH, Yeh KM, Lin YL, Jan JT, Liang JJ, Liao CC, Chiou WF, Kuo YH, Lee SM, Lee MY, Su YC. A traditional Chinese medicine formula NRICM101 to target COVID-19 through multiple pathways: A bedside-to-bench study. Biomed Pharmacother 2021; 133:111037. [PMID: 33249281 PMCID: PMC7676327 DOI: 10.1016/j.biopha.2020.111037] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
COVID-19 is a global pandemic, with over 50 million confirmed cases and 1.2 million deaths as of November 11, 2020. No therapies or vaccines so far are recommended to treat or prevent the new coronavirus. A novel traditional Chinese medicine formula, Taiwan Chingguan Yihau (NRICM101), has been administered to patients with COVID-19 in Taiwan since April 2020. Its clinical outcomes and pharmacology have been evaluated. Among 33 patients with confirmed COVID-19 admitted in two medical centers, those (n = 12) who were older, sicker, with more co-existing conditions and showing no improvement after 21 days of hospitalization were given NRICM101. They achieved 3 consecutive negative results within a median of 9 days and reported no adverse events. Pharmacological assays demonstrated the effects of the formula in inhibiting the spike protein/ACE2 interaction, 3CL protease activity, viral plaque formation, and production of cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α. This bedside-to-bench study suggests that NRICM101 may disrupt disease progression through its antiviral and anti-inflammatory properties, offering promise as a multi-target agent for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing Street, Taipei 11031, Taiwan.
| | - Yi-Chia Huang
- Department of Chinese Medicine, Tri-Service General Hospital, National Defense Medical Center, No.325, Section 2, Chenggong Road, Neihu District, Taipei 11490, Taiwan.
| | - Chia-Ching Liaw
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Chia-I Tsai
- Department of Traditional Chinese Medicine, Taichung Veterans General Hospital, No. 1650, Taiwan Boulevard Section 4, Seatwen District, Taichung 407204, Taiwan.
| | - Chun-Tang Chiou
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Chien-Jung Lin
- Department of Chinese Medicine, Tri-Service General Hospital, National Defense Medical Center, No.325, Section 2, Chenggong Road, Neihu District, Taipei 11490, Taiwan.
| | - Wen-Chi Wei
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Sunny Jui-Shan Lin
- Department of Chinese Medicine, Tri-Service General Hospital, National Defense Medical Center, No.325, Section 2, Chenggong Road, Neihu District, Taipei 11490, Taiwan.
| | - Yu-Hwei Tseng
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Kuo-Ming Yeh
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Road, Neihu District, Taipei 11490, Taiwan.
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei 11529, Taiwan.
| | - Jia-Tsrong Jan
- Genomic Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 11529, Taiwan.
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei 11529, Taiwan.
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei 11529, Taiwan.
| | - Wen-Fei Chiou
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Yao-Haur Kuo
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan.
| | - Shen-Ming Lee
- Department of Statistic, Feng Chia University, No. 100, Wenhwa Road, Seatwen District, Taichung 40724, Taiwan.
| | - Ming-Yung Lee
- Department of Data Science and Big Data Analytics, Providence University, Taichung, No. 200, Section 7, Taiwan Boulevard, Shalu District, Taichung 43301, Taiwan.
| | - Yi-Chang Su
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, No.155-1, Section 2, Linong Street, Beitou District, Taipei 11221, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan.
| |
Collapse
|
16
|
Liu Y, Chen D, Hou J, Li H, Cao D, Guo M, Ling Y, Gao M, Zhou Y, Wan Y, Zhu Z. An inter-correlated cytokine network identified at the center of cytokine storm predicted COVID-19 prognosis. Cytokine 2020; 138:155365. [PMID: 33246770 PMCID: PMC7651249 DOI: 10.1016/j.cyto.2020.155365] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 01/10/2023]
Abstract
The hyper-inflammatory response is thought to be a major cause of acute respiratory distress syndrome (ARDS) in patients with COVID-19. Although multiple cytokines are reportedly associated with disease severity, the key mediators of SARS-CoV-2 induced cytokine storm and their predictive values have not been fully elucidated. The present study analyzed maximal and early (within 10 days after disease onset) concentrations of 12-plex cytokines in plasma. We found consistently elevated plasma levels of IL-6, IL-8 and IL-5 in patients who were deceased compared with those who had mild/moderate or severe disease. The early plasma concentrations of IFN-a and IL-2 positively correlated with the length of the disease course. Moreover, correlation network analysis showed that IL-6, IL-8, and IL-5 located at the center of an inter-correlated cytokine network. These findings suggested that IL-8, IL-6, IL-5 might play central roles in cytokine storms associated with COVID-19 and that the early detection of multiple plasma cytokines might help to predict the prognosis of this disease.
Collapse
Affiliation(s)
- Yili Liu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Daihong Chen
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Junjie Hou
- Shanghai Runda Rongjia Biotechnology Co., Ltd, Shanghai 200085, China
| | - Haicong Li
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Dan Cao
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yun Ling
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Menglu Gao
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yi Zhou
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yanmin Wan
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Zhaoqin Zhu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| |
Collapse
|
17
|
Zhai M, Zhang S. A Nasopharyngeal Carcinoma Patient With COVID-19 Infection After Immunotherapy: A Case Report and Literature Review. In Vivo 2020; 34:3753-3756. [PMID: 33144494 DOI: 10.21873/invivo.12225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND/AIM Novel coronavirus infection in a cancer patient treated with immunotherapy, requires high attention. CASE REPORT Clinical and radiological data were obtained from the electronic medical record. Pharynx swab was tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA by reverse transcription-polymerase chain reaction (RT-PCR). The nasopharyngeal carcinoma patient developed fever on the third day after chemotherapy and immunotherapy. Laboratory examination showed lymphocytopenia. On the sixth day, chest computed tomography (CT) images showed bilateral scattered ground-glass opacities and reticulation. Pharynx swab was positive for SARS-CoV-2 nucleic acid and the patient was confirmed as having Coronavirus Disease 2019 (COVID-19). Unfortunately, despite aggressive treatment after the diagnosis of COVID-19, the patient died quickly. CONCLUSION The patient with nasopharyngeal carcinoma in this case developed severe COVID-19 after receiving immunotherapy. For patients treated with immune checkpoint inhibitors (ICIs) in epidemic areas, the safety of ICIs in cancer patients infected with SARS-CoV-2 should be considered.
Collapse
Affiliation(s)
- Menglan Zhai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
18
|
Elkahloun AG, Saavedra JM. Candesartan could ameliorate the COVID-19 cytokine storm. Biomed Pharmacother 2020; 131:110653. [PMID: 32942152 PMCID: PMC7439834 DOI: 10.1016/j.biopha.2020.110653] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Angiotensin receptor blockers (ARBs) reducing inflammation and protecting lung and brain function, could be of therapeutic efficacy in COVID-19 patients. METHODS Using GSEA, we compared our previous transcriptome analysis of neurons injured by glutamate and treated with the ARB Candesartan (GSE67036) with transcriptional signatures from SARS-CoV-2 infected primary human bronchial epithelial cells (NHBE) and lung postmortem (GSE147507), PBMC and BALF samples (CRA002390) from COVID-19 patients. RESULTS Hundreds of genes upregulated in SARS-CoV-2/COVID-19 transcriptomes were similarly upregulated by glutamate and normalized by Candesartan. Gene Ontology analysis revealed expression profiles with greatest significance and enrichment, including proinflammatory cytokine and chemokine activity, the NF-kappa B complex, alterations in innate and adaptive immunity, with many genes participating in the COVID-19 cytokine storm. CONCLUSIONS There are similar injury mechanisms in SARS-CoV-2 infection and neuronal injury, equally reduced by ARB treatment. This supports the hypothesis of a therapeutic role for ARBs, ameliorating the COVID-19 cytokine storm.
Collapse
Affiliation(s)
- Abdel G Elkahloun
- Comparative Genomics and Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, SE402 Med/Dent, 3900 Reservoir Road, Washington, DC 20057, USA.
| |
Collapse
|
19
|
Heimfarth L, Serafini MR, Martins-Filho PR, Quintans JDSS, Quintans-Júnior LJ. Drug repurposing and cytokine management in response to COVID-19: A review. Int Immunopharmacol 2020; 88:106947. [PMID: 32919216 PMCID: PMC7457938 DOI: 10.1016/j.intimp.2020.106947] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19), the infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an aggressive disease that attacks the respiratory tract and has a higher fatality rate than seasonal influenza. The COVID-19 pandemic is a global health crisis, and no specific therapy or drug has been formally recommended for use against SARS-CoV-2 infection. In this context, it is a rational strategy to investigate the repurposing of existing drugs to use in the treatment of COVID-19 patients. In the meantime, the medical community is trialing several therapies that target various antiviral and immunomodulating mechanisms to use against the infection. There is no doubt that antiviral and supportive treatments are important in the treatment of COVID-19 patients, but anti-inflammatory therapy also plays a pivotal role in the management COVID-19 patients due to its ability to prevent further injury and organ damage or failure. In this review, we identified drugs that could modulate cytokines levels and play a part in the management of COVID-19. Several drugs that possess an anti-inflammatory profile in others illnesses have been studied in respect of their potential utility in the treatment of the hyperinflammation induced by SAR-COV-2 infection. We highlight a number of antivirals, anti-rheumatic, anti-inflammatory, antineoplastic and antiparasitic drugs that have been found to mitigate cytokine production and consequently attenuate the "cytokine storm" induced by SARS-CoV-2. Reduced hyperinflammation can attenuate multiple organ failure, and even reduce the mortality associated with severe COVID-19. In this context, despite their current unproven clinical efficacy in relation to the current pandemic, the repurposing of drugs with anti-inflammatory activity to use in the treatment of COVID-19 has become a topic of great interest.
Collapse
Affiliation(s)
- Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), São Cristóvão, SE 49100-000 Brazil; Graduate Program of Health Sciences (PPGCS), São Cristóvão, SE 49100-000 Brazil.
| | - Mairim Russo Serafini
- Graduate Program of Pharmaceutical Sciences (PPGCF). Federal University of Sergipe (UFS), São Cristóvão, SE 49100-000 Brazil
| | | | - Jullyana de Souza Siqueira Quintans
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), São Cristóvão, SE 49100-000 Brazil; Graduate Program of Health Sciences (PPGCS), São Cristóvão, SE 49100-000 Brazil
| | - Lucindo José Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), São Cristóvão, SE 49100-000 Brazil; Graduate Program of Health Sciences (PPGCS), São Cristóvão, SE 49100-000 Brazil; Graduate Program of Pharmaceutical Sciences (PPGCF). Federal University of Sergipe (UFS), São Cristóvão, SE 49100-000 Brazil
| |
Collapse
|
20
|
Brábek J, Jakubek M, Vellieux F, Novotný J, Kolář M, Lacina L, Szabo P, Strnadová K, Rösel D, Dvořánková B, Smetana K. Interleukin-6: Molecule in the Intersection of Cancer, Ageing and COVID-19. Int J Mol Sci 2020; 21:ijms21217937. [PMID: 33114676 PMCID: PMC7662856 DOI: 10.3390/ijms21217937] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin-6 (IL-6) is a cytokine with multifaceted effects playing a remarkable role in the initiation of the immune response. The increased level of this cytokine in the elderly seems to be associated with the chronic inflammatory setting of the microenvironment in aged individuals. IL-6 also represents one of the main signals in communication between cancer cells and their non-malignant neighbours within the tumour niche. IL-6 also participates in the development of a premetastatic niche and in the adjustment of the metabolism in terminal-stage patients suffering from a malignant disease. IL-6 is a fundamental factor of the cytokine storm in patients with severe COVID-19, where it is responsible for the fatal outcome of the disease. A better understanding of the role of IL-6 under physiological as well as pathological conditions and the preparation of new strategies for the therapeutic control of the IL-6 axis may help to manage the problems associated with the elderly, cancer, and serious viral infections.
Collapse
Affiliation(s)
- Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague 2, Czech Republic; (J.B.); (D.R.)
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (M.J.); (F.V.); (J.N.); (M.K.); (L.L.); (K.S.); (B.D.)
| | - Milan Jakubek
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (M.J.); (F.V.); (J.N.); (M.K.); (L.L.); (K.S.); (B.D.)
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, 166 28 Praha 6, Czech Republic
| | - Fréderic Vellieux
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (M.J.); (F.V.); (J.N.); (M.K.); (L.L.); (K.S.); (B.D.)
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Jiří Novotný
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (M.J.); (F.V.); (J.N.); (M.K.); (L.L.); (K.S.); (B.D.)
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, 140 00 Prague 4, Czech Republic
| | - Michal Kolář
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (M.J.); (F.V.); (J.N.); (M.K.); (L.L.); (K.S.); (B.D.)
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, 140 00 Prague 4, Czech Republic
| | - Lukáš Lacina
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (M.J.); (F.V.); (J.N.); (M.K.); (L.L.); (K.S.); (B.D.)
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, Fist Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic;
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague 2, Czech Republic
| | - Pavol Szabo
- Institute of Anatomy, Fist Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic;
| | - Karolína Strnadová
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (M.J.); (F.V.); (J.N.); (M.K.); (L.L.); (K.S.); (B.D.)
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, Fist Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic;
| | - Daniel Rösel
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague 2, Czech Republic; (J.B.); (D.R.)
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (M.J.); (F.V.); (J.N.); (M.K.); (L.L.); (K.S.); (B.D.)
| | - Barbora Dvořánková
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (M.J.); (F.V.); (J.N.); (M.K.); (L.L.); (K.S.); (B.D.)
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, Fist Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic;
| | - Karel Smetana
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (M.J.); (F.V.); (J.N.); (M.K.); (L.L.); (K.S.); (B.D.)
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, Fist Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic;
- Correspondence: ; Tel.: +420-224-965-873
| |
Collapse
|
21
|
Waleed RM, Sehar I, Iftikhar W, Khan HS. Hematologic parameters in coronavirus infection (COVID-19) and their clinical implications. Discoveries (Craiova) 2020; 8:e117. [PMID: 33110936 PMCID: PMC7585459 DOI: 10.15190/d.2020.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Coronaviruses are a class of enveloped RNA viruses that cause infections of the respiratory tract, characterized by fever, tiredness, dry cough, diarrhea, loss of smell or taste, chest pain and shortness of breath. Many patients with mysterious pneumonia were distinguished in December 2019 in Wuhan. The pneumonia of obscure origin was found to be ascribed to a novel coronavirus and described as novel coronavirus pneumonia (NCP). The Chinese authorities initially reported the wave of mysterious pneumonia on December 31st, 2019 and it was declared as an outbreak of international concern on January 30th, 2020. A systematic search of relevant research was conducted, and a total of 58 primary research articles were identified, analyzed, and debated to better understand the hematologic profile in COVID-19 (Coronavirus disease) infection and its clinical implications. All the findings in this article manifest a true impression of the current interpretation of hematological findings of the SARS-COV-2 disease. Pathophysiology of COVID-19 disease can be better interpreted by taking into consideration the hematologic parameters. Clinical implications of the hematologic profile of COVID-19 patients including cytokine storm, coagulation profile, and thrombophilic complications are under-recognized. Therefore, this review focuses on the coagulation profile, cytokine storm, and its treatment options. The role of pre-existing thrombophilia in COVID-19 patients and how it could result in the poor prognosis of the disease is also debated. The recent data suggests that hypercoagulability could be the potential cause of fatalities due to COVID-19. Potential effects of tocilizumab, metronidazole, and ulinastatin in suppressing cytokine storm may help to treat SARS-COV-2 infection. This review also highlights the significance of thrombophilia testing in SARS-CoV-2 patients depending on the clinical features and especially in pregnant women.
Collapse
Affiliation(s)
| | - Inbisat Sehar
- CMH Lahore Medical College and Institute of Dentistry, Lahore, Pakistan
| | - Waleed Iftikhar
- CMH Lahore Medical College and Institute of Dentistry, Lahore, Pakistan
- California Institute of Behavioral Neurosciences & Psychology, Fairfield, CA 94534, USA
| | - Huma Saeed Khan
- CMH Lahore Medical College and Institute of Dentistry, Lahore, Pakistan
| |
Collapse
|
22
|
Smetana K, Rosel D, BrÁbek J. Raloxifene and Bazedoxifene Could Be Promising Candidates for Preventing the COVID-19 Related Cytokine Storm, ARDS and Mortality. In Vivo 2020; 34:3027-3028. [PMID: 32871847 DOI: 10.21873/invivo.12135] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
The FDA-approved drugs raloxifene and bazedoxifene could be among the best candidates to prevent mortality in severe COVID-19 patients. Raloxifene and bazedoxifene inhibit IL-6 signaling at therapeutic doses, suggesting they have the potential to prevent the cytokine storm, ARDS and mortality in severe COVID-19 patients, as is being shown with humanized antibodies blocking IL-6 signaling. In addition, raloxifene and bazedoxifene are selective estrogen receptor modulators with strong antiviral activity.
Collapse
Affiliation(s)
- Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic .,BIOCEV, Vestec, Czech Republic
| | - Daniel Rosel
- BIOCEV, Vestec, Czech Republic.,Department of Cell Biology, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Jan BrÁbek
- BIOCEV, Vestec, Czech Republic .,Department of Cell Biology, Faculty of Sciences, Charles University, Prague, Czech Republic
| |
Collapse
|