1
|
Rana M, Liou KC, Thakur A, Nepali K, Liou JP. Advancing glioblastoma therapy: Learning from the past and innovations for the future. Cancer Lett 2025; 617:217601. [PMID: 40037502 DOI: 10.1016/j.canlet.2025.217601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Marred by a median survival of only around 12-15 months coupled with poor prognosis and effective therapeutic deprived drug armory, treatment/management of glioblastoma has proved to be a daunting task. Surgical resection, flanked by radiotherapy and chemotherapy with temozolomide, stands as the standard of care; however, this trimodal therapy often manifests limited efficacy due to the heterogeneous and highly infiltrative nature of GBM cells. In addition, the existence of the blood-brain barrier, tumor microenvironment, and the immunosuppressive nature of GBM, along with the encountered resistance of GBM cells towards conventional therapy, also hinders the therapeutic applications of chemotherapeutics in GBM. This review presents key insights into the molecular pathology of GBM, including genetic mutations, signaling pathways, and tumor microenvironment characteristics. Recent innovations such as immunotherapy, oncolytic viral therapies, vaccines, nanotechnology, electric field, and cancer neuroscience, as well as their clinical progress, have been covered. In addition, this compilation also encompasses a discussion on the role of personalized medicine in tailoring treatments based on individual tumor profiles, an approach that is gradually shifting the paradigm in GBM management. Endowed with the learnings imbibed from past failures coupled with the zeal to embrace novel/multidisciplinary approaches, researchers appear to be on the right track to pinpoint more effective and durable solutions in the context of GBM treatment.
Collapse
Affiliation(s)
- Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Ke-Chi Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
2
|
Cabrera M, Armando R, Czarnowski I, Chinestrad P, Blanco R, Zinni A, Gómez D, Mengual Gómez DL, Menna PL. CADD-based discovery of novel oligomeric modulators of PKM2 with antitumor activity in aggressive human glioblastoma models. Heliyon 2025; 11:e42238. [PMID: 39959478 PMCID: PMC11830341 DOI: 10.1016/j.heliyon.2025.e42238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/18/2025] Open
Abstract
Pyruvate kinase isoform M2 (PKM2) is a multifunctional enzyme capable of transitioning between monomeric, dimeric, and tetrameric states, with its oligomeric equilibrium playing a pivotal role in tumour progression and survival. The unique exon ten at the dimer-dimer interface represents an attractive target for isoform-specific modulation, offering opportunities for disrupting this equilibrium and altering tumour cell dynamics. This study identifies a novel druggable pocket at the PKM2 dimer interface through conformational analysis. This pocket was exploited in a virtual screening of a large small-molecule library, identifying two promising candidates, C599 and C998. Both compounds exhibited dose-dependent antiproliferative effects in glioblastoma cell lines and induced apoptosis, as evidenced by caspase 3/7 activation. These effects were directly linked to their inhibition of PKM2 enzymatic activity, validating the proposed mechanism of action in their rational design. ADMET studies further highlighted their strong potential as lead PKM2 inhibitors for GBM treatment. Molecular dynamics (MD) simulations and post-MD analyses, including Dynamic Cross-Correlation Maps (DCCM), Probability Density Function (PDF), and Free Energy Landscape (FEL), confirmed the stability of the protein-ligand interactions and highlighted critical residues at the dimer-dimer interface. The Steered MD simulations demonstrated the high affinity of the compounds for PKM2, as evidenced by the requirement of high rupture forces to induce an unbinding event. These results highlight the potential of the compounds as oligomeric modulators of PKM2. These findings position C599 and C998 as promising lead compounds for antitumor applications. Future studies will focus on optimising these candidates and assessing their efficacy in vivo glioblastoma models, reassuring the thoroughness of our research and the potential for further advancements.
Collapse
Affiliation(s)
- Maia Cabrera
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina
| | - Romina Armando
- Unidad de Oncología Molecular, Centro de Oncología Molecular y Traslacional, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina
| | - Ian Czarnowski
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina
| | - Patricio Chinestrad
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina
| | - Ramiro Blanco
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina
| | - Alejandra Zinni
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina
| | - Daniel Gómez
- Unidad de Oncología Molecular, Centro de Oncología Molecular y Traslacional, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina
| | - Diego L. Mengual Gómez
- Unidad de Oncología Molecular, Centro de Oncología Molecular y Traslacional, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina
| | - Pablo Lorenzano Menna
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Argentina
| |
Collapse
|
3
|
Park JH, Lee H, Zheng T, Shin JK, Yoon S, Kim HS. Low-Dose Perifosine, a Phase II Phospholipid Akt Inhibitor, Selectively Sensitizes Drug-Resistant ABCB1-Overexpressing Cancer Cells. Biomol Ther (Seoul) 2025; 33:170-181. [PMID: 39632683 PMCID: PMC11704409 DOI: 10.4062/biomolther.2024.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/04/2024] [Indexed: 12/07/2024] Open
Abstract
We identified drugs or mechanisms targeting ABCB1 (or P-glycoprotein; P-gp)-overexpressing drug-resistant cancer populations, given that these cells play a key role in tumor recurrence. Specifically, we searched for Akt inhibitors that could increase cytotoxicity in P-gp-overexpressing drug-resistant cancer cells. We performed cytotoxicity assays using five cell lines: 1. MCF-7/ADR, 2. KBV20C cancer cells (P-gp overexpression, vincristine [VIC] resistance, and GSK690693-resistance), 3. MCF-7, 4. normal HaCaT cells (non-P-gp-overexpressing, VIC-sensitive, and GSK690693-sensitive), and 5. MDA-MB-231 cancer cells (non-P-gp overexpression, relatively VIC-resistance, and GSK690693-sensitive). Herein, we found that low-dose perifosine markedly and selectively sensitizes both MCF-7/ADR and KBV20C drug-resistant cancer cells exhibiting P-gp overexpression. Compared with other Akt inhibitors (AZD5363, BKM120, and GSK690693), low-dose perifosine specifically sensitized P-gp-overexpressing resistant MCF-7/ADR cancer cells. Conversely, Akt inhibitors (other than perifosine) could enhance sensitization effects in drugsensitive MCF-7 and HaCaT cells. Considering that perifosine has both an alkyl-phospholipid structure and is an allosteric inhibitor for membrane-localizing Akt-targeting, we examined structurally and functionally similar Akt inhibitors (miltefosine and MK-2206). However, we found that these inhibitors were non-specific, suggesting that the specificity of perifosine in P-gp-overexpressing resistant cancer cells is unrelated to phospholipid localizing membranes or allosteric inhibition. Furthermore, we examined the molecular mechanism of low-dose perifosine in drug-resistant MCF-7/ADR cancer cells. MCF-7/ADR cells exhibited increased apoptosis via G2 arrest and autophagy induction. However, no increase in P-gp-inhibitory activity was observed in drug-resistant MCF-7/ADR cancer cells. Single low-dose perifosine treatment exerted a sensitization effect similar to co-treatment with VIC in P-gp-overexpressing drug-resistant MCF-7/ADR cancer cells, suggesting that single treatment with low-dose perifosine is a more powerful tool against P-gp-overexpressing drug-resistant cancer cells. These findings could contribute to its clinical use as a first-line treatment, explicitly targeting P-gp-overexpressing resistant cancer populations in heterogeneous tumor populations. Therefore, perifosine may be valuable in delaying or reducing cancer recurrence by targeting P-gp-overexpressing drug-resistant cancer cells.
Collapse
Affiliation(s)
- Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Haeun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tian Zheng
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Joo Kyung Shin
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Tamas C, Cehan AR, Kövecsi A, Tamas F, Balasa AF. Prognostic Role of Pyruvate Kinase M2 in High-Grade Gliomas: A Quantitative Immunohistochemistry Study. Cureus 2025; 17:e78035. [PMID: 40013192 PMCID: PMC11862283 DOI: 10.7759/cureus.78035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM) and grade 4 astrocytoma (ASTROG4) are aggressive primary brain tumors characterized by rapid growth, invasiveness, and poor prognosis, differentiated by the presence or absence of isocitrate dehydrogenase (IDH) mutation according to the World Health Organization (WHO) 2021 classification. Essential molecular markers, in addition to IDH mutations, include alpha-thalassemia/mental retardation syndrome X-linked (ATRX) loss and p53 expression, which significantly influence their classification and prognosis. Pyruvate kinase M2 (PKM2), a critical enzyme in tumor metabolism, has been implicated in glioma progression, but its prognostic significance remains unclear. METHODS This prospective study aimed to quantitatively measure PKM2 immunohistochemistry (IHC) expression in GBM (IDH wildtype) versus ASTROG4 (IDH R132H mutant), to assess the correlation between PKM2 expression and prognosis in these two patient groups, and to investigate the prognostic significance of ATRX and p53 expression in relation to PKM2 levels. A total of 67 patients with high-grade gliomas (43 GBM, 24 ASTROG4) were analyzed using IHC for IDH1, ATRX, p53, and PKM2. PKM2 expression was quantified using 3DHISTECH (Budapest, Hungary) image analysis software, and correlations with clinical parameters, survival, and other molecular markers were evaluated. Kaplan-Meier survival analysis and Cox regression models assessed the impact of PKM2 expression and clinical factors on prognosis. RESULTS PKM2 expression was observed in both GBM and ASTROG4, with no significant differences in positivity rates. However, high PKM2 intensity scores significantly correlated with increased mortality risk (p=0.041). ATRX-negative tumors showed elevated PKM2 levels, suggesting compensatory metabolic adaptations. ASTROG4 cases had better survival outcomes than GBM. Severe preoperative motor deficits were associated with a threefold increase in mortality risk, highlighting the critical role of clinical factors in determining prognosis. CONCLUSIONS PKM2 plays an important role in glioma metabolism and can serve as a potential therapeutic target. Its association with ATRX highlights its involvement in tumor progression and genomic instability. Combining molecular markers with clinical parameters can improve prognostic accuracy and inform personalized treatment strategies for astrocytic tumors.
Collapse
Affiliation(s)
- Corina Tamas
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, Targu Mures, ROU
| | - Alina R Cehan
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, Targu Mures, ROU
| | - Attila Kövecsi
- Department of Pathology, County Emergency Clinical Hospital of Targu Mures, Targu Mures, ROU
| | - Flaviu Tamas
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, Targu Mures, ROU
| | - Adrian F Balasa
- Department of Neurosurgery, County Emergency Clinical Hospital of Targu Mures, Targu Mures, ROU
| |
Collapse
|
5
|
Cao T, Wang J. PYGL regulation of glycolysis and apoptosis in glioma cells under hypoxic conditions via HIF1α-dependent mechanisms. Transl Cancer Res 2024; 13:5627-5648. [PMID: 39525037 PMCID: PMC11543057 DOI: 10.21037/tcr-24-1974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Background Gliomas are highly aggressive brain tumors with complex metabolic and molecular alterations. The role of glycolysis in glioma progression and its regulation by hypoxia remain poorly understood. This study investigated the function of glycogen phosphorylase L (PYGL) in glioma and its interaction with glycolytic pathways under hypoxic conditions. Methods Differential expression analysis was conducted using The Cancer Genome Atlas (TCGA) glioma and GSE67089 datasets, revealing significant changes in the expression of genes. A prognostic risk model incorporating PYGL was built by univariate and multivariate Cox regression analyses. The impacts of PYGL on glioma cell proliferation, glycolysis, apoptosis, and metabolic activities were evaluated by in vitro assays. Additionally, the influences of hypoxia and hypoxia-inducible factor 1-alpha (HIF1α) on PYGL expression were evaluated. Results Our prognostic prediction model showed a C-index of 0.76 [95% confidence interval (CI): 0.70-0.82], indicating a good predictive accuracy of the model. In addition, genetic predictors included in the nomogram included PYGL, HIF1α, and other genes associated with the glycolytic pathway. Differential expression analysis identified PYGL as a key gene associated with glioma survival. PYGL expression was significantly upregulated in glioma cells. PYGL knockdown inhibited cell invasion, proliferation, migration, and colony formation and enhanced apoptosis via modulation of Bcl-2, caspase-3, and Bax. Glycolysis was impaired in PYGL-knockdown cells, as indicated by increased glycogen levels and a reduced extracellular acidification rate (ECAR), adenosine triphosphate (ATP) levels, lactate levels, and PKM2 and LDHA expression. PYGL overexpression promoted glycolysis and cell viability, which was counteracted by 2-deoxy-D-glucose (2-DG). Hypoxia-induced PYGL expression was regulated by HIF1α, underscoring the interplay between the hypoxia and glycolysis pathways. Conclusions PYGL is a crucial regulator of glycolysis in gliomas and contributes to tumor progression under hypoxic conditions. Targeting PYGL and its associated metabolic pathways may offer new therapeutic strategies for glioma treatment.
Collapse
Affiliation(s)
- Tingyu Cao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinchun Wang
- Department of Blood Transfusion, Affiliated Hospital of Shaoxing University, Shaoxing, China
| |
Collapse
|
6
|
Wang N, Yuan Y, Hu T, Xu H, Piao H. Metabolism: an important player in glioma survival and development. Discov Oncol 2024; 15:577. [PMID: 39436434 PMCID: PMC11496451 DOI: 10.1007/s12672-024-01402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Gliomas are malignant tumors originating from both neuroglial cells and neural stem cells. The involvement of neural stem cells contributes to the tumor's heterogeneity, affecting its metabolic features, development, and response to therapy. This review provides a brief introduction to the importance of metabolism in gliomas before systematically categorizing them into specific groups based on their histological and molecular genetic markers. Metabolism plays a critical role in glioma biology, as tumor cells rely heavily on altered metabolic pathways to support their rapid growth, survival, and progression. Dysregulated metabolic processes, involving carbohydrates, lipids, and amino acids not only fuel tumor development but also contribute to therapy resistance and metastatic potential. By understanding these metabolic changes, key intervention points, such as mutations in genes like RTK, EGFR, RAS, and IDH can be identified, paving the way for novel therapeutic strategies. This review emphasizes the connection between metabolic pathways and clinical challenges, offering actionable insights for future research and therapeutic development in gliomas.
Collapse
Affiliation(s)
- Ning Wang
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Yiru Yuan
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Tianhao Hu
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Huizhe Xu
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China.
- Central Laboratory, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Liaoning Province, 110042, P R China.
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China.
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China.
| |
Collapse
|
7
|
Kona SV, Kalivendi SV. The USP10/13 inhibitor, spautin-1, attenuates the progression of glioblastoma by independently regulating RAF-ERK mediated glycolysis and SKP2. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167291. [PMID: 38857836 DOI: 10.1016/j.bbadis.2024.167291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
Glioblastoma is a malignant brain tumor with poor prognosis. Though several dysregulated pathways were found to mediate the tumor progression, hyperactivation of RAS-RAF-ERK pathway, enhanced glycolysis and SKP2 are associated with several glioblastomas. Recent findings on the role of USP10 in the transition from pro-neural to mesenchymal subtype of glioblastoma and, USP13 in the stabilization of RAF1 in mouse embryonic stem cells prompted us to examine their role in the mechanisms mediating the progression of glioblastoma. In the present study, we have examined the role of spautin-1, a pharmacological inhibitor of USP10 and USP13 in the mechanisms mediating glioblastoma. Our results indicate that spautin-1 as well as knockdown of its downstream targets, USP10 and USP13, reduced the proliferation and migration of glioblastoma cells. Also, spautin-1 mediated inhibition of RAF-ERK pathway or inhibition of RAF1 and MEK1 per se reduced the glycolytic function via PKM2/Glut-1 and inhibited the progression of glioblastoma. Further, the protooncogene, SKP2, which was shown to be a direct target of USP10 /USP13 was also reduced by spautin-1. While inhibition of SKP2 enhanced its downstream target p21, no apparent changes in the RAF-ERK levels or glycolytic function were evident. Also, inhibition of MEK1 did not affect SKP2 levels, indicating that these two pathways act independent of each other. Overall, our findings indicate that spautin-1 by virtue of its inhibitory effects on USP10/13 counteracts RAS-RAF-ERK mediated glycolysis and SKP2 that are critical in the progression of glioblastoma. Hence, further preclinical validation is warranted for taking the present observations forward.
Collapse
Affiliation(s)
- Swathi V Kona
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shasi V Kalivendi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Rihan M, Sharma SS. Compound 3K attenuates isoproterenol-induced cardiac hypertrophy by inhibiting pyruvate kinase M2 (PKM2) pathway. Life Sci 2024; 351:122837. [PMID: 38879156 DOI: 10.1016/j.lfs.2024.122837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
AIM Chronic sympathetic stimulation has been identified as a primary factor in the pathogenesis of cardiac hypertrophy (CH). However, there is no appropriate treatment available for the management of CH. Recently, it has been revealed that pyruvate kinase M2 (PKM2) plays a significant role in cardiac remodeling, fibrosis, and hypertrophy. However, the therapeutic potential of selective PKM2 inhibitor has not yet been explored in cardiac hypertrophy. Thus, in the current study, we have studied the cardioprotective potential of Compound 3K, a selective PKM2 inhibitor in isoproterenol-induced CH model. METHODS To induce cardiac hypertrophy, male Wistar rats were subcutaneously administered isoproterenol (ISO, 5 mg/kg/day) for 14 days. Compound 3K at dosages of 2 and 4 mg/kg orally was administered to ISO-treated rats for 14 days to explore its effects on various parameters like ECG, ventricular functions, hypertrophic markers, histology, inflammation, and protein expression were performed. RESULTS Fourteen days administration of ISO resulted in the induction of CH, which was evidenced by alterations in ECG, ventricular dysfunctions, increase in hypertrophy markers, and fibrosis. The immunoblotting of hypertrophy heart revealed the significant rise in PKM2 and reduction in PKM1 protein expression. Treatment with Compound 3K led to downregulation of PKM2 and upregulation of PKM1 protein expression. Compound 3K showed cardioprotective effects by improving ECG, cardiac functions, hypertrophy markers, inflammation, and fibrosis. Further, it also reduced cardiac expression of PKM2-associated splicing protein, HIF-1α, and caspase-3. CONCLUSION Our findings suggest that Compound 3K has a potential cardioprotective effect via PKM2 inhibition in isoproterenol-induced CH.
Collapse
Affiliation(s)
- Mohd Rihan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar (Mohali) 160062, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar (Mohali) 160062, Punjab, India.
| |
Collapse
|
9
|
Ma C, Feng Y, Zhong K, Wei J. PKM2 promotes glioma progression by mediating CTNNB1 expression. Neurol Res 2024; 46:583-592. [PMID: 38797679 DOI: 10.1080/01616412.2024.2337508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 03/26/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Glioma is a common intracranial tumor, exhibiting a high degree of aggressiveness and invasiveness. Pyruvate kinase M2 (PKM2) is overexpressed in glioma tissues. However, the biological role of PKM2 in glioma is unclear. METHODS The qRT-PCR, CCK-8, Transwell, flow cytometry detection, western blot assays, ELISA assay, and pyruvate kinase activity assays were performed in glioma cells transfected with PKM2 shRNA to explore the function of PKM2 in glioma progression. Then, STRING website was used to predict the proteins that interacted with PKM2, and Co-IP assay was conducted to further validate their interaction. Subsequently, the above experiments were performed again to find the effect of catenin beta 1 (CTNNB1) overexpression on PKM2-deficient glioma cells. The transplanted tumor models were also established to further validate our findings. RESULTS PKM2 was up-regulated in glioma cells and tissues. After inhibiting PKM2, the proliferation, migration, glycolysis, and EMT of glioma cells were significantly decreased, and the proportion of apoptosis was increased. The prediction results of STRING website showed that CTNNB1 and PKM2 had the highest interaction score. The correlation between CTNNB1 and PKM2 was further confirmed by Co-IP test. PKM2 knockdown suppressed glioma cell proliferation, migration, glycolysis, and EMT, while CTNNB1 overexpression rescued these inhibitory effects. Correspondingly, PKM2 knockdown inhibited glioma growth in vivo. CONCLUSION In summary, these findings indicated that PKM2 promotes glioma progression by mediating CTNNB1 expression, providing a possible molecular marker for the clinical management of gliomas.
Collapse
Affiliation(s)
- Chunyang Ma
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Yuan Feng
- Department of Immunology, Affiliated Children's Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shanxi, China
| | - Kaiyi Zhong
- Department of Nephrology, Hainan West Central Hospital, Hainan, China
| | - Jiali Wei
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical College), Haikou, Hainan, China
| |
Collapse
|
10
|
Pagano C, Coppola L, Navarra G, Avilia G, Savarese B, Torelli G, Bruzzaniti S, Piemonte E, Galgani M, Laezza C, Bifulco M. N6-isopentenyladenosine inhibits aerobic glycolysis in glioblastoma cells by targeting PKM2 expression and activity. FEBS Open Bio 2024; 14:843-854. [PMID: 38514913 PMCID: PMC11073503 DOI: 10.1002/2211-5463.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 03/23/2024] Open
Abstract
Glioblastoma (GBM) is a primary tumor in the central nervous system with poor prognosis. It exhibits elevated glucose uptake and lactate production. This metabolic state of aerobic glycolysis is known as the Warburg effect. N6-isopentenyladenosine (iPA), a natural cytokine modified with an isopentenyl moiety derived from the mevalonate pathway, has well-established anti-tumor activity. It inhibits cell proliferation in glioma cells, inducing cell death by apoptosis and/or necroptosis. In the present study, we found that iPA inhibits aerobic glycolysis in unmodified U87MG cells and in the same cell line engineered to over-express wild-type epidermal growth factor receptor (EGFR) or EGFR variant III (vIII), as well as in a primary GBM4 patient-derived cell line. The detection of glycolysis showed that iPA treatment suppressed ATP and lactate production. We also evaluated the response of iPA treatment in normal human astrocyte primary cells, healthy counterpart cells of the brain. Aerobic glycolysis in treated normal human astrocyte cells did not show significant changes compared to GBM cells. To determine the mechanism of iPA action on aerobic glycolysis, we investigated the expression of certain enzymes involved in this metabolic pathway. We observed that iPA reduced the expression of pyruvate kinase M2 (PKM2), which plays a key role in the regulation of aerobic glycolysis, promoting tumor cell proliferation. The reduction of PKM2 expression is a result of the inhibition of the inhibitor of nuclear factor kappa-B kinase subunit, beta/nuclear factor-kappa B pathway upon iPA treatment. In conclusion, these experimental results show that iPA may inhibit aerobic glycolysis of GBM in stabilized cell lines and primary GBM cells by targeting the expression and activity of PKM2.
Collapse
Affiliation(s)
- Cristina Pagano
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples ‘Federico II’NaplesItaly
| | - Laura Coppola
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples ‘Federico II’NaplesItaly
| | - Giovanna Navarra
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples ‘Federico II’NaplesItaly
| | - Giorgio Avilia
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples ‘Federico II’NaplesItaly
| | - Beatrice Savarese
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples ‘Federico II’NaplesItaly
| | - Giovanni Torelli
- Neurosurgery Unit A.O. San Giovanni di Dio e Ruggi d' Aragona – Salerno's School of Medicine Largo Città di IppocrateSalernoItaly
| | - Sara Bruzzaniti
- Institute of Endocrinology and Experimental Oncology (IEOS)National Research Council (CNR)NaplesItaly
| | - Erica Piemonte
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples ‘Federico II’NaplesItaly
| | - Mario Galgani
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples ‘Federico II’NaplesItaly
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology (IEOS)National Research Council (CNR)NaplesItaly
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples ‘Federico II’NaplesItaly
| |
Collapse
|
11
|
Cheng Q, Shi X, Li Q, Wang L, Wang Z. Current Advances on Nanomaterials Interfering with Lactate Metabolism for Tumor Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305662. [PMID: 37941489 PMCID: PMC10797484 DOI: 10.1002/advs.202305662] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/15/2023] [Indexed: 11/10/2023]
Abstract
Increasing numbers of studies have shown that tumor cells prefer fermentative glycolysis over oxidative phosphorylation to provide a vast amount of energy for fast proliferation even under oxygen-sufficient conditions. This metabolic alteration not only favors tumor cell progression and metastasis but also increases lactate accumulation in solid tumors. In addition to serving as a byproduct of glycolytic tumor cells, lactate also plays a central role in the construction of acidic and immunosuppressive tumor microenvironment, resulting in therapeutic tolerance. Recently, targeted drug delivery and inherent therapeutic properties of nanomaterials have attracted great attention, and research on modulating lactate metabolism based on nanomaterials to enhance antitumor therapy has exploded. In this review, the advanced tumor therapy strategies based on nanomaterials that interfere with lactate metabolism are discussed, including inhibiting lactate anabolism, promoting lactate catabolism, and disrupting the "lactate shuttle". Furthermore, recent advances in combining lactate metabolism modulation with other therapies, including chemotherapy, immunotherapy, photothermal therapy, and reactive oxygen species-related therapies, etc., which have achieved cooperatively enhanced therapeutic outcomes, are summarized. Finally, foreseeable challenges and prospective developments are also reviewed for the future development of this field.
Collapse
Affiliation(s)
- Qian Cheng
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| | - Xiao‐Lei Shi
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| | - Qi‐Lin Li
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| | - Lin Wang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| | - Zheng Wang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| |
Collapse
|
12
|
Liu D, Wang H, Li X, Liu J, Zhang Y, Hu J. Small molecule inhibitors for cancer metabolism: promising prospects to be explored. J Cancer Res Clin Oncol 2023; 149:8051-8076. [PMID: 37002510 DOI: 10.1007/s00432-022-04501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 04/03/2023]
Abstract
BACKGROUND Abnormal metabolism is the main hallmark of cancer, and cancer metabolism plays an important role in tumorigenesis, metastasis, and drug resistance. Therefore, studying the changes of tumor metabolic pathways is beneficial to find targets for the treatment of cancer diseases. The success of metabolism-targeted chemotherapy suggests that cancer metabolism research will provide potential new targets for the treatment of malignant tumors. PURPOSE The aim of this study was to systemically review recent research findings on targeted inhibitors of tumor metabolism. In addition, we summarized new insights into tumor metabolic reprogramming and discussed how to guide the exploration of new strategies for cancer-targeted therapy. CONCLUSION Cancer cells have shown various altered metabolic pathways, providing sufficient fuel for their survival. The combination of these pathways is considered to be a more useful method for screening multilateral pathways. Better understanding of the clinical research progress of small molecule inhibitors of potential targets of tumor metabolism will help to explore more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Dan Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - HongPing Wang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - XingXing Li
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - JiFang Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - YanLing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
13
|
Srivastava S, Patil K, Thompson EW, Nakhai SA, Kim YN, Haynes C, Bryant C, Pai SB. Disruption of Glioblastoma Multiforme Cell Circuits with Cinnamaldehyde Highlights Potential Targets with Implications for Novel Therapeutic Strategies. Cells 2023; 12:cells12091277. [PMID: 37174677 PMCID: PMC10177046 DOI: 10.3390/cells12091277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a major aggressive primary brain tumor with dismal survival outcome and few therapeutic options. Although Temozolomide (TMZ) is a part of the standard therapy, over time, it can cause DNA damage leading to deleterious effects, necessitating the discovery of drugs with minimal side effects. To this end, we investigated the effect of cinnamaldehyde (CA), a highly purified, single ingredient from cinnamon, on the GBM cell lines U87 and U251 and the neuroglioma cell line H4. On observing similar impact on the viability in all the three cell lines, detailed studies were conducted with CA and its isomer/analog, trans-CA (TCA), and methoxy-CA (MCA) on U87 cells. The compounds exhibited equal potency when assessed at the cellular level in inhibiting U87 cells as well as at the molecular level, resulting in an increase in reactive oxygen species (ROS) and an increase in the apoptotic and multicaspase cell populations. To further characterize the key entities, protein profiling was performed with CA. The studies revealed differential regulation of entities that could be key to glioblastoma cell circuits such as downregulation of pyruvate kinase-PKM2, the key enzyme of the glycolytic pathway that is central to the Warburg effect. This allows for monitoring the levels of PKM2 after therapy using recently developed noninvasive technology employing PET [18F] DASA-23. Additionally, the observation of downregulation of phosphomevalonate kinase is significant as the brain tumor initiating cells (BTIC) are maintained by the metabolism occurring via the mevalonate pathway. Results from the current study, if translated in vivo, could provide additional efficacious treatment options for glioblastoma with minimal side effects.
Collapse
Affiliation(s)
- Shraddha Srivastava
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Ketki Patil
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Elizabeth W Thompson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Shadi A Nakhai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Yoo Na Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Casey Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Crystal Bryant
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - S Balakrishna Pai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| |
Collapse
|
14
|
Terconazole, an Azole Antifungal Drug, Increases Cytotoxicity in Antimitotic Drug-Treated Resistant Cancer Cells with Substrate-Specific P-gp Inhibitory Activity. Int J Mol Sci 2022; 23:ijms232213809. [PMID: 36430288 PMCID: PMC9696874 DOI: 10.3390/ijms232213809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Azole antifungal drugs have been shown to enhance the cytotoxicity of antimitotic drugs in P-glycoprotein (P-gp)-overexpressing-resistant cancer cells. Herein, we examined two azole antifungal drugs, terconazole (TCZ) and butoconazole (BTZ), previously unexplored in resistant cancers. We found that both TCZ and BTZ increased cytotoxicity in vincristine (VIC)-treated P-gp-overexpressing drug-resistant KBV20C cancer cells. Following detailed analysis, low-dose VIC + TCZ exerted higher cytotoxicity than co-treatment with VIC + BTZ. Furthermore, we found that VIC + TCZ could increase apoptosis and induce G2 arrest. Additionally, low-dose TCZ could be combined with various antimitotic drugs to increase their cytotoxicity in P-gp-overexpressing antimitotic drug-resistant cancer cells. Moreover, TCZ exhibited P-gp inhibitory activity, suggesting that the inhibitory activity of P-gp plays a role in sensitization afforded by VIC + TCZ co-treatment. We also evaluated the cytotoxicity of 12 azole antifungal drugs at low doses in drug-resistant cancer cells. VIC + TCZ, VIC + itraconazole, and VIC + posaconazole exhibited the strongest cytotoxicity in P-gp-overexpressing KBV20C and MCF-7/ADR-resistant cancer cells. These drugs exerted robust P-gp inhibitory activity, accompanied by calcein-AM substrate efflux. Given that azole antifungal drugs have long been used in clinics, our results, which reposition azole antifungal drugs for treating P-gp-overexpressing-resistant cancer, could be employed to treat patients with drug-resistant cancer rapidly.
Collapse
|