1
|
Eivazi Zadeh Z, Nour S, Kianersi S, Jonidi Shariatzadeh F, Williams RJ, Nisbet DR, Bruggeman KF. Mining human clinical waste as a rich source of stem cells for neural regeneration. iScience 2024; 27:110307. [PMID: 39156636 PMCID: PMC11326931 DOI: 10.1016/j.isci.2024.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Neural diseases are challenging to treat and are regarded as one of the major causes of disability and morbidity in the world. Stem cells can provide a solution, by offering a mechanism to replace damaged circuitry. However, obtaining sufficient cell sources for neural regeneration remains a significant challenge. In recent years, waste-derived stem(-like) cells (WDS-lCs) extracted from both prenatal and adult clinical waste tissues/products, have gained increasing attention for application in neural tissue repair and remodeling. This often-overlooked pool of cells possesses favorable characteristics; including self-renewal, neural differentiation, secretion of neurogenic factors, cost-effectiveness, and low ethical concerns. Here, we offer a perspective regarding the biological properties, extraction protocols, and preclinical and clinical treatments where prenatal and adult WDS-lCs have been utilized for cell replacement therapy in neural applications, and the challenges involved in optimizing these approaches toward patient led therapies.
Collapse
Affiliation(s)
- Zahra Eivazi Zadeh
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Shirin Nour
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- Polymer Science Group, Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sogol Kianersi
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences, University of Galway, Galway, Ireland
| | | | - Richard J. Williams
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - David R. Nisbet
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Founder and Scientific Advisory of Nano Status, Building 137, Sullivans Creek Rd, ANU, Acton, Canberra, ACT, Australia
| | - Kiara F. Bruggeman
- Laboratory of Advanced Biomaterials Research, School of Engineering, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
2
|
Chen SY, Yang RL, Wu XC, Zhao DZ, Fu SP, Lin FQ, Li LY, Yu LM, Zhang Q, Zhang T. Mesenchymal Stem Cell Transplantation: Neuroprotection and Nerve Regeneration After Spinal Cord Injury. J Inflamm Res 2023; 16:4763-4776. [PMID: 37881652 PMCID: PMC10595983 DOI: 10.2147/jir.s428425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
Spinal Cord Injury (SCI), with its morbidity characteristics of high disability rate and high mortality rate, is a disease that is highly destructive to both the physiology and psychology of the patient, and for which there is still a lack of effective treatment. Following spinal cord injury, a cascade of secondary injury reactions known as ischemia, peripheral inflammatory cell infiltration, oxidative stress, etc. create a microenvironment that is unfavorable to neural recovery and ultimately results in apoptosis and necrosis of neurons and glial cells. Mesenchymal stem cell (MSC) transplantation has emerged as a more promising therapeutic options in recent years. MSC can promote spinal cord injury repair through a variety of mechanisms, including immunomodulation, neuroprotection, and nerve regeneration, giving patients with spinal cord injury hope. In this paper, it is discussed the neuroprotection and nerve regeneration components of MSCs' therapeutic method for treating spinal cord injuries.
Collapse
Affiliation(s)
- Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Rui-Lin Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Xiang-Chong Wu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - De-Zhi Zhao
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Sheng-Ping Fu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Feng-Qin Lin
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Lin-Yan Li
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Li-Mei Yu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| |
Collapse
|
3
|
Bahlakeh G, Rahbarghazi R, Abedelahi A, Sadigh-Eteghad S, Karimipour M. Neurotrophic factor-secreting cells restored endogenous hippocampal neurogenesis through the Wnt/β-catenin signaling pathway in AD model mice. Stem Cell Res Ther 2022; 13:343. [PMID: 35883119 PMCID: PMC9327342 DOI: 10.1186/s13287-022-03024-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/28/2022] [Indexed: 12/26/2022] Open
Abstract
Background Impairment in neurogenesis correlates with memory and cognitive dysfunction in AD patients. In the recent decade, therapies with stem cell bases are growing and proved to be efficient. This study is a preliminary attempt to explore the impact of NTF-SCs on hippocampal neurogenesis mediated by the Wnt/β-catenin signaling cascade in AD-like mouse brain parenchyma. Methods The BALB/c mice were divided into four groups: Control, AD +Vehicle, AD+ TF-SCs-CM and AD+NTF-SCs (n = 10). For AD induction, 100 µM Aβ1-42 was injected into lateral ventricles. The AD-like model was confirmed via passive avoidance test and Thioflavin-S staining 21 days following Aβ injection. Next, NTF-SCs were differentiated from ADMSCs, and both NTF-SCs and supernatant (NTF-SCs-CM) were injected into the hippocampus after AD confirmation. Endogenous neural stem cells (NSCs) proliferation capacity was assessed after 50 mg/kbW BrdU injection for 4 days using immunofluorescence (IF) staining. The percent of BrdU/Nestin and BrdU/NeuN positive NSCs were calculated. Real-time RT-PCR was used to detect genes related to the Wnt/β-catenin signaling cascade. The spatial learning and memory alternation was evaluated using the Morris water maze (MWM). Results Data showed the reduction in escape latency over 5 days in the AD mice compared to the control group. The administration of NTF-SCs and NTF-SCs-CM increased this value compared to the AD-Vehicle group. Both NTF-SCs and NTF-SCs-CM were the potential to reduce the cumulative distance to the platform in AD mice compared to the AD-Vehicle group. The time spent in target quadrants was ameliorated following NTF-SCs and NTF-SCs-CM transplantation followed by an improved MWM performance. IF imaging revealed the increase in BrdU/Nestin+ and BrdU/NeuN+ in AD mice that received NTF-SCs and NTF-SCs-CM, indicating enhanced neurogenesis. Based on real-time PCR analysis, the expression of PI3K, Akt, MAPK, ERK, Wnt, and β-catenin was upregulated and coincided with the suppression of GSK-3β after injection of NTF-SCs-CM and NTF-SCs. In this study, NTF-SCs had superior effects in AD mice that received NTF-SCs compared to NTF-SCs-CM. Conclusions The activation of Wnt/β-catenin pathway via NTF-SCs can be touted as a possible therapeutic approach to restore neurogenesis in AD mice.
Collapse
Affiliation(s)
- Gozal Bahlakeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Gholami E, Gholami MR, Tavakoli A, Ahmadi M, Rezaian J, Alipour M, Chehelcheraghi F, Khaksarian M. Effect of fluoxetine treatment on neurotoxicity induced by lysolecithin in male rats. Can J Physiol Pharmacol 2022; 100:107-116. [PMID: 34935529 DOI: 10.1139/cjpp-2021-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Demyelination disorder is an unusual pathologic event, which occurs in the central nervous system (CNS). Multiple sclerosis (MS) is an inflammatory demyelinating disease that affects the CNS, and it is the leading cause of disability in young adults. Lysolecithin (LPC) is one of the best toxin-induced demyelination models. In this study, a suitable model is created, and the effect of fluoxetine treatment is examined on this model. In this case, it was assumed that daily fluoxetine treatment had increased the endogenous remyelination in the LPC model. This study was focused on investigating the influence of the fluoxetine dose of 5 or 10 mg/kg per day for 1 and 4 weeks on LPC-induced neurotoxicity in the corpus callosum region. It was performed as a demyelinating model in male Wistar rats. After 3 days, fluoxetine was injected intraperitoneally (5 or 10 mg/kg per day) for 1 and 4 weeks in each group. After completing the treatment course, the corpus callosum was removed to examine the gene expression and histological analysis was performed. The results of the histopathological study of hematoxylin and eosin staining of the corpus callosum showed that in 1 and 4-week treatment groups, fluoxetine has reduced the level of inflammation at the LPC injection site (5 and 10 mg/kg per day). Fluoxetine treatment in the luxol fast blue (LFB) staining of the corpus callosum has been led to an increase in myelination capacity in all doses and times. The results of the genetic study showed that the fluoxetine has significantly reduced the expression level of tumor necrosis factor-α, nuclear factor κβ, and induced nitric oxide synthase in comparison with the untreated LPC group. Also, the fluoxetine treatment has enhanced the expression level of the forkhead box P3 (FOXP3) gene in comparison with the untreated group. Fluoxetine has increased the expression level of myelination and neurotrophic genes such as myelin basic protein (MBP), oligodendrocyte transcription factor 2 (OLIG2), and brain-derived neurotrophic factor (BDNF). The outcomes demonstrated that fluoxetine reduces inflammation and strengthens the endogenous myelination in the LPC-induced demyelination model; however, supplementary studies are required for specifying the details of its mechanisms.
Collapse
Affiliation(s)
- Elham Gholami
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Reza Gholami
- Medical Technology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asadollah Tavakoli
- Department of Physiology, Loretan University of Medical Sciences, Khorramabad, Iran
| | - Mahdie Ahmadi
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Jafar Rezaian
- Department of Anatomy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Alipour
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Chehelcheraghi
- Department of Anatomical Sciences, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojtaba Khaksarian
- Razi Herbal Medicine Research Center and Department of Physiology, Loretan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
5
|
Potential of different cells-derived exosomal microRNA cargos for treating spinal cord injury. J Orthop Translat 2021; 31:33-40. [PMID: 34760623 PMCID: PMC8560648 DOI: 10.1016/j.jot.2021.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) is a disastrous situation that affects many patients worldwide. A profound understanding of the pathology and etiology of SCI is of great importance in inspiring new therapeutic concepts and treatment. In recent years, exosomes, which are complex lipid membrane structures secreted nearly by all kinds of plants and animal cells, can transport their valuable cargoes (e.g., proteins, lipids, RNAs) to the targeted cells and exert their communication and regulation functions, which open up a new field of treatment of SCI. Notably, the exosome's advantage is transporting the carried material to the target cells across the blood-brain barrier and exerting regulatory functions. Among the cargoes of exosomes, microRNAs, through the modulation of their mRNA targets, emerges with great potentiality in the pathological process, diagnosis and treatment of SCI. In this review, we discuss the role of miRNAs transported by different cell-derived exosomes in SCI that are poised to enhance SCI-specific therapeutic capabilities of exosomes.
Collapse
|
6
|
Bahlakeh G, Rahbarghazi R, Mohammadnejad D, Abedelahi A, Karimipour M. Current knowledge and challenges associated with targeted delivery of neurotrophic factors into the central nervous system: focus on available approaches. Cell Biosci 2021; 11:181. [PMID: 34641969 PMCID: PMC8507154 DOI: 10.1186/s13578-021-00694-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
During the last decades, numerous basic and clinical studies have been conducted to assess the delivery efficiency of therapeutic agents into the brain and spinal cord parenchyma using several administration routes. Among conventional and in-progress administrative routes, the eligibility of stem cells, viral vectors, and biomaterial systems have been shown in the delivery of NTFs. Despite these manifold advances, the close association between the delivery system and regeneration outcome remains unclear. Herein, we aimed to discuss recent progress in the delivery of these factors and the pros and cons related to each modality.
Collapse
Affiliation(s)
- Gozal Bahlakeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daruosh Mohammadnejad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Farhang S, Soleimani M, Ostadsharif M, Ghasemi N. Neurogenic induction of human dental pulp derived stem cells by hanging drop technique, basic fibroblast growth factor, and SHH factors. Dent Res J (Isfahan) 2021; 18:57. [PMID: 34497692 PMCID: PMC8404565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/07/2020] [Accepted: 01/23/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The progressive destruction of nerve cells in nervous system will induce neurodegenerative diseases. Recently, cell-based therapies have attracted the attention of researchers in the treatment of these abnormal conditions. Thus, the aim of this study was to provide a simple and efficient way to differentiate human dental pulp stem cells into neural cell-like to achieve a homogeneous population of these cells for transplantation in neurodegenerative diseases. MATERIALS AND METHODS In this basic research, human dental pulp stem cells were isolated and characterized by immunocytochemistry and flow cytometry techniques. In the following, the cells were cultured using hanging drop as three-dimensional (3D) and tissue culture plate as 2D techniques. Subsequently, cultured cells were differentiated into neuron cell-like in the presence of FGF and Sonic hedgehog (SHH) factors. Finally, the percentage of cells expressing Neu N and β tubulin III markers was determined using immunocytochemistry technique. Finally, all data were analyzed using the SPSS software. RESULTS Flow cytometry and immunocytochemistry results indicated that human dental pulp-derived stem cells were CD90, CD106-positive, but were negative for CD34, CD45 markers (P ≤ 0.001). In addition, the mean percentage of β tubulin positive cells in different groups did not differ significantly from each other (P ≥ 0.05). Nevertheless, the mean percentage of Neu N-positive cells was significantly higher in differentiated cells with embryoid bodies' source, especially in the presence of SHH than other groups (P ≤ 0.05). CONCLUSION It is concluded that due to the wide range of SHH functions and the facilitation of intercellular connections in the hanging droop method, it is recommended that the use of hanging drop method and SHH factor can be effective in increasing the efficiency of cell differentiation.
Collapse
Affiliation(s)
- Safa Farhang
- Department of Medical Basic Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Mitra Soleimani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Ostadsharif
- Department of Medical Basic Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Nazem Ghasemi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Address for correspondence: Dr. Nazem Ghasemi, Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| |
Collapse
|
8
|
Guedan-Duran A, Jemni-Damer N, Orueta-Zenarruzabeitia I, Guinea GV, Perez-Rigueiro J, Gonzalez-Nieto D, Panetsos F. Biomimetic Approaches for Separated Regeneration of Sensory and Motor Fibers in Amputee People: Necessary Conditions for Functional Integration of Sensory-Motor Prostheses With the Peripheral Nerves. Front Bioeng Biotechnol 2020; 8:584823. [PMID: 33224936 PMCID: PMC7670549 DOI: 10.3389/fbioe.2020.584823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
The regenerative capacity of the peripheral nervous system after an injury is limited, and a complete function is not recovered, mainly due to the loss of nerve tissue after the injury that causes a separation between the nerve ends and to the disorganized and intermingled growth of sensory and motor nerve fibers that cause erroneous reinnervations. Even though the development of biomaterials is a very promising field, today no significant results have been achieved. In this work, we study not only the characteristics that should have the support that will allow the growth of nerve fibers, but also the molecular profile necessary for a specific guidance. To do this, we carried out an exhaustive study of the molecular profile present during the regeneration of the sensory and motor fibers separately, as well as of the effect obtained by the administration and inhibition of different factors involved in the regeneration. In addition, we offer a complete design of the ideal characteristics of a biomaterial, which allows the growth of the sensory and motor neurons in a differentiated way, indicating (1) size and characteristics of the material; (2) necessity to act at the microlevel, on small groups of neurons; (3) combination of molecules and specific substrates; and (4) temporal profile of those molecules expression throughout the regeneration process. The importance of the design we offer is that it respects the complexity and characteristics of the regeneration process; it indicates the appropriate temporal conditions of molecular expression, in order to obtain a synergistic effect; it takes into account the importance of considering the process at the group of neuron level; and it gives an answer to the main limitations in the current studies.
Collapse
Affiliation(s)
- Atocha Guedan-Duran
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Nahla Jemni-Damer
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Irune Orueta-Zenarruzabeitia
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Gustavo Víctor Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - José Perez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Fivos Panetsos
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| |
Collapse
|
9
|
Markosyan V, Safiullov Z, Izmailov A, Fadeev F, Sokolov M, Kuznetsov M, Trofimov D, Kim E, Kundakchyan G, Gibadullin A, Salafutdinov I, Nurullin L, Bashirov F, Islamov R. Preventive Triple Gene Therapy Reduces the Negative Consequences of Ischemia-Induced Brain Injury after Modelling Stroke in a Rat. Int J Mol Sci 2020; 21:ijms21186858. [PMID: 32962079 PMCID: PMC7558841 DOI: 10.3390/ijms21186858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Currently, the main fundamental and clinical interest for stroke therapy is focused on developing a neuroprotective treatment of a penumbra region within the therapeutic window. The development of treatments for ischemic stroke in at-risk patients is of particular interest. Preventive gene therapy may significantly reduce the negative consequences of ischemia-induced brain injury. In the present study, we suggest the approach of preventive gene therapy for stroke. Adenoviral vectors carrying genes encoding vascular endothelial growth factor (VEGF), glial cell-derived neurotrophic factor (GDNF) and neural cell adhesion molecule (NCAM) or gene engineered umbilical cord blood mononuclear cells (UCB-MC) overexpressing recombinant VEGF, GDNF, and NCAM were intrathecally injected before distal occlusion of the middle cerebral artery in rats. Post-ischemic brain recovery was investigated 21 days after stroke modelling. Morphometric and immunofluorescent analysis revealed a reduction of infarction volume accompanied with a lower number of apoptotic cells and decreased expression of Hsp70 in the peri-infarct region in gene-treated animals. The lower immunopositive areas for astrocytes and microglial cells markers, higher number of oligodendrocytes and increased expression of synaptic proteins suggest the inhibition of astrogliosis, supporting the corresponding myelination and functional recovery of neurons in animals receiving preventive gene therapy. In this study, for the first time, we provide evidence of the beneficial effects of preventive triple gene therapy by an adenoviral- or UCB-MC-mediated intrathecal simultaneous delivery combination of vegf165, gdnf, and ncam1 on the preservation and recovery of the brain in rats with subsequent modelling of stroke.
Collapse
Affiliation(s)
- Vage Markosyan
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Zufar Safiullov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Andrei Izmailov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Filip Fadeev
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Mikhail Sokolov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Maksim Kuznetsov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Dmitry Trofimov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Evgeny Kim
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Grayr Kundakchyan
- Institute of Fundamental Medicine and Biology, Kazan [Volga Region] Federal University, 420008 Kazan, Russia; (G.K.); (I.S.)
| | - Airat Gibadullin
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Ilnur Salafutdinov
- Institute of Fundamental Medicine and Biology, Kazan [Volga Region] Federal University, 420008 Kazan, Russia; (G.K.); (I.S.)
| | - Leniz Nurullin
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center of Kazan Scientific Center of Russian Academy of Sciences, 119991 Kazan, Russia;
| | - Farid Bashirov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Rustem Islamov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
- Correspondence:
| |
Collapse
|
10
|
Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A, Garbossa D. Mesenchymal Stem Cells for Spinal Cord Injury: Current Options, Limitations, and Future of Cell Therapy. Int J Mol Sci 2019; 20:ijms20112698. [PMID: 31159345 PMCID: PMC6600381 DOI: 10.3390/ijms20112698] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) constitutes an inestimable public health issue. The most crucial phase in the pathophysiological process of SCI concerns the well-known secondary injury, which is the uncontrolled and destructive cascade occurring later with aberrant molecular signaling, inflammation, vascular changes, and secondary cellular dysfunctions. The use of mesenchymal stem cells (MSCs) represents one of the most important and promising tested strategies. Their appeal, among the other sources and types of stem cells, increased because of their ease of isolation/preservation and their properties. Nevertheless, encouraging promise from preclinical studies was followed by weak and conflicting results in clinical trials. In this review, the therapeutic role of MSCs is discussed, together with their properties, application, limitations, and future perspectives.
Collapse
Affiliation(s)
- Fabio Cofano
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Marina Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute "Cavalieri Ottolenghi", University of Turin, Consorzio Istituto Nazionale di Neuroscienze, 10043 Orbassano, Italy.
| | - Matteo Monticelli
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Francesco Zenga
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Alessandro Ducati
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Alessandro Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute "Cavalieri Ottolenghi", University of Turin, Consorzio Istituto Nazionale di Neuroscienze, 10043 Orbassano, Italy.
| | - Diego Garbossa
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| |
Collapse
|
11
|
Dolci S, Pino A, Berton V, Gonzalez P, Braga A, Fumagalli M, Bonfanti E, Malpeli G, Pari F, Zorzin S, Amoroso C, Moscon D, Rodriguez FJ, Fumagalli G, Bifari F, Decimo I. High Yield of Adult Oligodendrocyte Lineage Cells Obtained from Meningeal Biopsy. Front Pharmacol 2017; 8:703. [PMID: 29075188 PMCID: PMC5643910 DOI: 10.3389/fphar.2017.00703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/21/2017] [Indexed: 12/25/2022] Open
Abstract
Oligodendrocyte loss can lead to cognitive and motor deficits. Current remyelinating therapeutic strategies imply either modulation of endogenous oligodendrocyte precursors or transplantation of in vitro expanded oligodendrocytes. Cell therapy, however, still lacks identification of an adequate source of oligodendrocyte present in adulthood and able to efficiently produce transplantable cells. Recently, a neural stem cell-like population has been identified in meninges. We developed a protocol to obtain high yield of oligodendrocyte lineage cells from one single biopsy of adult rat meningeal tissue. From 1 cm2 of adult rat spinal cord meninges, we efficiently expanded a homogenous culture of 10 millions of meningeal-derived oligodendrocyte lineage cells in a short period of time (approximately 4 weeks). Meningeal-derived oligodendrocyte lineage cells show typical mature oligodendrocyte morphology and express specific oligodendrocyte markers, such as galactosylceramidase and myelin basic protein. Moreover, when transplanted in a chemically demyelinated spinal cord model, meningeal-derived oligodendrocyte lineage cells display in vivo-remyelinating potential. This oligodendrocyte lineage cell population derives from an accessible and adult source, being therefore a promising candidate for autologous cell therapy of demyelinating diseases. In addition, the described method to differentiate meningeal-derived neural stem cells into oligodendrocyte lineage cells may represent a valid in vitro model to dissect oligodendrocyte differentiation and to screen for drugs capable to promote oligodendrocyte regeneration.
Collapse
Affiliation(s)
- Sissi Dolci
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Annachiara Pino
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Valeria Berton
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Pau Gonzalez
- Group of Molecular Neurology, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Alice Braga
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elisabetta Bonfanti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Giorgio Malpeli
- Section of General and Pancreatic Surgery, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - Francesca Pari
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Stefania Zorzin
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Clelia Amoroso
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Denny Moscon
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | - Guido Fumagalli
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| |
Collapse
|