1
|
Jaruvongvanich V, Muangsomboon K, Teerasamit W, Suvannarerg V, Komoltri C, Thammakittiphan S, Lornimitdee W, Ritsamrej W, Chaisue P, Pongnapang N, Apisarnthanarak P. Optimizing computed tomography image reconstruction for focal hepatic lesions: Deep learning image reconstruction vs iterative reconstruction. Heliyon 2024; 10:e34847. [PMID: 39170325 PMCID: PMC11336302 DOI: 10.1016/j.heliyon.2024.e34847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/27/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Background Deep learning image reconstruction (DLIR) is a novel computed tomography (CT) reconstruction technique that minimizes image noise, enhances image quality, and enables radiation dose reduction. This study aims to compare the diagnostic performance of DLIR and iterative reconstruction (IR) in the evaluation of focal hepatic lesions. Methods We conducted a retrospective study of 216 focal hepatic lesions in 109 adult participants who underwent abdominal CT scanning at our institution. We used DLIR (low, medium, and high strength) and IR (0 %, 10 %, 20 %, and 30 %) techniques for image reconstruction. Four experienced abdominal radiologists independently evaluated focal hepatic lesions based on five qualitative aspects (lesion detectability, lesion border, diagnostic confidence level, image artifact, and overall image quality). Quantitatively, we measured and compared the level of image noise for each technique at the liver and aorta. Results There were significant differences (p < 0.001) among the seven reconstruction techniques in terms of lesion borders, image artifacts, and overall image quality. Low-strength DLIR (DLIR-L) exhibited the best overall image quality. Although high-strength DLIR (DLIR-H) had the least image noise and fewest artifacts, it also had the lowest scores for lesion borders and overall image quality. Image noise showed a weak to moderate positive correlation with participants' body mass index and waist circumference. Conclusions The optimal-strength DLIR significantly improved overall image quality for evaluating focal hepatic lesions compared to the IR technique. DLIR-L achieved the best overall image quality while maintaining acceptable levels of image noise and quality of lesion borders.
Collapse
Affiliation(s)
- Varin Jaruvongvanich
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kobkun Muangsomboon
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanwarang Teerasamit
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Voraparee Suvannarerg
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chulaluk Komoltri
- Division of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sastrawut Thammakittiphan
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wimonrat Lornimitdee
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Witchuda Ritsamrej
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Parinya Chaisue
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Napapong Pongnapang
- Department of Radiological Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Piyaporn Apisarnthanarak
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Choi MH, Lee SW, Pak S. Low-dose versus conventional CT urography using dual-source CT with different time-current product values and the same tube voltage: image quality and diagnostic performance in various diagnoses. Br J Radiol 2024; 97:399-407. [PMID: 38308025 DOI: 10.1093/bjr/tqad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVES To compare the image quality and diagnostic performance of low-dose CT urography to that of concurrently acquired conventional CT using dual-source CT. METHODS This retrospective study included 357 consecutive CT urograms performed by third-generation dual-source CT in a single institution between April 2020 and August 2021. Two-phase CT images (unenhanced phase, excretory phase with split bolus) were obtained with two different tube current-time products (280 mAs for the conventional-dose protocol and 70 mAs for the low-dose protocol) and the same tube voltage (90 kVp) for the two X-ray tubes. Iterative reconstruction was applied for both protocols. Two radiologists independently performed quantitative and qualitative image quality analysis and made diagnoses. The correlation between the noise level or the effective radiation dose and the patients' body weight was evaluated. RESULTS Significantly higher noise levels resulting in a significantly lower liver signal-to-noise ratio and contrast-to-noise ratio were noted in low-dose images compared to conventional images (P < .001). Qualitative analysis by both radiologists showed significantly lower image quality in low-dose CT than in conventional CT images (P < .001). Patient's body weight was positively correlated with noise and effective radiation dose (P < .001). Diagnostic performance for various diseases, including urolithiasis, inflammation, and mass, was not different between the two protocols. CONCLUSIONS Despite inferior image quality, low-dose CT urography with 70 mAs and 90 kVp and iterative reconstruction demonstrated diagnostic performance equivalent to that of conventional CT for identifying various diseases of the urinary tract. ADVANCES IN KNOWLEDGE Low-dose CT (25% radiation dose) with low tube current demonstrated diagnostic performance comparable to that of conventional CT for a variety of urinary tract diseases.
Collapse
Affiliation(s)
- Moon Hyung Choi
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Sheen-Woo Lee
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Seongyong Pak
- Siemens Healthineers Ltd, Seoul 06620, Republic of Korea
| |
Collapse
|
3
|
Zeng D, Wang L, Geng M, Li S, Deng Y, Xie Q, Li D, Zhang H, Li Y, Xu Z, Meng D, Ma J. Noise-Generating-Mechanism-Driven Unsupervised Learning for Low-Dose CT Sinogram Recovery. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3083361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Kulkarni CB, Pullara SK, Prabhu NK, Patel S, Suresh A, Moorthy S. Comparison of Knowledge-based Iterative Model Reconstruction (IMR) with Hybrid Iterative Reconstruction (iDose 4) Techniques for Evaluation of Hepatocellular Carcinomas Using Computed Tomography. Acad Radiol 2021; 28 Suppl 1:S29-S36. [PMID: 32950385 DOI: 10.1016/j.acra.2020.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023]
Abstract
RATIONALE AND OBJECTIVES To compare tumor conspicuity of small hepatocellular carcinomas (HCCs) and image quality on knowledge-based iterative model reconstruction low-dose computed tomography (IMR-LDCT) with hybrid iterative reconstruction standard-dose CT (iDose4-SDCT). METHODS Thirty-two patients (mean age 61.9 ± 9.7 years; male:female 27:5; mean body mass index 25.6 ± 3.8 kg/m2) with cirrhosis and 40 HCCs in IMR-LDCT group and 33 patients (mean age 60.1 ± 7.4 years; male:female 28:5; body mass index 26.7 ± 3.2 kg/m2) with cirrhosis and 40 HCCs in iDose4-SDCT group were included in this retrospective study. Objective analysis of reconstructed iDose4 and IMR images was done for contrast-to-noise ratio of HCCs (CNRHCC), image noise, signal-to-noise ratio of portal vein (SNRPV), and inferior vena cava (SNRIVC). Subjective analysis of tumor conspicuity and image quality was done by two independent reviewers in a blinded manner. Mean volume CT dose index, dose length product, and effective dose for both groups were compared. RESULTS The CNRHCC was significantly higher in IMR-LDCT compared to iDose4-SDCT in both arterial phase (AP), p < 0.0001, and delayed phase (DP), p < 0.0001. Image noise was significantly lower in IMR-LDCT compared to iDose4-SDCT in AP, portal venous phase, and DP with p < 0.0001. IMR-LDCT showed significantly higher SNRPV (p < 0.0001) and SNRIVC (p < 0.0001) compared to iDose4-SDCT. On subjective analysis, IMR-LDCT images showed better image quality in AP, portal venous phase, and DP and better tumor conspicuity in AP and DP. IMR-LDCT (21.4 ± 4.6 mSv) achieved 36.9% reduction in the effective dose compared to iDose4-SDCT (33.9 ± 6.2 mSv). CONCLUSION IMR algorithm provides better image quality and tumor conspicuity with considerable decrease in image noise compared to iDose4 reconstruction technique even on LDCT.
Collapse
|
5
|
Tamura A, Mukaida E, Ota Y, Kamata M, Abe S, Yoshioka K. Superior objective and subjective image quality of deep learning reconstruction for low-dose abdominal CT imaging in comparison with model-based iterative reconstruction and filtered back projection. Br J Radiol 2021; 94:20201357. [PMID: 34142867 PMCID: PMC8248220 DOI: 10.1259/bjr.20201357] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective: This study aimed to conduct objective and subjective comparisons of image quality among abdominal computed tomography (CT) reconstructions with deep learning reconstruction (DLR) algorithms, model-based iterative reconstruction (MBIR), and filtered back projection (FBP). Methods: Datasets from consecutive patients who underwent low-dose liver CT were retrospectively identified. Images were reconstructed using DLR, MBIR, and FBP. Mean image noise and contrast-to-noise ratio (CNR) were calculated, and noise, artifacts, sharpness, and overall image quality were subjectively assessed. Dunnett’s test was used for statistical comparisons. Results: Ninety patients (67 ± 12.7 years; 63 males; mean body mass index [BMI], 25.5 kg/m2) were included. The mean noise in the abdominal aorta and hepatic parenchyma of DLR was lower than that in FBP and MBIR (p < .001). For FBP and MBIR, image noise was significantly higher for obese patients than for those with normal BMI. The CNR for the abdominal aorta and hepatic parenchyma was higher for DLR than for FBP and MBIR (p < .001). MBIR images were subjectively rated as superior to FBP images in terms of noise, artifacts, sharpness, and overall quality (p < .001). DLR images were rated as superior to MBIR images in terms of noise (p < .001) and overall quality (p = .03). Conclusions: Based on objective and subjective comparisons, the image quality of DLR was found to be superior to that of MBIR and FBP on low-dose abdominal CT. DLR was the only method for which image noise was not higher for obese patients than for those with a normal BMI. Advances in knowledge: This study provides previously unavailable information on the properties of DLR systems and their clinical utility.
Collapse
Affiliation(s)
- Akio Tamura
- Department of Radiology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Eisuke Mukaida
- Department of Radiology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Yoshitaka Ota
- Division of Central Radiology, Iwate Medical University Hospital, Iwate, Japan
| | - Masayoshi Kamata
- Division of Central Radiology, Iwate Medical University Hospital, Iwate, Japan
| | - Shun Abe
- Division of Central Radiology, Iwate Medical University Hospital, Iwate, Japan
| | - Kunihiro Yoshioka
- Department of Radiology, Iwate Medical University School of Medicine, Iwate, Japan
| |
Collapse
|
6
|
Best Practices: Imaging Strategies for Reduced-Dose Chest CT in the Management of Cystic Fibrosis-Related Lung Disease. AJR Am J Roentgenol 2021; 217:304-313. [PMID: 34076456 DOI: 10.2214/ajr.19.22694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE. Cystic fibrosis (CF) is a multisystemic life-limiting disorder. The leading cause of morbidity in CF is chronic pulmonary disease. Chest CT is the reference standard for detection of bronchiectasis. Cumulative ionizing radiation limits the use of CT, particularly as treatments improve and life expectancy increases. The purpose of this article is to summarize the evidence on low-dose chest CT and its effect on image quality to determine best practices for imaging in CF. CONCLUSION. Low-dose chest CT is technically feasible, reduces dose, and renders satisfactory image quality. There are few comparison studies of low-dose chest CT and standard chest CT in CF; however, evidence suggests equivalent diagnostic capability. Low-dose chest CT with iterative reconstructive algorithms appears superior to chest radiography and equivalent to standard CT and has potential for early detection of bronchiectasis and infective exacerbations, because clinically significant abnormalities can develop in patients who do not have symptoms. Infection and inflammation remain the primary causes of morbidity requiring early intervention. Research gaps include the benefits of replacing chest radiography with low-dose chest CT in terms of improved diagnostic yield, clinical decision making, and patient outcomes. Longitudinal clinical studies comparing CT with MRI for the monitoring of CF lung disease may better establish the complementary strengths of these imaging modalities.
Collapse
|
7
|
Lim WH, Choi YH, Park JE, Cho YJ, Lee S, Cheon JE, Kim WS, Kim IO, Kim JH. Application of Vendor-Neutral Iterative Reconstruction Technique to Pediatric Abdominal Computed Tomography. Korean J Radiol 2020; 20:1358-1367. [PMID: 31464114 PMCID: PMC6715563 DOI: 10.3348/kjr.2018.0715] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
Objective To compare image qualities between vendor-neutral and vendor-specific hybrid iterative reconstruction (IR) techniques for abdominopelvic computed tomography (CT) in young patients. Materials and Methods In phantom study, we used an anthropomorphic pediatric phantom, age-equivalent to 5-year-old, and reconstructed CT data using traditional filtered back projection (FBP), vendor-specific and vendor-neutral IR techniques (ClariCT; ClariPI) in various radiation doses. Noise, low-contrast detectability and subjective spatial resolution were compared between FBP, vendor-specific (i.e., iDose1 to 5; Philips Healthcare), and vendor-neutral (i.e., ClariCT1 to 5) IR techniques in phantom. In 43 patients (median, 14 years; age range 1–19 years), noise, contrast-to-noise ratio (CNR), and qualitative image quality scores of abdominopelvic CT were compared between FBP, iDose level 4 (iDose4), and ClariCT level 2 (ClariCT2), which showed most similar image quality to clinically used vendor-specific IR images (i.e., iDose4) in phantom study. Noise, CNR, and qualitative imaging scores were compared using one-way repeated measure analysis of variance. Results In phantom study, ClariCT2 showed noise level similar to iDose4 (14.68–7.66 Hounsfield unit [HU] vs. 14.78–6.99 HU at CT dose index volume range of 0.8–3.8 mGy). Subjective low-contrast detectability and spatial resolution were similar between ClariCT2 and iDose4. In clinical study, ClariCT2 was equivalent to iDose4 for noise (14.26–17.33 vs. 16.01–18.90) and CNR (3.55–5.24 vs. 3.20–4.60) (p > 0.05). For qualitative imaging scores, the overall image quality ([reader 1, reader 2]; 2.74 vs. 2.07, 3.02 vs. 2.28) and noise (2.88 vs. 2.23, 2.93 vs. 2.33) of ClariCT2 were superior to those of FBP (p < 0.05), and not different from those of iDose4 (2.74 vs. 2.72, 3.02 vs. 2.98; 2.88 vs. 2.77, 2.93 vs. 2.86) (p > 0.05). Conclusion Vendor-neutral IR technique shows image quality similar to that of clinically used vendor-specific hybrid IR technique for abdominopelvic CT in young patients.
Collapse
Affiliation(s)
- Woo Hyeon Lim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Young Hun Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.
| | - Ji Eun Park
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Yeon Jin Cho
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Seunghyun Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Eun Cheon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Woo Sun Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - In One Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Jong Hyo Kim
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.,Advanced Institute of Convergence Technology, Suwon, Korea
| |
Collapse
|
8
|
Rajiah P, Guild J, Browning T, Venkataraman V, Abbara S. A Comprehensive CT Radiation Dose Reduction and Protocol Standardization Program in a Complex, Tertiary Hospital System. Curr Probl Diagn Radiol 2020; 49:340-346. [PMID: 32571659 DOI: 10.1067/j.cpradiol.2020.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 11/22/2022]
Abstract
PURPOSE To present our experience in reducing CT radiation doses in a complex tertiary health system through CT protocol standardization and optimization. METHODS A CT radiation task force was created to reduce CT protocol heterogeneity and radiation doses. Redundant protocols were eliminated. By an iterative process, protocols with least radiation dose were identified. Radiation dose tracking software was used to store and analyze radiation doses. CT protocols were published in an intranet site after training of technologists. SOPs were established for maintaining and changing protocols. The radiation doses for each CT protocol before and after optimization were compared using geometric means. RESULTS A total of 222 CT protocols were reviewed, with elimination of 86 protocols. One-year follow-up showed homogeneous protocols with lower radiation doses. The improvement in radiation doses ranged from 23% to 58% (P< 0.001). CONCLUSION CT radiation dose reduction of up to 58% can be achieved by homogenizing and optimizing CT protocols through a comprehensive CT operations program.
Collapse
Affiliation(s)
- Prabhakar Rajiah
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX; Department of Radiology, Mayo Clinic, Rochester, MN.
| | - Jeffrey Guild
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX
| | - Travis Browning
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX
| | | | - Suhny Abbara
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
9
|
Tamura A, Nakayama M, Ota Y, Kamata M, Hirota Y, Sone M, Hamano M, Tanaka R, Yoshioka K. Feasibility of thin-slice abdominal CT in overweight patients using a vendor neutral image-based denoising algorithm: Assessment of image noise, contrast, and quality. PLoS One 2019; 14:e0226521. [PMID: 31846490 PMCID: PMC6917298 DOI: 10.1371/journal.pone.0226521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/26/2019] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to investigate whether the novel image-based noise reduction software (NRS) improves image quality, and to assess the feasibility of using this software in combination with hybrid iterative reconstruction (IR) in image quality on thin-slice abdominal CT. In this retrospective study, 54 patients who underwent dynamic liver CT between April and July 2017 and had a body mass index higher than 25 kg/m2 were included. Three image sets of each patient were reconstructed as follows: hybrid IR images with 1-mm slice thickness (group A), hybrid IR images with 5-mm slice thickness (group B), and hybrid IR images with 1-mm slice thickness denoised using NRS (group C). The mean image noise and contrast-to-noise ratio relative to the muscle of the aorta and liver were assessed. Subjective image quality was evaluated by two radiologists for sharpness, noise, contrast, and overall quality using 5-point scales. The mean image noise was significantly lower in group C than in group A (p < 0.01), but no significant difference was observed between groups B and C. The contrast-to-noise ratio was significantly higher in group C than in group A (p < 0.01 and p = 0.01, respectively). Subjective image quality was also significantly higher in group C than in group A (p < 0.01), in terms of noise and overall quality, but not in terms of sharpness and contrast (p = 0.65 and 0.07, respectively). The contrast of images in group C was greater than that in group A, but this difference was not significant. Compared with hybrid IR alone, the novel NRS combined with a hybrid IR could result in significant noise reduction without sacrificing image quality on CT. This combined approach will likely be particularly useful for thin-slice abdominal CT examinations of overweight patients.
Collapse
Affiliation(s)
- Akio Tamura
- Department of Radiology, Iwate Medical University School of Medicine, Morioka, Japan
- * E-mail:
| | - Manabu Nakayama
- Department of Radiology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Yoshitaka Ota
- Division of Central Radiology, Iwate Medical University Hospital, Morioka, Japan
| | - Masayoshi Kamata
- Division of Central Radiology, Iwate Medical University Hospital, Morioka, Japan
| | - Yasuyuki Hirota
- Division of Central Radiology, Iwate Medical University Hospital, Morioka, Japan
| | - Misato Sone
- Department of Radiology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Makoto Hamano
- Department of Radiology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Ryoichi Tanaka
- Division of Dental Radiology, Department of General Dentistry, Iwate Medical University School of Dentistry, Morioka, Japan
| | - Kunihiro Yoshioka
- Department of Radiology, Iwate Medical University School of Medicine, Morioka, Japan
| |
Collapse
|
10
|
Demb J, Chu P, Yu S, Whitebird R, Solberg L, Miglioretti DL, Smith-Bindman R. Analysis of Computed Tomography Radiation Doses Used for Lung Cancer Screening Scans. JAMA Intern Med 2019; 179:1650-1657. [PMID: 31545340 PMCID: PMC6764003 DOI: 10.1001/jamainternmed.2019.3893] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE The American College of Radiology (ACR) has recognized the importance of minimizing radiation doses used for lung cancer screening (LCS) computed tomography (CT). However, without standard protocols, doses could still be unnecessarily high, reducing screening margin of benefit. OBJECTIVE To characterize LCS CT radiation doses and identify factors explaining variation. DESIGN, SETTING, AND PARTICIPANTS We prospectively collected LCS examination dose metrics, from 2016 to 2017, at US institutions in the University of California, San Francisco International Dose Registry. Institution-level factors were collected through baseline survey. Mixed-effects linear and logistic regression models were estimated using forward variable selection. Results are presented as percentage excess dose and odds ratios (ORs) with 95% confidence intervals (CIs). The analysis was conducted between 2018 and 2019. MAIN OUTCOMES AND MEASURES Log-transformed measures of (1) mean volume CT dose index (CTDIvol, mGy), reflecting the average radiation dose per slice; (2) mean effective dose (ED, mSv), reflecting the total dose received and estimated future cancer risk; (3) proportion of CT scans using radiation doses above ACR benchmarks (CTDIvol >3 mGy, ED >1 mSv); and (4) proportion of CT scans using radiation doses above 75th percentile of registry doses (CTDIvol >2.7 mGy, ED >1.4 mSv). RESULTS Data were collected for 12 529 patients undergoing LCS CT scans performed at 72 institutions. Overall, 7232 participants (58%) were men, and the median age was 65 years (interquartile range [IQR], 60-70). Of 72 institutions, 15 (21%) had median CTDIvol and 47 (65%) had median ED above ACR guidelines. Institutions allowing any radiologists to establish protocols had 44% higher mean CTDIvol (mean dose difference [MDD], 44%; 95% CI, 19%-69%) and 27% higher mean ED (MDD, 27%; 95% CI, 5%-50%) vs those limiting who established protocols. Institutions allowing any radiologist to establish protocols had higher odds of examinations exceeding ACR CTDIvol guidelines (OR, 12.0; 95% CI, 2.0-71.4), and 75th percentile of registry CTDIvol (OR, 19.0; 95% CI, 1.9-186.7) or ED (OR, 8.5; 95% CI, 1.7-42.9). Having lead radiologists establish protocols resulted in lower odds of doses exceeding ACR ED guidelines (OR, 0.01; 95% CI, 0.001-0.1). Employing external vs internal medical physicists was associated with increased odds of exceeding ACR CTDIvol guidelines (OR, 6.1; 95% CI, 1.8-20.8). Having medical physicists establish protocols was associated with decreased odds of exceeding 75th percentile of registry CTDIvol (OR, 0.09; 95% CI, 0.01-0.59). Institutions reporting protocol updates as needed had 27% higher mean CTDIvol (MDD, 27%; 95% CI, 8%-45%). CONCLUSIONS AND RELEVANCE Facilities varied in LCS CT radiation dose distributions. Institutions limiting protocol creation to lead radiologists and having internal medical physicists had lower doses.
Collapse
Affiliation(s)
- Joshua Demb
- Moores Cancer Center, University of California, San Diego
| | - Philip Chu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Sophronia Yu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Robin Whitebird
- School of Social Work, University of St Thomas, St Paul, Minnesota
| | - Leif Solberg
- HealthPartners Institute, Minneapolis, Minnesota
| | - Diana L Miglioretti
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis.,Kaiser Permanente Washington Health Research Institute, Seattle
| | - Rebecca Smith-Bindman
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| |
Collapse
|
11
|
Cheng K, Cassidy F, Aganovic L, Taddonio M, Vahdat N. CT urography: how to optimize the technique. Abdom Radiol (NY) 2019; 44:3786-3799. [PMID: 31317210 DOI: 10.1007/s00261-019-02111-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Computed tomography urography (CTU) has emerged as the modality of choice for imaging the urinary tract within the past few decades. It is a powerful tool that enables detailed anatomic evaluation of the urinary tract in order to identify primary urothelial malignancies, benign urinary tract conditions, and associated abdominopelvic pathologies. As such, there have been extensive efforts to optimize CTU protocol. METHODS This article reviews the published literature on CTU protocol optimization, including contrast bolus timing, dose reduction, reconstruction algorithms, and ancillary practices. CONCLUSION There have been many advances in CTU techniques, which allow for imaging diagnosis of a wide spectrum of diseases while minimizing radiation dose and maximizing urinary tract distension and opacification.
Collapse
Affiliation(s)
- Karen Cheng
- Department of Radiology, University of California, San Diego, 200 W. Arbor Drive, San Diego, CA, 92103, USA
| | - Fiona Cassidy
- Department of Radiology, University of California, San Diego, 200 W. Arbor Drive, San Diego, CA, 92103, USA
| | - Lejla Aganovic
- Department of Radiology, University of California, San Diego, 200 W. Arbor Drive, San Diego, CA, 92103, USA
| | - Michael Taddonio
- Department of Radiology, University of California, San Diego, 200 W. Arbor Drive, San Diego, CA, 92103, USA
| | - Noushin Vahdat
- Department of Radiology, University of California, San Diego, 200 W. Arbor Drive, San Diego, CA, 92103, USA.
- Department of Radiology, VA Medical Center, San Diego, 3350 La Jolla Village Drive, Mail Code: 114, San Diego, CA, 92161, USA.
| |
Collapse
|
12
|
Smith P, Blackmore CC, Sicuro P. An Institutional CT Radiation Dose Reduction Quality Improvement Project. J Am Coll Radiol 2019; 16:1577-1581. [PMID: 31125542 DOI: 10.1016/j.jacr.2019.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/05/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Philip Smith
- Virginia Mason Medical Center, Seattle, Washington
| | | | - Paul Sicuro
- Virginia Mason Medical Center, Seattle, Washington
| |
Collapse
|
13
|
Koc GG, Koc Z, Kaniyev T, Kokangul A. Thorax CT Dose Reduction Based on Patient Features: Effect of Patient Characteristics on Image Quality and Effective Dose. HEALTH PHYSICS 2019; 116:736-745. [PMID: 30908322 DOI: 10.1097/hp.0000000000001008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Computed tomography (CT) radiation dose reduction is vital without compromising image quality. The aim was to determine the effects of patient characteristics on the received radiation dose and image quality in chest CT examinations and to be able to predict dose and image quality prior to scanning. Consecutive 230 patients underwent routine chest CT examinations were included. CT examination and patients input parameters were recorded for each patient. The effect of patients' demographics/anthropometrics on received dose and image quality was investigated by linear regression analysis. All parameters were evaluated using an artificial neural network (ANN). Of all parameters, patient demographics/anthropometrics were found to be 98% effective in calculating dose reduction. Using ANN on 60 new patients was more than 90% accurate for output parameters and 91% for image quality. Patient characteristics have a significant impact on radiation dose and image quality. Dose and image quality can be determined before CT. This will allow setting the most appropriate scanning parameters before the CT scan.
Collapse
Affiliation(s)
- Gizem Gul Koc
- Faculty of Industrial Engineering, Cukurova University, ADANA, Turkey
| | - Zafer Koc
- Faculty of Medicine, Department of Radiology, Baskent University, ANKARA, Turkey
| | - Tahir Kaniyev
- Faculty of Industrial Engineering, TOOB Economy University, ANKARA, Turkey
| | - Ali Kokangul
- Faculty of Industrial Engineering, Cukurova University, ADANA, Turkey
| |
Collapse
|
14
|
Yan C, Liang C, Xu J, Wu Y, Xiong W, Zheng H, Xu Y. Ultralow-dose CT with knowledge-based iterative model reconstruction (IMR) in evaluation of pulmonary tuberculosis: comparison of radiation dose and image quality. Eur Radiol 2019; 29:5358-5366. [PMID: 30927099 DOI: 10.1007/s00330-019-06129-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/06/2019] [Accepted: 03/06/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To evaluate the image quality of ultralow-dose computed tomography (ULDCT) reconstructed with knowledge-based iterative model reconstruction (IMR) in patients with pulmonary tuberculosis (TB). METHODS This IRB-approved prospective study enrolled 59 consecutive patients (mean age, 43.9 ± 16.6 years; F:M 18:41) with known or suspected pulmonary TB. Patients underwent a low-dose CT (LDCT) using automatic tube current modulation followed by an ULDCT using fixed tube current. Raw image data were reconstructed with filtered-back projection (FBP), hybrid iterative reconstruction (iDose), and IMR. Objective measurements including CT attenuation, image noise, and contrast-to-noise ratio (CNR) were assessed and compared using repeated-measures analysis of variance. Overall image quality and visualization of normal and pathological findings were subjectively scored on a five-point scale. Radiation output and subjective scores were compared by the paired Student t test and Wilcoxon signed-rank test, respectively. RESULTS Compared with FBP and iDose, IMR yielded significantly lower noise and higher CNR values at both dose levels (p < 0.01). Subjective ratings for pathological findings including centrilobular nodules, consolidation, tree-in-bud, and cavity were significantly better with ULDCT IMR images than those with LDCT iDose images (p < 0.01), but blurred edges were observed. With IMR implementation, a 59% reduction of the mean effective dose was achieved with ULDCT (0.28 ± 0.02 mSv) compared with LDCT (0.69 ± 0.15 mSv) without impairing image quality (p < 0.001). CONCLUSIONS IMR offers considerable noise reduction and improvement in image quality for patients with pulmonary TB undergoing chest ULDCT at an effective dose of 0.28 mSv. KEY POINTS • Radiation dose is a major concern for tuberculosis patients requiring repeated follow-up CT. • IMR allows substantial radiation dose reduction in chest CT without compromising image quality. • ULDCT reconstructed with IMR allows accurate depiction of CT features of pulmonary tuberculosis.
Collapse
Affiliation(s)
- Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Chunyi Liang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Jun Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yuankui Wu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Wei Xiong
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Huan Zheng
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
15
|
Effective Radiation Dose Reduction in Computed Tomography With Iterative Reconstruction in Patients With Urinary Stone. J Comput Assist Tomogr 2019; 43:877-883. [DOI: 10.1097/rct.0000000000000921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Maamoun I, Khalil MM. Assessment of iterative image reconstruction on kidney and liver donors: Potential role of adaptive iterative dose reduction 3D (AIDR 3D) technology. Eur J Radiol 2018; 109:124-129. [PMID: 30527293 DOI: 10.1016/j.ejrad.2018.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/30/2018] [Accepted: 10/19/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the radiation exposure levels in two different types of subjects including liver and kidney donors in diagnostic assessment of transplant operation and also the significance of dose reduction on total effective dose. MATERIALS AND METHODS A number of Sixty subjects (40 males and 20 females, average age of 35 ± 10 years) were randomly prospectively recruited and equally divided into two distinct groups namely kidney donors (KD, 24 M and 6 F) and liver donors (LD, 21 M and 9 female). Kidney donors were divided into full dose (KFD, n = 20) group and low dose (KLD, n = 10) group. They had undergone dynamic renal scan using Tc99 m-DTPA, CT renal angiography and x-ray plain radiograph. Liver donors were divided into full dose (LFD, n = 20) and low dose (LLD, n = 10) groups and performed CT liver volumetry. The CT dose index (CTDIvol), dose length product (DLP), total milli-ampere product time mAs, effective dose and image noise index were measured in all subjects of kidney and liver donors comparing full dose and low dose protocols. RESULTS In comparison of all subjects of kidney donor groups (KFD vs KLD), the parameters (mAs = 16386.8 ± 3140.7 vs 2830.286 ± 831.676), (CTDIvol = 183.19 ± 32.58 mGy vs. 45.5 ± 13.3 mGy), DLP = 2884 ± 859.0 mGy.cm vs. 1437.5 ± 399 mGy.cm) and (effective dose = 49.0 ± 9.0 mSv vs. 18.9 mSv±5.7 mSv) were significant, p < 0.0005. Statistical evaluation of liver donors groups (LFD vs LLD) showed that (mAs = 14348.8 ± 4571.8 vs 3123.357 ± 794.5), (CTDIvol = 333.6 ± 59.5 mGy vs. 51.4 ± 13 mGy), (DLP = 3268.3 ± 604.3 mGy.cm vs 1260.5 ± 404.6 mGy.cm) and (effective dose = 43.3 mSv±12.9 mSv vs. 21.6 ± 5.9 mSv) are statistically significant, p < 0.0005. Nevertheless, the comparative evaluation of the image quality noise index of KFD vs KLD groups and LFD vs LLD showed a no statistical significance p > 0.05. CONCLUSION Renal and liver donors bear a relatively significant radiation dose due to diagnostic evaluation and patient management. The CT iterative reconstruction using AIDR3D proved very valuable tool in dose reduction such that it can reduce 37% in kidney donors and 48% in liver donors while able to maintain an acceptable image quality. Monitoring of those subjects on the clinical and radiobiological levels are recommended.
Collapse
Affiliation(s)
- I Maamoun
- Department of Intensive Care, Nuclear Cardiology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Magdy M Khalil
- Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
17
|
Mao A, Gang GJ, Shyr W, Levinson R, Siewerdsen JH, Kawamoto S, Webster Stayman J. Dynamic fluence field modulation for miscentered patients in computed tomography. J Med Imaging (Bellingham) 2018; 5:043501. [PMID: 30397631 PMCID: PMC6199669 DOI: 10.1117/1.jmi.5.4.043501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/17/2018] [Indexed: 11/14/2022] Open
Abstract
Traditional CT image acquisition uses bowtie filters to reduce dose, x-ray scatter, and detector dynamic range requirements. However, accurate patient centering within the bore of the CT scanner takes time and is often difficult to achieve precisely. Patient miscentering combined with a static bowtie filter can result in significant increases in dose, reconstruction noise, and CT number variations, and consequently raise overall exposure requirements. Approaches to estimate the patient position from scout scans and perform dynamic spatial beam filtration during acquisition are developed and applied in physical experiments on a CT test bench using different beam filtration strategies. While various dynamic beam modulation strategies have been developed, we focus on two approaches: (1) a simple approach using attenuation-based beam modulation using a translating bowtie filter and (2) dynamic beam modulation using multiple aperture devices (MADs)-an emerging beam filtration strategy based on binary filtration of the x-ray beam using variable width slits in a high-density beam blocker. Improved dose utilization and more consistent image performance with respect to an unmodulated baseline (static filter) are demonstrated for miscentered objects and dynamic beam filtration in physical experiments. For a homogeneous object miscentered by 4 cm, the dynamic filter reduced the maximum regional noise and dose penalties (compared with a centered object) from 173% to 16% and 42% to 14%, respectively, for a traditional bowtie, 29% to 8% and 24% to 15%, respectively, for a single MAD, and 275% to 11% and 56% to 18%, respectively, for a dual-MAD filter. The proposed methodology has the potential to relax patient centering requirements within the scanner, reduce setup time, and facilitate additional CT dose reduction.
Collapse
Affiliation(s)
- Andrew Mao
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
| | - Grace J. Gang
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
| | - William Shyr
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
| | - Reuven Levinson
- Philips Healthcare, Global Research and Advanced Development, Haifa, Israel
| | - Jeffrey H. Siewerdsen
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
- Johns Hopkins University, Department of Radiology, Baltimore, Maryland, United States
| | - Satomi Kawamoto
- Johns Hopkins University, Department of Radiology, Baltimore, Maryland, United States
| | - J. Webster Stayman
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
| |
Collapse
|
18
|
Yan C, Xu J, Liang C, Wei Q, Wu Y, Xiong W, Zheng H, Xu Y. Radiation Dose Reduction by Using CT with Iterative Model Reconstruction in Patients with Pulmonary Invasive Fungal Infection. Radiology 2018; 288:285-292. [DOI: 10.1148/radiol.2018172107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chenggong Yan
- From the Department of Medical Imaging Center (C.Y., C.L., Y.W., W.X., H.Z., Y.X.) and Department of Hematology (J.X., Q.W.), Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, Guangdong, People’s Republic of China
| | - Jun Xu
- From the Department of Medical Imaging Center (C.Y., C.L., Y.W., W.X., H.Z., Y.X.) and Department of Hematology (J.X., Q.W.), Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, Guangdong, People’s Republic of China
| | - Chunyi Liang
- From the Department of Medical Imaging Center (C.Y., C.L., Y.W., W.X., H.Z., Y.X.) and Department of Hematology (J.X., Q.W.), Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, Guangdong, People’s Republic of China
| | - Qi Wei
- From the Department of Medical Imaging Center (C.Y., C.L., Y.W., W.X., H.Z., Y.X.) and Department of Hematology (J.X., Q.W.), Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, Guangdong, People’s Republic of China
| | - Yuankui Wu
- From the Department of Medical Imaging Center (C.Y., C.L., Y.W., W.X., H.Z., Y.X.) and Department of Hematology (J.X., Q.W.), Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, Guangdong, People’s Republic of China
| | - Wei Xiong
- From the Department of Medical Imaging Center (C.Y., C.L., Y.W., W.X., H.Z., Y.X.) and Department of Hematology (J.X., Q.W.), Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, Guangdong, People’s Republic of China
| | - Huan Zheng
- From the Department of Medical Imaging Center (C.Y., C.L., Y.W., W.X., H.Z., Y.X.) and Department of Hematology (J.X., Q.W.), Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, Guangdong, People’s Republic of China
| | - Yikai Xu
- From the Department of Medical Imaging Center (C.Y., C.L., Y.W., W.X., H.Z., Y.X.) and Department of Hematology (J.X., Q.W.), Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, Guangdong, People’s Republic of China
| |
Collapse
|
19
|
A Third-Generation Adaptive Statistical Iterative Reconstruction Technique: Phantom Study of Image Noise, Spatial Resolution, Lesion Detectability, and Dose Reduction Potential. AJR Am J Roentgenol 2018; 210:1301-1308. [DOI: 10.2214/ajr.17.19102] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Triple-phase abdomen and pelvis computed tomography: standard unenhanced phase can be replaced with reduced-dose scan. Pol J Radiol 2018; 83:e166-e170. [PMID: 30627230 PMCID: PMC6323542 DOI: 10.5114/pjr.2018.75682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/16/2017] [Indexed: 11/17/2022] Open
Abstract
Purpose The aim of the study was to test the hypothesis that unenhanced phase does not require as high image quality as subsequent phases acquired after contrast administration in triple-phase abdomen and pelvis computed tomography (CT), and to assess if attenuation value (AV) measurements may be obtained from unenhanced images acquired with three-fold reduced radiation dose. Material and methods In the standard triple-phase abdomen and pelvis CT protocol (unenhanced, late arterial, and portal venous phase) we decreased the tube current time product only in the unenhanced phase. Arterial and venous phases were performed with the standard scanner settings used in our Institution for routine abdomen and pelvis CT. We compared the AV in manually drawn circular-shaped regions of interest (ROIs) obtained from reduced-dose and standard-dose unenhanced images in 52 patients. All ROIs were set in homogeneous parts of psoas muscle, fat tissue, liver, spleen, aorta, and bladder. Results There was no statistically significant difference in AV measurements for all considered areas. More noise does not alter the mean AV inside the ROIs. Radiation dose of unenhanced scans was reduced three times and the total dose length product (DLP) in the triple-phase study was decreased by 22%. Conclusions Unenhanced images performed with three-fold reduced radiation dose allows reliable AV measurements. The unenhanced phase does not require as high image quality as subsequent phases acquired after contrast administration.
Collapse
|
21
|
Paden RG, Pavlicek W, Hara A. Radiation Optimization in an Academic Training Program. J Am Coll Radiol 2017; 14:1462-1463. [DOI: 10.1016/j.jacr.2017.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 11/16/2022]
|
22
|
Boissonneau S, Tabouret É, Graillon T, Meyer M, Velly L, Girard N, Brunel H, Bruder N, Fuentes S, Dufour H. Rational use of systematic postoperative CT scans after neurosurgical craniotomy. J Neurosurg Sci 2017; 64:335-340. [PMID: 28959872 DOI: 10.23736/s0390-5616.17.04082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aim of this retrospective study was to evaluate the relevance of a systematic postoperative CT scan after neurosurgical craniotomy and to identify predictive factors of complications. METHODS This retrospective analysis included all the patients at our institution who benefited from a cerebral postoperative CT scan within 24 hours post-craniotomy. Patient characteristics and neuroimaging abnormalities were recorded. Predictive factors were identified using a recursive partitioning analysis. RESULTS A total of 633 patients were included. Of these, 17.9% of patients suffered from postoperative complications and 7.4% of them required a new surgery. The decision for reoperation was based on the neurological deterioration and the CT scan, but never on the CT scan alone. The mortality rate was 1.1%. The risk to be reoperated was correlated to the occurrence of a new postoperative neurological deficit (P<0.001, HR=4.60) and in situ hemorrhage (P<0.001, HR=4.19). The risk of postoperative hematoma was correlated to the supratentorial location versus infratentorial (P=0.027, HR=2.50). With clinical factors, such as location and etiology of the lesion, schedule type of surgery, and the age of patients, we proposed six classes with the risk to present with hemorrhage or midline shift on postoperative CT scans. CONCLUSIONS The post-craniotomy CT scan did not impact patient management as an independent decisional tool. We identified several variables associated with the risk of clinical modification that can impact the decision to reoperate and allow establishment of a risk score. This score could be an interesting tool in order to reduce the systematic use of CT scans in the post-surgical period but has to be validated in a prospective study.
Collapse
Affiliation(s)
- Sébastien Boissonneau
- Department of Neurosurgery, La Timone University Hospital, Assistance Publique - Hôpitaux de Marseille (APHM), Marseille, France -
| | - Émeline Tabouret
- Department of Neuro-Oncology, La Timone University Hospital, Assistance Publique - Hôpitaux de Marseille (APHM), Marseille, France.,INSERM Unit of Research UMR S911, Biologic Oncology and Oncologic Pharmacology Research Center (CRO2), Faculty of Medical and Paramedical Sciences, Aix-Marseille University, Marseille, France
| | - Thomas Graillon
- Department of Neurosurgery, La Timone University Hospital, Assistance Publique - Hôpitaux de Marseille (APHM), Marseille, France.,Center for Research in Neurobiology and Neurophysiology of Marseille (CRN2M), National Center of Scientific Research (CNRS), Aix-Marseille University, Marseille, France
| | - Mikael Meyer
- Department of Neurosurgery, La Timone University Hospital, Assistance Publique - Hôpitaux de Marseille (APHM), Marseille, France
| | - Lionel Velly
- Department of Anesthesiology and Intensive Care, La Timone University Hospital, Assistance Publique - Hôpitaux de Marseille (APHM), Marseille, France
| | - Nadine Girard
- Service of Neuroradiology, La Timone University Hospital, Assistance Publique - Hôpitaux de Marseille (APHM), Marseille, France
| | - Hervé Brunel
- Service of Neuroradiology, La Timone University Hospital, Assistance Publique - Hôpitaux de Marseille (APHM), Marseille, France
| | - Nicolas Bruder
- Department of Anesthesiology and Intensive Care, La Timone University Hospital, Assistance Publique - Hôpitaux de Marseille (APHM), Marseille, France
| | - Stéphane Fuentes
- Department of Neurosurgery, La Timone University Hospital, Assistance Publique - Hôpitaux de Marseille (APHM), Marseille, France
| | - Henry Dufour
- Department of Neurosurgery, La Timone University Hospital, Assistance Publique - Hôpitaux de Marseille (APHM), Marseille, France.,Center for Research in Neurobiology and Neurophysiology of Marseille (CRN2M), National Center of Scientific Research (CNRS), Aix-Marseille University, Marseille, France
| |
Collapse
|
23
|
Demb J, Chu P, Nelson T, Hall D, Seibert A, Lamba R, Boone J, Krishnam M, Cagnon C, Bostani M, Gould R, Miglioretti D, Smith-Bindman R. Optimizing Radiation Doses for Computed Tomography Across Institutions: Dose Auditing and Best Practices. JAMA Intern Med 2017; 177:810-817. [PMID: 28395000 PMCID: PMC5818828 DOI: 10.1001/jamainternmed.2017.0445] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IMPORTANCE Radiation doses for computed tomography (CT) vary substantially across institutions. OBJECTIVE To assess the impact of institutional-level audit and collaborative efforts to share best practices on CT radiation doses across 5 University of California (UC) medical centers. DESIGN, SETTING, AND PARTICIPANTS In this before/after interventional study, we prospectively collected radiation dose metrics on all diagnostic CT examinations performed between October 1, 2013, and December 31, 2014, at 5 medical centers. Using data from January to March (baseline), we created audit reports detailing the distribution of radiation dose metrics for chest, abdomen, and head CT scans. In April, we shared reports with the medical centers and invited radiology professionals from the centers to a 1.5-day in-person meeting to review reports and share best practices. MAIN OUTCOMES AND MEASURES We calculated changes in mean effective dose 12 weeks before and after the audits and meeting, excluding a 12-week implementation period when medical centers could make changes. We compared proportions of examinations exceeding previously published benchmarks at baseline and following the audit and meeting, and calculated changes in proportion of examinations exceeding benchmarks. RESULTS Of 158 274 diagnostic CT scans performed in the study period, 29 594 CT scans were performed in the 3 months before and 32 839 CT scans were performed 12 to 24 weeks after the audit and meeting. Reductions in mean effective dose were considerable for chest and abdomen. Mean effective dose for chest CT decreased from 13.2 to 10.7 mSv (18.9% reduction; 95% CI, 18.0%-19.8%). Reductions at individual medical centers ranged from 3.8% to 23.5%. The mean effective dose for abdominal CT decreased from 20.0 to 15.0 mSv (25.0% reduction; 95% CI, 24.3%-25.8%). Reductions at individual medical centers ranged from 10.8% to 34.7%. The number of CT scans that had an effective dose measurement that exceeded benchmarks was reduced considerably by 48% and 54% for chest and abdomen, respectively. After the audit and meeting, head CT doses varied less, although some institutions increased and some decreased mean head CT doses and the proportion above benchmarks. CONCLUSIONS AND RELEVANCE Reviewing institutional doses and sharing dose-optimization best practices resulted in lower radiation doses for chest and abdominal CT and more consistent doses for head CT.
Collapse
Affiliation(s)
- Joshua Demb
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Philip Chu
- Department of Radiology, University of California, San Francisco
| | - Thomas Nelson
- Department of Radiology, University of California, San Diego
| | - David Hall
- Department of Radiology, University of California, San Diego
| | - Anthony Seibert
- Department of Public Health Sciences, UC Davis, and Kaiser Permanente Washington Health Research Institute, Kaiser Foundation Health Plan of Washington
| | - Ramit Lamba
- Department of Public Health Sciences, UC Davis, and Kaiser Permanente Washington Health Research Institute, Kaiser Foundation Health Plan of Washington
| | - John Boone
- Department of Public Health Sciences, UC Davis, and Kaiser Permanente Washington Health Research Institute, Kaiser Foundation Health Plan of Washington
| | - Mayil Krishnam
- Department of Radiology, University of California, Irvine
| | | | - Maryam Bostani
- Department of Radiology, University of California, Los Angeles
| | - Robert Gould
- Department of Radiology, University of California, San Francisco
| | - Diana Miglioretti
- Department of Public Health Sciences, UC Davis, and Kaiser Permanente Washington Health Research Institute, Kaiser Foundation Health Plan of Washington
| | | |
Collapse
|
24
|
Kordbacheh H, Baliyan V, Serrao J, Gee MS, Yajnik V, Sahani DV, Kambadakone AR. Imaging in Patients with Crohn's Disease: Trends in Abdominal CT/MRI Utilization and Radiation Exposure Considerations over a 10-Year Period. Inflamm Bowel Dis 2017; 23:1025-1033. [PMID: 28426472 DOI: 10.1097/mib.0000000000001088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE To study the trends in utilization of computed tomography (CT) and magnetic resonance imaging (MRI) in patients with Crohn's disease and to evaluate changes in CT radiation exposure over a 10-year period. METHODS In this institutional review board-approved single-institution retrospective study, we included patients who underwent CT and MRIs for evaluation of Crohn's disease between 2006 and 2015. A total of 3196 CTs and 1924 MR scans were performed in 2156 patients (mean age: 34.8 ± 17.71 yr; range: 3-91 yr) for initial diagnosis or follow-up of Crohn's disease between 2006 and 2015. Trends in CT/MR utilization was assessed by comparing the volume of CT/MRI studies performed each year. The changes in CT radiation exposure over the study period were estimated and compared. RESULTS The annual combined CT/MR utilization demonstrated a 1.9-fold rise over the last decade (2006: n = 358, 2015: n = 681, P < 0.001, r = 0.96). It was predominantly because of a substantial growth (9.2-fold increase) in the MR scan volume (2006: n = 37, 2015: n = 341, P < 0.001, r = 0.93), whereas CT volume did not show significant change (2006: n = 321, 2015: n = 340, P = 0.6). Over this same period, there was a 59.4% reduction in mean radiation exposure (2006: CT dose indexvol 16.9 ± 7.1 mGy, 2015: CT dose indexvol 6.87 ± 4.62 mGy, P < 0.001). CONCLUSIONS A 9-fold growth in annual MR scan volume contributed to a nearly 2-fold rise in yearly cross-sectional imaging utilization in Crohn's patients between 2006 and 2015. Rising trend in imaging utilization paralleled a 60% reduction of CT radiation exposure.
Collapse
Affiliation(s)
- Hamed Kordbacheh
- Departments of *Radiology, and †Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
25
|
Impact of low-energy CT imaging on selection of positive oral contrast media concentration. Abdom Radiol (NY) 2017; 42:1298-1309. [PMID: 27933477 DOI: 10.1007/s00261-016-0993-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To determine to what extent low-energy CT imaging affects attenuation of gastrointestinal tract (GIT) opacified with positive oral contrast media (OCM). Second, to establish optimal OCM concentrations for low-energy diagnostic CT exams. METHODS One hundred patients (38 men and 62 women; age 62 ± 11 years; BMI 26 ± 5) with positive OCM-enhanced 120-kVp single-energy CT (SECT), and follow-up 100-kVp acquisitions (group A; n = 50), or 40-70-keV reconstructions from rapid kV switching-single-source dual-energy CT (ssDECT) (group B; n = 50) were included. Luminal attenuation from different GIT segments was compared between exams. Standard dose of three OCM and diluted solutions (75%, 50%, and 25% concentrations) were introduced serially in a gastrointestinal phantom and scanned using SECT (120, 100, and 80 kVp) and DECT (80/140 kVp) acquisitions on a ssDECT scanner. Luminal attenuation was obtained on SECT and DECT images (40-70 keV), and compared to 120-kVp scans with standard OCM concentrations. RESULTS Luminal attenuation was higher on 100-kVp (328 HU) and on 40-60-keV images (410-924 HU) in comparison to 120-kVp scans (298 HU) in groups A and B (p < 0.05). Phantom: There was an inverse correlation between luminal attenuation and X-ray energy, increasing up to 527 HU on low-kVp and 999 HU on low-keV images (p < 0.05). 25% and 50% diluted OCM solutions provided similar or higher attenuation than 120 kVp, at low kVp and keV, respectively. CONCLUSIONS Low-energy CT imaging increases the attenuation of GIT opacified with positive OCM, permitting reduction of 25%-75% OCM concentration.
Collapse
|
26
|
Cha MJ, Jeong WK, Choi D, Kim YK, Lim S, Choi SY, Lee WJ. Iterative reconstruction: comparison of techniques for reduced-dose liver computed tomography following transarterial chemoembolization for hepatocellular carcinoma. Acta Radiol 2016; 57:1429-1437. [PMID: 26792822 DOI: 10.1177/0284185115626472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR) algorithms have the potential to reduce dose while maintaining image quality. Purpose To compare computed tomography (CT) image quality and diagnostic performance among three reconstruction techniques - ASIR, MBIR, and filtered back projection (FBP) - after transcatheter arterial chemoembolization (TACE) of hepatocellular carcinomas (HCC). Material and Methods Of 60 patients that underwent initial TACE for HCCs, half underwent dynamic liver CT with conventional scanning protocol, and the other half with dose reduction to approximately 60% of conventional exposure. All images were reconstructed using three algorithms: FBP, ASIR, and MBIR. For objective analysis, image noise and signal-to-noise ratio (SNR) were compared. For subjective analysis, three radiologists independently assessed image quality. Ability to detect viable HCCs was also evaluated. Results MBIR and ASIR produced images with less noise and higher SNR compared with FBP regardless of radiation dosage ( P < 0.017). However, in terms of subjective parameters, such as image blotchiness, artifacts, and overall quality, MBIR was inferior to FBP and ASIR ( P < 0.001). Regarding diagnostic performance, there were no significant differences among reviewers in the detection of viable HCCs depending on the reconstruction algorithm, regardless of the dose reduction protocol ( P > 0.017). Conclusion Although subjective evaluations suggest that MBIR images are of lower quality compared with FBP and ASIR regardless of radiation dosage, there were no significant differences among reconstruction algorithms in diagnosis of viable HCC after TACE.
Collapse
Affiliation(s)
- Min Jae Cha
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Woo Kyoung Jeong
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dongil Choi
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young Kon Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sanghyeok Lim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Radiology, Hanyang University College of Medicine, Hanyang University Guri Hospital, Gyeonggi-do, Republic of Korea
| | - Seo-Youn Choi
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Radiology, Soonchunhyang University College of Medicine, Bucheon Hospital, Gyeonggi-do, Republic of Korea
| | - Won Jae Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
27
|
Jha P, Bentley B, Behr S, Yee J, Zagoria R. Imaging of flank pain: readdressing state-of-the-art. Emerg Radiol 2016; 24:81-86. [PMID: 27614885 DOI: 10.1007/s10140-016-1443-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/05/2016] [Indexed: 10/21/2022]
Abstract
Pain resulting from renal and ureteral stones is a common cause for patients presenting in the acute setting. Since the late 1990s, computed tomography (CT) has been the initial imaging method of choice to evaluate patients with suspected ureteral stones; however, concerns regarding both radiation dose and cost-effectiveness have prompted investigations into a different imaging algorithm. Studies utilizing ultrasound have provided evidence indicating that it may be a more appropriate first step, with selective use of CT in selected cases, in the diagnostic work-up. Techniques have evolved with low-dose CT, dual-energy CT, and magnetic resonance urography emerging as useful in imaging of renal colic patients. This manuscript reviews the current literature on state-of-the-art imaging for acute flank pain and proposes a new imaging algorithm in the evaluation of patients with acute flank pain and suspected ureteral stones.
Collapse
Affiliation(s)
- Priyanka Jha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 4150 Clement Street, Building 200, Rm 2A-166, San Francisco, CA, 94121, USA.
| | - Brian Bentley
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 4150 Clement Street, Building 200, Rm 2A-166, San Francisco, CA, 94121, USA
| | - Spencer Behr
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 4150 Clement Street, Building 200, Rm 2A-166, San Francisco, CA, 94121, USA
| | - Judy Yee
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 4150 Clement Street, Building 200, Rm 2A-166, San Francisco, CA, 94121, USA.,San Francisco Veterans Administration Medical Center, San Francisco, CA, USA
| | - Ronald Zagoria
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 4150 Clement Street, Building 200, Rm 2A-166, San Francisco, CA, 94121, USA
| |
Collapse
|
28
|
Lamba R, Corwin MT, Fananapazir G. Practical dose reduction tips for abdominal interventional procedures using CT-guidance. Abdom Radiol (NY) 2016; 41:743-53. [PMID: 26920005 DOI: 10.1007/s00261-016-0670-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reducing the radiation dose should be an endeavor not only for diagnostic CT exams but also for interventional procedures using CT-guidance. Given that interventional procedures vary in scope and complexity, there is greater variability in radiation doses delivered during CT procedures. The goal in an interventional procedure is simply to advance the interventional instruments into the target lesions, and as such diagnostic level doses are not required and only narrow scan range scans need to be acquired. Adherence to the principles outlined in this article will allow such procedures to be performed with reduced radiation doses.
Collapse
Affiliation(s)
- Ramit Lamba
- Department of Radiology, University of California Davis Medical Center, 4860 Y Street, Sacramento, CA, 95817, USA.
| | - Michael T Corwin
- Department of Radiology, University of California Davis Medical Center, 4860 Y Street, Sacramento, CA, 95817, USA
| | - Ghaneh Fananapazir
- Department of Radiology, University of California Davis Medical Center, 4860 Y Street, Sacramento, CA, 95817, USA
| |
Collapse
|
29
|
Zhang M, Wellnitz C, Cui C, Pavlicek W, Wu T. Automated detection of z-axis coverage with abdomen-pelvis computed tomography examinations. J Digit Imaging 2016; 28:362-7. [PMID: 25413130 DOI: 10.1007/s10278-014-9743-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Excessive cephalocaudal anatomic (Z-axis) coverage can lead to unnecessary radiation exposure to a patient. In this study, an automated computing model was developed for identifying instances of potentially excessive Z-axis coverage with abdomen-pelvis examinations. Eight patient and imaging attributes including patient gender, age, height, weight, volume CT dose index (CTDIvol), dose length product (DLP), maximum abdomen width, and maximum abdomen thickness were used to build a feedforward neural network model to predict a target Z-axis coverage whether it is an excessive or non-excessive Z-axis coverage scans. 264 CT abdomen-pelvis exams were used to develop the model which is validated using 10-fold cross validation. The result showed that 244 out of 264 exams (92.4%) correctly predicted Z-axis excessive coverage. The promising results indicate that this tool has the potential to be used for CT exams of the chest and colon, urography, and other site-specified CT studies having defined limited length.
Collapse
Affiliation(s)
- Min Zhang
- School of Computing, Informatics Decisions and System Engineering, Arizona State University, Tempe, AZ, USA
| | | | | | | | | |
Collapse
|
30
|
Little BP, Duong PA, Knighton J, Baugnon K, Campbell-Brown E, Kitajima HD, St Louis S, Tannir H, Applegate KE. A Comprehensive CT Dose Reduction Program Using the ACR Dose Index Registry. J Am Coll Radiol 2015; 12:1257-65. [PMID: 26475376 DOI: 10.1016/j.jacr.2015.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/20/2015] [Indexed: 11/18/2022]
Abstract
PURPOSE The purpose of this article is to demonstrate the role of the ACR Dose Index Registry(®) (DIR) in a dose reduction program at a large academic health care system. METHODS Using the ACR DIR, radiation doses were collected for four common CT examination types (head without contrast, chest with contrast, chest without contrast, and abdomen and pelvis with contrast). Baseline analysis of 7,255 CT examinations from seven scanners across the institution was performed for the period from December 1, 2011, to March 15, 2012. A comprehensive dose reduction initiative was guided by the identification of targets for dose improvement from the baseline analysis. Data for 14,938 examinations from the same seven scanners were analyzed for the postimplementation period of January 1, 2013, to July 1, 2013. RESULTS The program included protocol changes, iterative reconstruction, optimization of scan acquisition, technologist education, and continuous monitoring with feedback tools. Average decrease in median dose-length product (DLP) across scanners was 30% for chest CT without contrast, 29% for noncontrast head CT, 26% for abdominal and pelvic CT with contrast, and 10% for chest CT with contrast. Compared with average median DLP in the ACR DIR, the median institution-wide CT DLPs after implementation were lower by 33% for chest CT without contrast, 32% for chest CT with contrast, 26% for abdominal and pelvic CT with contrast, and 6% for head CT without contrast. CONCLUSIONS A comprehensive CT dose reduction program using the ACR DIR can lead to substantial dose reduction within a large health care system.
Collapse
Affiliation(s)
- Brent P Little
- Department of Radiology and Imaging Sciences, Emory University Hospital, Atlanta, Georgia.
| | - Phuong-Anh Duong
- Department of Radiology and Imaging Sciences, Emory University Hospital, Atlanta, Georgia
| | - Jessie Knighton
- Department of Radiology and Imaging Sciences, Emory University Hospital, Atlanta, Georgia
| | - Kristen Baugnon
- Department of Radiology and Imaging Sciences, Emory University Hospital, Atlanta, Georgia
| | - Erica Campbell-Brown
- Department of Radiology and Imaging Sciences, Emory University Hospital, Atlanta, Georgia
| | - Hiroumi D Kitajima
- Department of Radiology and Imaging Sciences, Emory University Hospital, Atlanta, Georgia
| | - Steve St Louis
- Department of Radiology and Imaging Sciences, Emory University Hospital, Atlanta, Georgia
| | - Habib Tannir
- Department of Radiology, MD Anderson Cancer Center, Houston, Texas
| | - Kimberly E Applegate
- Department of Radiology and Imaging Sciences, Emory University Hospital, Atlanta, Georgia
| |
Collapse
|
31
|
Iterative Reconstruction Techniques in Abdominopelvic CT: Technical Concepts and Clinical Implementation. AJR Am J Roentgenol 2015; 205:W19-31. [PMID: 26102414 DOI: 10.2214/ajr.14.13402] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Alvare G, Gordon R. CT brush and CancerZap!: two video games for computed tomography dose minimization. Theor Biol Med Model 2015; 12:7. [PMID: 25962597 PMCID: PMC4469010 DOI: 10.1186/s12976-015-0003-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 04/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND X-ray dose from computed tomography (CT) scanners has become a significant public health concern. All CT scanners spray x-ray photons across a patient, including those using compressive sensing algorithms. New technologies make it possible to aim x-ray beams where they are most needed to form a diagnostic or screening image. We have designed a computer game, CT Brush, that takes advantage of this new flexibility. It uses a standard MART algorithm (Multiplicative Algebraic Reconstruction Technique), but with a user defined dynamically selected subset of the rays. The image appears as the player moves the CT brush over an initially blank scene, with dose accumulating with every "mouse down" move. The goal is to find the "tumor" with as few moves (least dose) as possible. RESULTS We have successfully implemented CT Brush in Java and made it available publicly, requesting crowdsourced feedback on improving the open source code. With this experience, we also outline a "shoot 'em up game" CancerZap! for photon limited CT. CONCLUSIONS We anticipate that human computing games like these, analyzed by methods similar to those used to understand eye tracking, will lead to new object dependent CT algorithms that will require significantly less dose than object independent nonlinear and compressive sensing algorithms that depend on sprayed photons. Preliminary results suggest substantial dose reduction is achievable.
Collapse
Affiliation(s)
- Graham Alvare
- BioInformation Technology Laboratory, Department of Plant Science, University of Manitoba, E2-532 EITC, Winnipeg, R3T 2N2, MB, Canada. .,Current address: Faculty of Medicine, University of Manitoba, Box 107, Winnipeg, Canada.
| | - Richard Gordon
- Embryogenesis Center, Gulf Specimen Aquarium and Marine Laboratory, 222Clark Drive, Panacea, FL, 32346, USA. .,C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, 275 E. Hancock, Detroit, MI, 48201, USA. .,Stellarray, 9210 Cameron Road Suite #300, Austin, TX, 78754, USA.
| |
Collapse
|
33
|
Patino M, Fuentes JM, Hayano K, Kambadakone AR, Uyeda JW, Sahani DV. A quantitative comparison of noise reduction across five commercial (hybrid and model-based) iterative reconstruction techniques: an anthropomorphic phantom study. AJR Am J Roentgenol 2015; 204:W176-W183. [PMID: 25615778 DOI: 10.2214/ajr.14.12519] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
OBJECTIVE. The objective of our study was to compare the performance of three hybrid iterative reconstruction techniques (IRTs) (ASiR, iDose4, SAFIRE) and their respective strengths for image noise reduction on low-dose CT examinations using filtered back projection (FBP) as the standard reference. Also, we compared the performance of these three hybrid IRTs with two model-based IRTs (Veo and IMR) for image noise reduction on low-dose examinations. MATERIALS AND METHODS. An anthropomorphic abdomen phantom was scanned at 100 and 120 kVp and different tube current-exposure time products (25-100 mAs) on three CT systems (for ASiR and Veo, Discovery CT750 HD; for iDose4 and IMR, Brilliance iCT; and for SAFIRE, Somatom Definition Flash). Images were reconstructed using FBP and using IRTs at various strengths. Nine noise measurements (mean ROI size, 423 mm(2)) on extracolonic fat for the different strengths of IRTs were recorded and compared with FBP using ANOVA. Radiation dose, which was measured as the volume CT dose index and dose-length product, was also compared. RESULTS. There were no significant differences in radiation dose and image noise among the scanners when FBP was used (p > 0.05). Gradual image noise reduction was observed with each increasing increment of hybrid IRT strength, with a maximum noise suppression of approximately 50% (48.2-53.9%). Similar noise reduction was achieved on the scanners by applying specific hybrid IRT strengths. Maximum noise reduction was higher on model-based IRTs (68.3-81.1%) than hybrid IRTs (48.2-53.9%) (p < 0.05). CONCLUSION. When constant scanning parameters are used, radiation dose and image noise on FBP are similar for CT scanners made by different manufacturers. Significant image noise reduction is achieved on low-dose CT examinations rendered with IRTs. The image noise on various scanners can be matched by applying specific hybrid IRT strengths. Model-based IRTs attain substantially higher noise reduction than hybrid IRTs irrespective of the radiation dose.
Collapse
Affiliation(s)
- Manuel Patino
- 1 All authors: Department of Radiology, Division of Abdominal Imaging and Intervention, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114-2696
| | | | | | | | | | | |
Collapse
|
34
|
Comparison of iterative model-based reconstruction versus conventional filtered back projection and hybrid iterative reconstruction techniques: lesion conspicuity and influence of body size in anthropomorphic liver phantoms. J Comput Assist Tomogr 2015; 38:859-68. [PMID: 25321625 DOI: 10.1097/rct.0000000000000145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE This study aimed to determine whether an iterative model-based reconstruction (IMR) can improve lesion conspicuity and depiction on computed tomography (CT) compared with filtered back projection (FBP) and hybrid iterative reconstruction (iDose) using anthropomorphic phantoms. MATERIALS AND METHODS One small and one large anthropomorphic body phantoms, each containing 8 simulated focal liver lesions (FLLs), were scanned using a 256-channel CT scanner at 120 kVp with variable tube current-time products (10-200 mAs). Scans were divided into 3 groups based on radiation dose (RD) as follows: (a) full dose (FD), (b) low dose (FD50), and (c) ultralow dose (FD25 for the large phantom, FD15 for the small phantom). All images were reconstructed using FBP, iDose, and IMR. Image noise and lesion-to-liver contrast were assessed quantitatively and qualitatively. Thereafter, 6 radiologists independently evaluated conspicuity of FLLs, and then, compared the number of invisible FLLs on 3 image sets of each RD group. RESULTS Image noise was significantly lower with IMR than with FBP and iDose at the same RD. Iterative model-based reconstruction improved conspicuity of low-contrast FLLs in all RD groups compared to the others (P < 0.001). Furthermore, compared to FBP and iDose, the number of visible FLLs significantly increased on IMR images in the FD15 group of the small phantom 52.8% [38/72], 68.1% [49/72], and 84.8% [61/72], respectively; P < 0.001) and in the FD 25, FD50 groups of the large phantom (FD50: 56.9% [41/72], 76.4% [55/72], and 84.7% [61/72], respectively; P < 0.05). CONCLUSIONS Iterative model-based reconstruction reduced image noise and improved low-contrast FLL conspicuity, compared to FBP and iDose. Therefore, depiction of low-contrast FLLs on FBP could be improved using IMR.
Collapse
|
35
|
Mayo-Smith WW, Hara AK, Mahesh M, Sahani DV, Pavlicek W. How I Do It: Managing Radiation Dose in CT. Radiology 2014; 273:657-72. [PMID: 25420167 DOI: 10.1148/radiol.14132328] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- William W Mayo-Smith
- From the Department of Radiology, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI (W.W.M.); Department of Radiology, Mayo Clinic Arizona, Scottsdale, Ariz (A.K.H., W.P.); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Md (M.M.); and Department of Abdominal Imaging/Intervention, Massachusetts General Hospital, Boston, Mass (D.V.S.)
| | | | | | | | | |
Collapse
|
36
|
McKiernan M. X-rays as art. Occup Med (Lond) 2014; 64:569-70. [DOI: 10.1093/occmed/kqu167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
37
|
Duong PA, Little BP. Dose Tracking and Dose Auditing in a Comprehensive Computed Tomography Dose-Reduction Program. Semin Ultrasound CT MR 2014; 35:322-30. [DOI: 10.1053/j.sult.2014.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Mahesh M. Invited Commentary. Radiographics 2014; 34:17-8. [DOI: 10.1148/rg.341135177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|